Lateral Spacing of TiO2 Nanotube Coatings Modulates In Vivo Early New Bone Formation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Grant PCE 55: Spaced titania nanotubes as platforms for drug delivery and bone regeneration
Romanian Ministry of National Education, CNCS-UEFISCDI
PubMed
39997104
PubMed Central
PMC11853438
DOI
10.3390/biomimetics10020081
PII: biomimetics10020081
Knihovny.cz E-zdroje
- Klíčová slova
- TiO2 nanotubes, in vivo new bone formation, intertube spacing, nanotopographic surfaces, osteoblasts,
- Publikační typ
- časopisecké články MeSH
Due to the bio-inert nature of titanium (Ti) and subsequent accompanying chronic inflammatory response, an implant's stability and function can be significantly affected, which is why various surface modifications have been employed, including the deposition of titanium oxide (TiO2) nanotubes (TNTs) onto the native surface through the anodic oxidation method. While the influence of nanotube diameter on cell behaviour and osteogenesis is very well documented, information regarding the effects of nanotube lateral spacing on the in vivo new bone formation process is insufficient and hard to find. Considering this, the present study's aim was to evaluate the mechanical properties and the osteogenic ability of two types of TNTs-based pins with different lateral spacing, e.g., 25 nm (TNTs) and 92 nm (spTNTs). The mechanical properties of the TNT-coated implants were characterised from a morphological point of view (tube diameter, spacing, and tube length) using scanning electron microscopy (SEM). In addition, the chemical composition of the implants was evaluated using X-ray photoelectron spectroscopy, while surface roughness and topography were characterised using atomic force microscopy (AFM). Finally, the implants' hardness and elastic modulus were investigated using nanoindentation measurements. The in vivo new bone formation was histologically evaluated (haematoxylin and eosin-HE staining) at 6 and 30 days post-implantation in a rat model. Mechanical characterisation revealed that the two morphologies presented a similar chemical composition and mechanical strength, but, in terms of surface roughness, the spTNTs exhibited a higher average roughness. The microscopic examination at 1 month post-implantation revealed that spTNTs pins (57.21 ± 34.93) were capable of promoting early new bone tissue formation to a greater extent than the TNTs-coated implants (24.37 ± 6.5), with a difference in the average thickness of the newly formed bone tissue of ~32.84 µm, thus highlighting the importance of this parameter when designing future dental/orthopaedic implants.
Regional Centre of Advanced Technologies and Materials Šlechtitelů 27 78371 Olomouc Czech Republic
Research Institute of the University of Bucharest University of Bucharest 050657 Bucharest Romania
Zobrazit více v PubMed
Tao B., Lan H., Zhou X., Lin C., Qin X., Wu M., Zhang Y., Chen S., Guo A., Li K., et al. Regulation of TiO2 nanotubes on titanium implants to orchestrate osteo/angio-genesis and osteoimmunomodulation for boosted osseointegration. Mater. Des. 2023;233:112268. doi: 10.1016/j.matdes.2023.112268. DOI
Messias A., Nicolau P., Guerra F. Titanium dental implants with different collar design and surface modifications: A systemic review on survival rates and marginal bone levels. Clin. Oral Implant. Res. 2019;30:20–48. doi: 10.1111/clr.13389. PubMed DOI
Ma A., Shang H., Song Y., Chen B., You Y., Han W., Zhang X., Zhang W., Li Y., Li C. Icariin-Functionalised Coating on TiO2 Nanotubes Surface to Improve Osteoblast activity In Vitro and Osteogenesis Ability In Vivo. Coatings. 2019;9:327. doi: 10.3390/coatings9050327. DOI
Lu X., Wu Z., Xu K., Wang X., Wang S., Qiu H., Li X., Chen J. Multifunctional Coatings of Titanium Implants Toward Promoting Ossoeintegration and Preventing Infection: Recent Developments. Front. Bioeng. Biotechnol. 2021;9:783816. doi: 10.3389/fbioe.2021.783816. PubMed DOI PMC
Liu Y., Rath B., Tingart M., Eschweiler J. Role of implant surface modification in ossoeintegration: A systemic review. J. Biomed. Mater. Res. Part A. 2020;108:470–484. doi: 10.1002/jbm.a.36829. PubMed DOI
Khaw J.S., Bowen C.R., Cartmell S.H. Effect of TiO2 Nanotube Pore Diameter on human Mesenchymal Stem Cells and Human Osteoblasts. Nanomaterials. 2020;10:2117. doi: 10.3390/nano10112117. PubMed DOI PMC
Hou C., An J., Zhao D., Ma X., Zhang W., Zhao W., Wu M., Zhang Z., Yuan F. Surface Modification Techniques to Pro-duce Micro/Nano-scale Topographies on Ti-based Implant Surfaces for Improved Osseointegration. Front. Bioeng. Biotechnol. 2022;10:835008. doi: 10.3389/fbioe.2022.835008. PubMed DOI PMC
Izmir M., Ercan B. Anodization of titanium alloys for orthopedic applications. Front. Chem. Sci. Eng. 2019;13:28–45. doi: 10.1007/s11705-018-1759-y. DOI
Lee K., Mazare A., Schmuki P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem. Rev. 2014;114:9385–9454. doi: 10.1021/cr500061m. PubMed DOI
Batool S.A., Maqbool M.S., Javed M.A., Niaz A., Rehman M.A.U. A review on the Fabrication and Characterization of Titania Nanotubes Obtained via Electrochemical Anodization. Surfaces. 2022;5:456–480. doi: 10.3390/surfaces5040033. DOI
Park J., Tesler A.B., Gongadze E., Iglic A., Schmuki P., Mazare A. Nanoscale Topography of Anodic TiO2 Nanostructures Is Crucial for Cell-Surface Interactions. ACS Appl. Mater. Interfaces. 2024;16:4430–4438. doi: 10.1021/acsami.3c16033. PubMed DOI
Necula M.G., Mazare A., Ion R.N., Ozkan S., Park J., Schmuki P., Cimpean A. Lateral Spacing of TiO2 Nanotubes Modu-lates Osteoblast Behavior. Materials. 2019;12:2956. doi: 10.3390/ma12182956. PubMed DOI PMC
Bjursten L.M., Rasmusson L., Oh S., Smith G.C., Brammer K.S., Jin S. Titanium dioxide nanotubes enhance bone bonding in vivo. J. Biomed. Mater. Res. A. 2010;92A:1218–1224. doi: 10.1002/jbm.a.32463. PubMed DOI
von Wilmowsky C., Bauer S., Lutz R., Meisel M., Neukam F.W., Toyoshima T., Schmuki P., Nkenke E., Schlegel K.A. In Vivo Evaluation of Anodic TiO2 Nanotubes: An experimental Study in the Pig. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009;89:165–171. doi: 10.1002/jbm.b.31201. PubMed DOI
Kang C.-G., Park Y.-B., Choi H., Oh S., Lee K.-W., Choi S.-H., Shim J.-S. Osseointegration of Implants Surface-treated with Various Diameters of TiO2 Nanotubes in Rabbit. J. Nanomater. 2015;2015:634650. doi: 10.1155/2015/634650. DOI
Wang N., Li H., Lu W., Li J., Wang J., Zhang Z., Liu Y. Effects of TiO2 nanotubes with different diameters on gene ex-pression and osseointegration of implants in minipigs. Biomaterials. 2011;32:6900–6911. doi: 10.1016/j.biomaterials.2011.06.023. PubMed DOI
Jang I., Shim S.-C., Choi D.-S., Cha B.-K., Lee J.-K., Choe B.-H., Choi W.-Y. Effect of TiO2 nanotubes arrays on osseointe-gration of orthodontic miniscrew. Biomed. Microdevices. 2015;17:76. doi: 10.1007/s10544-015-9986-1. PubMed DOI
Park J., Bauer S., Schmuki P., der Mark K. Narrow Window in Nanoscale Dependent Activation of Endothelial Cell Growth and Differentiation on TiO2 Nanotube Surfaces. Nano Lett. 2009;9:3157–3164. doi: 10.1021/nl9013502. PubMed DOI
Park J., Bauer S., Schlegel K.A., Neukam F.M., Von Der Mark K., Schmuki P. TiO2 nanotube surfaces: A 15 nm-an optimal length scale of surface topography for cell adhesion and differentiation. Small. 2009;5:666–671. doi: 10.1002/smll.200801476. PubMed DOI
Xu L., Yu Q., Jiang X.Q., Zhan F.Q., Yu W., Jiang X., Zhang F. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblasts adhesion, proliferation and differentiation. J. Biomed. Mater. Res. Part A. 2010;94:1012–1022. doi: 10.1002/jbm.a.32687. PubMed DOI
Che C., Wang J., Guo W. Effect of TiO2 Nanotubes on Biological Activity of Osteoblasts and Focal Adhesion Kinase/Osteopontin Level. J. Biomed. Technol. 2024;20:793–799. doi: 10.1166/jbn.2024.3877. DOI
Brammer K.S., Oh S., Cobb C.J., Bjursten L.M., van der Heyde H., Jin S. Improved bone-forming functionality of diameter-controlled TiO2 nanotube surface. Acta Biomater. 2009;5:3215–3223. doi: 10.1016/j.actbio.2009.05.008. PubMed DOI
Yi Y., Park Y., Choi H., Lee K., Kim S., Kim K., Oh S., Shim J. The Evaluation of Ossoeintegration of Dental Implant Surface with Different Size of TiO2 Nanotube in Rats. J. Nanomater. 2015;2015:581713. doi: 10.1155/2015/581713. DOI
von Wilmowsky C., Bauer S., Roedl S., Neukam F.W., Schmuki P., Schlegel K.A. The diameter of anodic TiO2 nanotubes affects bone formation and correlates with the bone morphogenic protein-2 expression in vivo. Clin. Oral Implant. Res. 2011;23:359–366. doi: 10.1111/j.1600-0501.2010.02139.x. PubMed DOI
Yu M., Yang H., Li B., Wang R., Han Y. Molecular mechanisms of interrod spacing-mediated osseointegration via modulating inflammatory response and osteogenic differentiation. Chem. Eng. J. 2024;454:140141. doi: 10.1016/j.cej.2022.140141. DOI
Zhou J., Li B., Lu S., Zhang L., Han Y. Regulation of osteoblast proliferation and differentiation by interrod spacing of Sr-HA nanorods on microporous titania coatings. ACS Appl. Mater. Interfaces. 2013;5:5358–5365. doi: 10.1021/am401339n. PubMed DOI
Zhou J., Han Y., Lu S. Direct role of interrod spacing in mediating cell adhesion on Sr-HA nanorod-patterned coatings. Int. J. Nanomed. 2014;9:1243–1260. PubMed PMC
Kim H.S., Yoo H.S. Differentiation and focal adhesion of adipose-derived stem cells on nano-pillars arrays with different spacing. RSC Adv. 2015;5:49508–49512. doi: 10.1039/C5RA07608K. DOI
Chezzi B., Langonegro P., Fukuta N., Parisi L., Calestani D., Galli C., Salviati G., Macaluso G.M., Rossi F. Sub-Micropillar Spacing Modulates the Spatial Arrangement of Mouse MC3T3-E1 Osteoblastic Cells. Nanomaterials. 2019;9:1701. doi: 10.3390/nano9121701. PubMed DOI PMC
Kelvin-Agwu M.T.C., Adelodun M.O., Igwama G.T., Anyanwu E.C. Advancements in biomedical device implants: A comprehensive review of current technologies. Int. J. Front. Med. Surg. Res. 2024;6:19–28. doi: 10.53294/ijfmsr.2024.6.1.0037. DOI
Concalves A.D., Balestri W., Reinwald Y. Biomaterials. IntechOpen; London, UK: 2024. Biomedical implants for regenerative therapies; pp. 1–36.
Necula M.G., Mazare A., Negrescu A.M., Mitran V., Ozkan S., Trusca R., Park J., Schmuki P., Cimpean A. Macrophage-like Cells Are Responsive to Titania Nanotube Intertube Spacing—An In Vitro Study. Int. J. Mol. Sci. 2022;23:3558. doi: 10.3390/ijms23073558. PubMed DOI PMC
Ozkan S., Mazare A., Schmuki P. Critical parameters and factors in the formation of spaced TiO2 nanotubes by self-organizing anodization. Electrochim. Acta. 2018;268:435–447. doi: 10.1016/j.electacta.2018.02.120. DOI
Xu Y.N., Liu M.N., Wang M.C., Oloyede A., Bell J.M., Yan C. Nnaoindentation study of the mechanical behavior of the TiO2 nanotube arrays. J. Appl. Phys. 2015;118:145301. doi: 10.1063/1.4932213. DOI
Alfaraj T.A., Al-Madani S., Algahtani N.S., Almohammadi A.A., Alqahtani A.M., AlQabbani H.S., Bajunaid M.K., Alharthy B.A., Aljalfan N. Optimizing Osseointegration in Dental Implantology: A Cross-Disciplinary Review of Current and Emerging Strategies. Cures. 2023;15:e47943. doi: 10.7759/cureus.47943. PubMed DOI PMC
Li X., Wu J., Li D., Zou Q., Man Y., Zou L., Li W. Pro-Osteogenesis and in vivo tracking investigation of dental implantation system comprising novel mTi implant and HYH-Fe particles. Bioact. Mater. 2021;6:2658–2666. doi: 10.1016/j.bioactmat.2021.01.038. PubMed DOI PMC
Cruz M.B., Silva N., Marques J.F., Mata A., Silva F.S., Carames J. Biomimetic Implant Surfaces and Their Role in Biological Integration—A Concise Review. Biomimetics. 2022;7:74. doi: 10.3390/biomimetics7020074. PubMed DOI PMC
Lu X., Zhao Y., Peng X., Lu C., Wu Z., Xu H., Qin Y., Xu Y., Wang Q., Hao Y., et al. Comprehensive Overview of Interface Strategies in Implant Osseointegration. Adv. Funct. Mater. 2024. early view . DOI
Alves-Rezende M.C., Capalbo L.C., De Oliveira Limirio J.P.J., Capalbo B.C., Limirio P.H.J.O., Rosa J.L. The role of TiO2 nanotube surface on osseointegration of titanium implants: Biomechanical and histological study in rats. Micros. Res. Tech. 2020;83:817–823. doi: 10.1002/jemt.23473. PubMed DOI
Wang C., Gao S., Lu R., Wang X., Chen S. In Vitro and In Vivo Studies of Hydrogenated Titanium Dioxide Nanotubes with Superhydrophilic Surfaces during Early Osseointegration. Cells. 2022;11:3417. doi: 10.3390/cells11213417. PubMed DOI PMC
Li J., Zheng Y., Yu Z., Kankala R.K., Lin Q., Shi J., Chen C., Luo K., Chen A., Zhong Q. Surface-modified titanium and titanium-based alloys for improved osteogenesis: A critical review. Heliyon. 2024;10:e23779. doi: 10.1016/j.heliyon.2023.e23779. PubMed DOI PMC
Zhao X., You L., Wang T., Zhang X., Li Z., Ding L., Li J., Xiao C., Han F., Li B. Enhanced Ossoeintegration of Titanium Implants by Surface Modification with Silicon-doped Titania Nanotubes. Int. J. Nanomed. 2020;15:8583–8594. doi: 10.2147/IJN.S270311. PubMed DOI PMC
Yao L., Al-Bishari A.M., Shen J., Wang Z., Liu T., Sheng L., Wu G., Lu L., Xu L., Liu J. Ossoeintegration and an-ti-infection of dental implant under osteoporotic conditions promoted by gallium oxide nano-layer coated titanium di-oxide nanotube arrays. Ceram. Int. 2023;49:22961–22969. doi: 10.1016/j.ceramint.2023.04.121. DOI
Moon K.-S., Bae J.-M., Park Y.-B., Choi E.-J., Oh S.-H. Photobiomodulation-Based Synergic Effects of Pt-Coated TiO2 Nanotubes and 850nm Near-Infrared Irradiation on the Ossoeintegration Enhancement: In Vitro and In Vivo Evaluation. Nanomaterials. 2023;13:1377. doi: 10.3390/nano13081377. PubMed DOI PMC
Li Y., Tang L., Shen M., Wang Z., Huang X. A comparative study of Sr-loaded nano-textured Ti and TiO2 nanotube implants on osseointegration immediately after tooth extraction in Beagle dogs. Front. Mater. 2023;10:1213163. doi: 10.3389/fmats.2023.1213163. DOI
Hamlekhan A., Takoudis C., Sukotjo C., Mathew M.T., Virdi A., Shahbazian-Yassar R., Shokuhfar T. Recent progress toward surface modification of bone/Dental implants with titanium and zirconia dioxide nanotubes fabrication of TiO2 nanotubes. J. Nanotechnol. Smart Mater. 2014;1:301–314.
Miron R.J., Bohner M., Zhang Y., Bosshardth D.D. Osteoinduction and osteoimmunology: Emerging concepts. Periodontology 2000. 2024;94:9–26. doi: 10.1111/prd.12519. PubMed DOI
Amani H., Alipour M., Shahrirari E., Taboas J.M. Immunomodulatory Biomaterials: Tailoring Surface Properties to Mitigate Foreign Body Reaction and Enhance Tissue Regeneration. Adv. Healthc. Mater. 2024;13:2401253. doi: 10.1002/adhm.202401253. PubMed DOI
Mendonca G., Mendonca D.B., Simoes L.G., Araujo A.L., Leite E.R., Duarte W.R., Aragao F.J.L., Cooper L.F. The effects of implant surface nanoscale features of osteoblast specific gene expression. Biomaterials. 2009;30:4053–4062. doi: 10.1016/j.biomaterials.2009.04.010. PubMed DOI
Shekaran A., Garcia A.J. Nanoscale engineering of extracellular matrix-mimetic bioadhesive surfaces and implants for tis-sue engineering. Biochem. Biophys. Acta. 2011;1810:350–360. doi: 10.1016/j.bbagen.2010.04.006. PubMed DOI PMC
Wu B., Tang Y., Wang K., Zhou X., Xiang L. Nanostructured Titanium Implant Surface Facilitating Osseointegration from Protein Adsorption to Osteogenesis: The Example of TiO2 NATs. Int. J. Nanomed. 2023;17:1865–1879. doi: 10.2147/IJN.S362720. PubMed DOI PMC
Berger M.B., Slosar P., Schwartz Z., Cohen D.J., Goodman S.B., Anderson P.A., Boyan B.D. A Review of Biomimetic Topographies and Their Role in Promoting Bone Formation and Osseointegration: Implications for Clinical Use. Biomimetics. 2022;7:46. doi: 10.3390/biomimetics7020046. PubMed DOI PMC
Skoog S.A., Kumar G., Narayan R.J., Goering P.L. Biological responses to immobilized microscale and nanoscale surface topographies. Pharmacol. Ther. 2018;182:33–55. doi: 10.1016/j.pharmthera.2017.07.009. PubMed DOI
Fadzil A.F.A., Pramanik A., Basak A.K., Prakash C., Shankar S. Role of surface quality on biocompatibility of implants—A review. Ann. 3D Print. Med. 2022;8:100082. doi: 10.1016/j.stlm.2022.100082. DOI
Soliman A.M., Barreda D.R. Acute Inflammation in Tissue Healing. Int. J. Mol. Sci. 2023;24:641. doi: 10.3390/ijms24010641. PubMed DOI PMC
Pang X., He X., Qiu Z., Zhang H., Xie R., Liu Z., Gu Y., Zhao N., Xiang Q., Cui Y. Targeting integrin pathways: Mechanism and advances in therapy. Signal Transduct. Target. Ther. 2023;8:1. doi: 10.1038/s41392-022-01259-6. PubMed DOI PMC
do Nascimento M., Brito T.O., Lima A.M., Elias C.N. Protein interactions with osseointegrable titanium implants. Braz. J. Oral Sci. 2023;22:e238749. doi: 10.20396/bjos.v22i00.8668749. DOI
Sun Z., Costell M., Fässler R. Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol. 2019;21:25–31. doi: 10.1038/s41556-018-0234-9. PubMed DOI
Mu P., Li Y., Zhang Y. High-throughput screening of rat mesenchymal stem cell behavior on gradient TiO2 nanotubes. ACS Biomater. Sci. Eng. 2018;4:2804–2814. doi: 10.1021/acsbiomaterials.8b00488. PubMed DOI
Oh S., Brammer K.S., Li Y.S. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. USA. 2009;106:2130–2135. doi: 10.1073/pnas.0813200106. PubMed DOI PMC
Biggs M.J., Richards R.G., Gadegarrd N., McMurray R.J., Affrossman S., Wilkinson C.D. Interactions with the nanoscale topography: Adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage. J. Biomed. Mater. Res. A. 2009;91:195–208. doi: 10.1002/jbm.a.32196. PubMed DOI
Ocampo R.A., Echeverry-Rendon M., Robledo S., Echeverria F. Effect of TiO2 nanotubes size, heat treatment, and UV radiation on osteoblast behaviour. Mater. Chem. Phys. 2022;275:125137. doi: 10.1016/j.matchemphys.2021.125137. DOI
Zhang H., Cooper L.F., Zhang X., Zhang Y., Deng F., Song J., Yang S. Titanium nano-tubes induce osteogenic differenti-ation through the FAK/RhoA/YAP cascade. RSC Adv. 2016;6:44062–44069. doi: 10.1039/C6RA04002K. DOI
Kong K., Chang Y., Hu Y., Qiao H., Zhao C., Rong K., Zhang P., Zhang J., Zhai Z., Li H. TiO2 Nanotubes Promote Osteogenic Differentiation Through Regulation of Yap and Piezo1. Front. Bioeng. Biotechnol. 2022;10:872088. doi: 10.3389/fbioe.2022.872088. PubMed DOI PMC