Neglected Facts on Mycobacterium Avium Subspecies Paratuberculosis and Type 1 Diabetes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35409018
PubMed Central
PMC8998319
DOI
10.3390/ijms23073657
PII: ijms23073657
Knihovny.cz E-zdroje
- Klíčová slova
- Mycobacterium avium subspecies paratuberculosis, T1D, autoimmune diseases, chronic inflammatory diseases, civilization diseases, civilization factors, global health problem, nontuberculous mycobacteria,
- MeSH
- diabetes mellitus 1. typu * MeSH
- lidé MeSH
- Mycobacterium avium subsp. paratuberculosis * MeSH
- Mycobacterium * MeSH
- paratuberkulóza * mikrobiologie MeSH
- střeva MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Civilization factors are responsible for the increasing of human exposure to mycobacteria from environment, water, and food during the last few decades. Urbanization, lifestyle changes and new technologies in the animal and plant industry are involved in frequent contact of people with mycobacteria. Type 1 diabetes is a multifactorial polygenic disease; its origin is conditioned by the mutual interaction of genetic and other factors. The environmental factors and certain pathogenetic pathways are shared by some immune mediated chronic inflammatory and autoimmune diseases, which are associated with triggers originating mainly from Mycobacterium avium subspecies paratuberculosis, an intestinal pathogen which persists in the environment. Type 1 diabetes and some other chronic inflammatory diseases thus pose the global health problem which could be mitigated by measures aimed to decrease the human exposure to this neglected zoonotic mycobacterium.
AOU Sassari UC Microbiologia e Virologia 07100 Sassari Italy
Faculty of Pharmacy Masaryk University 612 00 Brno Czech Republic
Institute for Research and Education 621 00 Brno Czech Republic
Orlova Department Karvina Raj Hospital 734 01 Karvina Czech Republic
Zobrazit více v PubMed
Ozougwu J.C., Obimba K.C., Belonwu C.D., Nakalamba C.B. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J. Physiol. Pathophysiol. 2013;4:46–57. doi: 10.5897/JPAP2013.0001. DOI
Atkinson M.A., Eisenbarth G.S., Michels A.W. Type 1 diabetes. Lancet. 2014;383:69–82. doi: 10.1016/S0140-6736(13)60591-7. PubMed DOI PMC
Naik R.G., Brooks-Worrell B.M., Palmer J.P. Latent Autoimmune Diabetes in Adults. J. Clin. Endocrinol. Metab. 2009;94:4635–4644. doi: 10.1210/jc.2009-1120. PubMed DOI
Krzewska A., Ben-Skowronek I. Effect of associated autoimmune diseases on Type 1 Diabetes Mellitus incidence and metabolic control in children and adolescents. BioMed Res. Int. 2016;2016:6219730. doi: 10.1155/2016/6219730. PubMed DOI PMC
Mobasseri M., Shirmohammadi M., Amiri T., Vahed N., Fard H.H., Ghojazadeh M. Prevalence and incidence of type 1 diabetes in the world: A systematic review and meta-analysis. Health Promot. Perspect. 2020;10:98–115. doi: 10.34172/hpp.2020.18. PubMed DOI PMC
Sumnik Z. Juvenile diabetes, therapy and perspectives (Léčba diabetu v dětském věku -aktuální stav a perspektivy) Farmakoter. Rev. 2019;5:26–31. (In Czech)
Raisanen L., Viljakainen H., Sarkkola C., Kolho K.L. Perinatal risk factors for pediatric onset type 1 diabetes, autoimmune thyroiditis, juvenile idiopathic arthritis, and inflammatory bowel diseases. Eur. J. Pediatr. 2021;180:2115–2123. doi: 10.1007/s00431-021-03987-3. PubMed DOI PMC
Saberzadeh-Ardestani B., Karamzadeh R., Basiri M., Hajizadeh-Saffar E., Farhadi A., Shapiro A.M.J., Tahamtani Y., Baharvand H. Type 1 Diabetes Mellitus: Cellular and Molecular Pathophysiology at A Glance. Cell J. 2018;20:294–301. doi: 10.22074/cellj.2018.5513. PubMed DOI PMC
Noble J.A., Valdes A.M. Genetics of the HLA Region in the Prediction of Type 1 Diabetes. Curr. Diabetes Rep. 2011;11:533–542. doi: 10.1007/s11892-011-0223-x. PubMed DOI PMC
Craig M.E., Kim K.W., Isaacs S.R., Penno M.A., Hamilton-Williams E.E., Couper J.J., Rawlinson W.D. Early-life factors contributing to type 1 diabetes. Diabetologia. 2019;62:1823–1834. doi: 10.1007/s00125-019-4942-x. PubMed DOI
Yoon J.W. The Role of Viruses and Environmental-Factors in the Induction of Diabetes. Curr. Top. Microbiol. Immunol. 1990;164:95–123. doi: 10.1007/978-3-642-75741-9_6. PubMed DOI
Beyerlein A., Wehweck F., Ziegler A.G., Pflueger M. Respiratory Infections in Early Life and the Development of Islet Autoimmunity in Children at Increased Type 1 Diabetes Risk Evidence from the BABYDIET Study. JAMA Pediatr. 2013;167:800–807. doi: 10.1001/jamapediatrics.2013.158. PubMed DOI
Afonso G., Mallone R. Infectious triggers in type 1 diabetes: Is there a case for epitope mimicry? Diabetes Obes. Metab. 2013;15:82–88. doi: 10.1111/dom.12166. PubMed DOI
Drescher K.M., von Herrath M., Tracy S. Enteroviruses, hygiene and type 1 diabetes: Toward a preventive vaccine. Rev. Med. Virol. 2015;25:19–32. doi: 10.1002/rmv.1815. PubMed DOI
Knip M., Simell O. Environmental triggers of type 1 diabetes. Cold Spring Harb. Perspect. Med. 2012;2:a007690. doi: 10.1101/cshperspect.a007690. PubMed DOI PMC
Atarashi K., Tanoue T., Shima T., Imaoka A., Kuwahara T., Momose Y., Cheng G.H., Yamasaki S., Saito T., Ohba Y., et al. Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species. Science. 2011;331:337–341. doi: 10.1126/science.1198469. PubMed DOI PMC
Chiu K.C., Chu A., Go V.L.W., Saad M.F. Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am. J. Clin. Nutr. 2004;79:820–825. doi: 10.1093/ajcn/79.5.820. PubMed DOI
Norris J.M., Barriga K., Klingensmith G., Hoffman M., Eisenbarth G.S., Erlich H.A., Rewers M. Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA-J. Am. Med. Assoc. 2003;290:1713–1720. doi: 10.1001/jama.290.13.1713. PubMed DOI
Krischer J. Study design of the trial to reduce IDDM in the genetically at risk (TRIGR) Pediatr. Diabetes. 2007;8:117–137. doi: 10.1111/j.1399-5448.2007.00239.x. PubMed DOI PMC
Akerblom H.K. The Trial to Reduce IDDM in the Genetically at Risk (TRIGR) study: Recruitment, intervention and follow-up. Diabetologia. 2011;54:627. Erratum in Diabetologia 2011, 54, 2210. PubMed PMC
Knip M., Akerblom H.K., Al Taji E., Becker D., Bruining J., Castano L., Danne T., de Beaufort C., Dosch H.M., Dupre J., et al. Effect of Hydrolyzed Infant Formula vs. Conventional Formula on Risk of Type 1 Diabetes the TRIGR Randomized Clinical Trial. JAMA-J. Am. Med. Assoc. 2018;319:38–48. doi: 10.1001/jama.2017.19826. PubMed DOI PMC
Niegowska M., Paccagnini D., Mannu C., Targhetta C., Songini M., Sechi L.A. Recognition of ZnT8, Proinsulin, and Homologous MAP Peptides in Sardinian Children at Risk of T1D Precedes Detection of Classical Islet Antibodies. J. Diabetes Res. 2016;2016:5842701. doi: 10.1155/2016/5842701. PubMed DOI PMC
Antonio-Arques V., Franch-Nadal J., Cayla J.A. Diabetes and tuberculosis: A syndemic complicated by COVID-19. Med. Clin. 2021;157:288–293. doi: 10.1016/j.medcli.2021.04.004. PubMed DOI PMC
Du Q.M., Wang L.T., Long Q., Zhao Y., Abdullah A. Systematic review and meta-analysis: Prevalence of diabetes among patients with tuberculosis in China. Trop. Med. Int. Health. 2021;26:1553–1559. doi: 10.1111/tmi.13686. PubMed DOI
Li M.M., Chen T., Hua Z.Q., Yan H., Wang D.L., Li Z.Q., Kang Y.J., Zhu N., Li C. Global, regional, and national prevalence of diabetes mellitus in patients with pulmonary tuberculosis: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2021;13:127. doi: 10.1186/s13098-021-00743-3. PubMed DOI PMC
Hruska K., Cepica A. The Association of Nontuberculous Mycobacteria with Immune-Mediated Chronic Inflammatory and Autoimmune Diseases: A Call for Action. Volume 1. Biomedical Technology, Epidemiology and Food Safety Network; Brno, Czech Republic: 2019. [(accessed on 22 July 2021)]. p. 46. Available online: http://centaur.vri.cz/docs/2019/review.pdf.
Hruska K., Pavlik I. Crohn’s disease and related inflammatory diseases: From many single hypotheses to one “superhypothesis”. Vet. Med. 2014;59:583–630. doi: 10.17221/7822-VETMED. DOI
Biet F., Bay S., Thibault V.C., Euphrasie D., Grayon M., Ganneau C., Lanotte P., Daffe M., Gokhale R., Etienne G., et al. Lipopentapeptide induces a strong host humoral response and distinguishes Mycobacterium avium subsp. paratuberculosis from M. avium subsp. avium. Vaccine. 2008;26:257–268. doi: 10.1016/j.vaccine.2007.10.059. PubMed DOI
Ekundayo T.C., Okoh A.I. Systematic assessment of Mycobacterium avium subspecies paratuberculosis infections from 1911–2019: A Growth analysis of association with human autoimmune diseases. Microorganisms. 2020;8:1212. doi: 10.3390/microorganisms8081212. PubMed DOI PMC
Arru G., Caggiu E., Paulus K., Sechi G.P., Mameli G., Sechi L.A. Is there a role for Mycobacterium avium subspecies paratuberculosis in Parkinson’s disease? J. Neuroimmunol. 2016;293:86–90. doi: 10.1016/j.jneuroim.2016.02.016. PubMed DOI
Dow C.T. Mycobacterium paratuberculosis and autism: Is this a trigger? Med. Hypotheses. 2011;77:977–981. doi: 10.1016/j.mehy.2011.08.024. PubMed DOI
Dow C.T. Proposing BCG Vaccination for Mycobacterium avium ss. paratuberculosis (MAP) Associated Autoimmune Diseases. Microorganisms. 2020;8:212. doi: 10.3390/microorganisms8020212. PubMed DOI PMC
Dow C.T. Warm, Sweetened Milk at the Twilight of Immunity—Alzheimer’s Disease—Inflammaging, Insulin Resistance, M. paratuberculosis and Immunosenescence. Front. Immunol. 2021;12:714179. doi: 10.3389/fimmu.2021.714179. PubMed DOI PMC
Agrawal G., Aitken J., Hamblin H., Collins M., Borody T.J. Putting Crohn’s on the MAP: Five Common Questions on the Contribution of Mycobacterium avium subspecies paratuberculosis to the Pathophysiology of Crohn’s Disease. Dig. Dis. Sci. 2021;66:348–358. doi: 10.1007/s10620-020-06653-0. PubMed DOI PMC
Greenstein R.J. Is Crohn’s disease caused by a mycobacterium? Comparisons with leprosy, tuberculosis, and Johne’s disease. Lancet Infect. Dis. 2003;3:507–514. doi: 10.1016/S1473-3099(03)00724-2. PubMed DOI
Kuenstner J.T., Naser S., Chamberlin W., Borody T., Graham D.Y., McNees A., Hermon-Taylor J., Hermon-Taylor A., Dow C.T., Thayer W., et al. The Consensus from the Mycobacterium avium ssp. paratuberculosis (MAP) Conference 2017. Front. Public Health. 2017;5:208. doi: 10.3389/fpubh.2017.00208. PubMed DOI PMC
Kuenstner L., Kuenstner J.T. Mycobacterium avium ssp. paratuberculosis in the Food Supply: A Public Health Issue. Front. Public Health. 2021;9:647448. doi: 10.3389/fpubh.2021.647448. PubMed DOI PMC
Monif G.R.G. MAP template controlling Crohn’s disease? Med. Hypotheses. 2020;138:109593. doi: 10.1016/j.mehy.2020.109593. PubMed DOI
Pierce E.S. Could a zoonosis cause some cases of anencephaly? Mycobacterium avium subspecies paratuberculosis inhaled from aerosolized dairy cow manure and the Washington State rural anencephaly cluster. J. Emerg. Rare Dis. 2019;2:1–8. doi: 10.13140/RG.2.2.15621.81129. DOI
Dow C.T. Paratuberculosis and type I diabetes is this the trigger? Med. Hypotheses. 2006;67:782–785. doi: 10.1016/j.mehy.2006.04.029. PubMed DOI
Niegowska M., Rapini N., Piccinini S., Mameli G., Caggiu E., Bitti M.L.M., Sechi L.A. Type 1 Diabetes at-risk children highly recognize Mycobacterium avium subspecies paratuberculosis epitopes homologous to human Znt8 and Proinsulin. Sci. Rep. 2016;6:22266. doi: 10.1038/srep22266. PubMed DOI PMC
Shariati S.H., Alaei A., Keshavarz R., Mosavari N., Rabbani A., Niegowska M., Sechi L.A., Feizabadi M.M. Detection of Mycobacterium avium subsp. paratuberculosis in Iranian patients with type 1 diabetes mellitus by PCR and ELISA. J. Infect. Dev. Ctries. 2016;10:857–862. doi: 10.3855/jidc.7473. PubMed DOI
Bitti M.L.M., Masala S., Capasso F., Rapini N., Piccinini S., Angelini F., Pierantozzi A., Lidano R., Pietrosanti S., Paccagnini D., et al. Mycobacterium avium subsp. paratuberculosis in an Italian Cohort of Type 1 Diabetes Pediatric Patients. Clin. Dev. Immunol. 2012;2012:785262. doi: 10.1155/2012/785262. PubMed DOI PMC
Sechi L.A., Rosu V., Pacifico A., Fadda G., Ahmed N., Zanetti S. Humoral immune responses of type 1 diabetes patients to Mycobacterium avium subsp. paratuberculosis lend support to the infectious trigger hypothesis. Clin. Vaccine Immunol. 2008;15:320–326. doi: 10.1128/CVI.00381-07. PubMed DOI PMC
Falkinham J.O. Mycobacterial aerosols and respiratory disease. Emerg. Infect. Dis. 2003;9:763–767. doi: 10.3201/eid0907.020415. PubMed DOI PMC
Rosu V., Ahmed N., Paccagnini D., Gerlach G., Fadda G., Hasnain S.E., Zanetti S., Sechi L.A. Specific Immunoassays Confirm Association of Mycobacterium avium Subsp. paratuberculosis with Type-1 but Not Type-2 Diabetes Mellitus. PLoS ONE. 2009;4:e4386. doi: 10.1371/journal.pone.0004386. PubMed DOI PMC
Hruska K., Bartos M., Kralik P., Pavlik I. Mycobacterium avium subsp. paratuberculosis in powdered infant milk: Paratuberculosis in cattle—The public health problem to be solved. Vet. Med. 2005;50:327–335. doi: 10.17221/5631-VETMED. DOI
Hruska K., Slana I., Kralik P., Pavlik I. Mycobacterium avium subsp. paratuberculosis in powdered infant milk: F57 competitive real time PCR. Vet. Med. 2011;56:226–230. doi: 10.17221/1563-VETMED. DOI
Falkinham J.O. The biology of environmental mycobacteria. Environ. Microbiol. Rep. 2009;1:477–487. doi: 10.1111/j.1758-2229.2009.00054.x. PubMed DOI
Falkinham J.O. Impact of human activities on the ecology of nontuberculous mycobacteria. Future Microbiol. 2010;5:951–960. doi: 10.2217/fmb.10.53. PubMed DOI
Falkinham J.O., Norton C.D., LeChevallier M.W. Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems. Appl. Environ. Microbiol. 2001;67:1225–1231. doi: 10.1128/AEM.67.3.1225-1231.2001. PubMed DOI PMC
Falkinham J.O. Surrounded by mycobacteria: Nontuberculous mycobacteria in the human environment. J. Appl. Microbiol. 2009;107:356–367. doi: 10.1111/j.1365-2672.2009.04161.x. PubMed DOI
Falkinham J.O. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg. Infect. Dis. 2011;17:419–424. doi: 10.3201/eid1703.101510. PubMed DOI PMC
Hruska K., Kaevska M. Mycobacteria in water, soil, plants and air: A review. Vet. Med. 2012;57:623–679. doi: 10.17221/6558-VETMED. DOI
Kazda J., Pavlik I., Falkinham J.O., Hruska K. The Ecology of Mycobacteria: Impact on Animal’s and Human’s Health. 1st ed. Springer; Dordrecht, The Netherlands: Berlin/Heidelberg, Germany: London, UK: New York, NY, USA: 2009. p. 520. DOI
Rani P.S., Sechi L.A., Ahmed N. Mycobacterium avium subsp. paratuberculosis as a trigger of type-1 diabetes: Destination Sardinia, or beyond? Gut Pathog. 2010;2:1. doi: 10.1186/1757-4749-2-1. PubMed DOI PMC
Rabinovitch A. Immunoregulatory and Cytokine Imbalances in the Pathogenesis of Iddm. Diabetes. 1994;43:613–621. doi: 10.2337/diab.43.5.613. PubMed DOI
Vaarala O., Knip M., Paronen J., Hamalainen A.M., Muona P., Vaatainen M., Ilonen J., Simell O., Akerblom H.K. Cow’s milk formula feeding induces primary immunization to insulin in infants at genetic risk for type 1 diabetes. Diabetes. 1999;48:1389–1394. doi: 10.2337/diabetes.48.7.1389. PubMed DOI
Sechi L.A., Dow C.T. Mycobacterium avium ss. paratuberculosis Zoonosis the Hundred Year War—Beyond Crohn’s Disease. Front. Immunol. 2015;6:96. doi: 10.3389/fimmu.2015.00096. PubMed DOI PMC
Songini M., Mannu C., Targhetta C., Bruno G. Type 1 diabetes in Sardinia: Facts and hypotheses in the context of worldwide epidemiological data. Acta Diabetol. 2017;54:9–17. doi: 10.1007/s00592-016-0909-2. PubMed DOI
Naser S.A., Thanigachalam S., Dow C.T., Collins M.T. Exploring the role of Mycobacterium avium subspecies paratuberculosis in the pathogenesis of type 1 diabetes mellitus: A pilot study. Gut Pathog. 2013;5:14. doi: 10.1186/1757-4749-5-14. PubMed DOI PMC
Bulut Y., Michelsen K.S., Hayrapetian L., Naiki Y., Spallek R., Singh M., Arditi M. Mycobacterium tuberculosis heat shock proteins use diverse toll-like receptor pathways to activate pro-inflammatory signals. J. Biol. Chem. 2005;280:20961–20967. doi: 10.1074/jbc.M411379200. PubMed DOI
Dow C.T. M. paratuberculosis Heat Shock Protein 65 and Human Diseases: Bridging Infection and Autoimmunity. Autoimmune Dis. 2012;2012:150824. doi: 10.1155/2012/150824. PubMed DOI PMC
Yi B., Huang G., Zhou Z.G. Different role of zinc transporter 8 between type 1 diabetes mellitus and type 2 diabetes mellitus. J. Diabetes Investig. 2016;7:459–465. doi: 10.1111/jdi.12441. PubMed DOI PMC
Pinna A., Masala S., Blasetti F., Maiore I., Cossu D., Paccagnini D., Mameli G., Sechi L.A. Detection of Serum Antibodies Cross-Reacting with Mycobacterium avium Subspecies paratuberculosis and Beta-Cell Antigen Zinc Transporter 8 Homologous Peptides in Patients with High-Risk Proliferative Diabetic Retinopathy. PLoS ONE. 2014;9:e107802. doi: 10.1371/journal.pone.0107802. PubMed DOI PMC
Masala S., Zedda M.A., Cossu D., Ripoli C., Palermo M., Sechi L.A. Zinc Transporter 8 and MAP3865c Homologous Epitopes are Recognized at T1D Onset in Sardinian Children. PLoS ONE. 2013;8:e63371. doi: 10.1371/journal.pone.0063371. PubMed DOI PMC
Niegowska M., Rapini N., Biet F., Piccinini S., Bay S., Lidano R., Bitti M.L.M., Sechi L.A. Seroreactivity against Specific L5P Antigen from Mycobacterium avium subsp. paratuberculosis in Children at Risk for T1D. PLoS ONE. 2016;11:e0157962. doi: 10.1371/journal.pone.0161516. Correction in PLoS ONE 2016, 11, e0161516. PubMed DOI PMC
Niegowska M., Delitala A., Pes G.M., Delitala G., Sechi L.A. Increased seroreactivity to proinsulin and homologous mycobacterial peptides in latent autoimmune diabetes in adults. PLoS ONE. 2017;12:e0176584. doi: 10.1371/journal.pone.0176584. PubMed DOI PMC
Cossu A., Rosu V., Paccagnini D., Cossu D., Pacifico A., Sechi L.A. MAP3738c and MptD are specific tags of Mycobacterium avium subsp. paratuberculosis infection in type I diabetes mellitus. Clin. Immunol. 2011;141:49–57. doi: 10.1016/j.clim.2011.05.002. PubMed DOI
Meissner T., Eckelt E., Basler T., Meens J., Heinzmann J., Suwandi A., Oelemann W.M.R., Trenkamp S., Holst O., Weiss S., et al. The Mycobacterium avium ssp. paratuberculosis specific mptD gene is required for maintenance of the metabolic homeostasis necessary for full virulence in mouse infections. Front. Cell. Infect. Microbiol. 2014;4:110. doi: 10.3389/fcimb.2014.00110. PubMed DOI PMC
Bay S., Begg D., Ganneau C., Branger M., Cochard T., Bannantine J.P., Kohler H., Moyen J.L., Whittington R.J., Biet F. Engineering Synthetic Lipopeptide Antigen for Specific Detection of Mycobacterium avium subsp. paratuberculosis Infection. Front. Vet. Sci. 2021;8:637841. doi: 10.3389/fvets.2021.637841. PubMed DOI PMC
Sechi L.A., Ahmed N., Felis G.E., Dupre I., Cannas S., Fadda G., Bua A., Zanetti S. Immunogenicity and cytoadherence of recombinant heparin binding haemagglutinin (HBHA) of Mycobacterium avium subsp. paratuberculosis: Functional promiscuity or a role in virulence? Vaccine. 2006;24:236–243. doi: 10.1016/j.vaccine.2005.11.030. PubMed DOI
Lefrancois L.H., Bodier C.C., Lecher S., Gilbert F.B., Cochard T., Harichaux G., Labas V., Teixeira-Gomes A.P., Raze D., Locht C., et al. Purification of native HBHA from Mycobacterium avium subsp. paratuberculosis. BMC Res. Notes. 2013;6:55–63. doi: 10.1186/1756-0500-6-55. PubMed DOI PMC
Fulton Z., Crellin P.K., Brammananth R., Zaker-Tabrizi L., Coppel R.L., Rossjohn J., Beddoe T. Expression, purification, crystallization and preliminary X-ray characterization of a putative glycosyltransferase of the GT-A fold found in mycobacteria. Acta Crystallogr. Sect. F-Struct. Biol. Commun. 2008;64:428–431. doi: 10.1107/S1744309108011196. PubMed DOI PMC
Horvath L., Cervenak L., Oroszlan M., Prohaszka Z., Uray K., Hudecz F., Baranyi E., Madacsy L., Singh M., Romics L., et al. Antibodies against different epitopes of heat-shock protein 60 in children with type I diabetes mellitus. Immunol. Lett. 2002;80:155–162. doi: 10.1016/S0165-2478(01)00336-4. PubMed DOI
Scheinin T., Minh N.N.T., Tuomi T., Miettinen A., Kontiainen S. Islet cell and glutamic acid decarboxylase antibodies and heat-shock protein 65 responses in children with newly diagnosed insulin-dependent diabetes mellitus. Immunol. Lett. 1996;49:123–126. doi: 10.1016/0165-2478(95)02493-X. PubMed DOI
Quesniaux V., Fremond C., Jacobs M., Parida C., Nicolle D., Yeremeev V., Bihl F., Erard F., Botha T., Drennan M., et al. Toll-like receptor pathways in the immune responses to mycobacteria. Microbes Infect. 2004;6:946–959. doi: 10.1016/j.micinf.2004.04.016. PubMed DOI
Adamczak D.M., Nowak J.K., Frydrychowicz M., Kaczmarek M., Sikora J. The Role of Toll-Like Receptors and Vitamin D in Diabetes Mellitus Type 1-A Review. Scand. J. Immunol. 2014;80:75–84. doi: 10.1111/sji.12188. PubMed DOI
Itoh A., Ridgway W.M. Targeting innate immunity to downmodulate adaptive immunity and reverse type 1 diabetes. ImmunoTargets Ther. 2017;6:31–38. doi: 10.2147/ITT.S117264. PubMed DOI PMC
Sharp R.C., Beg S.A., Naser S.A. Role of PTPN2/22 polymorphisms in pathophysiology of Crohn’s disease. World J. Gastroenterol. 2018;24:657–670. doi: 10.3748/wjg.v24.i6.657. PubMed DOI PMC
Sharp R.C., Beg S.A., Naser S.A. Polymorphisms in Protein Tyrosine Phosphatase Non-receptor Type 2 and 22 (PTPN2/22) Are Linked to Hyper-Proliferative T-Cells and Susceptibility to Mycobacteriain Rheumatoid Arthritis. Front. Cell. Infect. Microbiol. 2018;8:11. doi: 10.3389/fcimb.2018.00011. PubMed DOI PMC
Tizaoui K., Terrazzino S., Cargnin S., Lee K.H., Gauckler P., Li H., Shin J.I., Kronbichler A. The role of PTPN22 in the pathogenesis of autoimmune diseases: A comprehensive review. Semin. Arthritis Rheum. 2021;51:513–522. doi: 10.1016/j.semarthrit.2021.03.004. PubMed DOI
Armitage L.H., Wallet M.A., Mathews C.E. Influence of PTPN22 Allotypes on Innate and Adaptive Immune Function in Health and Disease. Front. Immunol. 2021;12:636618. doi: 10.3389/fimmu.2021.636618. PubMed DOI PMC
Li S.P., Wang X.H., Zhao Y.M., Yang J., Cui T.J., Zhao Z.J., Chen Y., Zheng Z.H. Association of PTPN22-C1858T Polymorphism with Susceptibility to Mycobacterium tuberculosis and Mycobacterium leprae Infection: A Meta-Analysis. Front. Immunol. 2021;12:592841. doi: 10.3389/fimmu.2021.592841. PubMed DOI PMC
Kuhtreiber W.M., Faustman D.L. BCG Therapy for Type 1 Diabetes: Restoration of Balanced Immunity and Metabolism. Trends Endocrinol. Metab. 2019;30:80–92. doi: 10.1016/j.tem.2018.11.006. PubMed DOI
Kuhtreiber W.M., Tran L., Kim T., Dybala M., Nguyen B., Plager S., Huang D., Janes S., Defusco A., Baum D., et al. Long-term reduction in hyperglycemia in advanced type 1 diabetes: The value of induced aerobic glycolysis with BCG vaccinations. NPJ Vaccines. 2018;3:23. doi: 10.1038/s41541-018-0062-8. PubMed DOI PMC
Klein B.Y. Newborn BCG vaccination complemented by boosting correlates better with reduced juvenile diabetes in females, than vaccination alone. Vaccine. 2020;38:6427–6434. doi: 10.1016/j.vaccine.2020.07.066. PubMed DOI
Dow C.T., Chan E.D. What is the evidence that mycobacteria are associated with the pathogenesis of Sjogren’s syndrome? J. Transl. Autoimmun. 2021;4:100085. doi: 10.1016/j.jtauto.2021.100085. PubMed DOI PMC
Ozana V., Hruska K. Instrumental analytical tools for mycobacteria characterization. Czech J. Food Sci. 2021;39:235–264. doi: 10.17221/69/2021-CJFS. DOI
Agrawal G., Borody T.J., Chamberlin W. ‘Global warming’ to Mycobacterium avium subspecies paratuberculosis. Future Microbiol. 2014;9:829–832. doi: 10.2217/fmb.14.52. PubMed DOI
Carbone K.M., Luftig R.B., Buckley M.R. Microbial Triggers of Chronic Human Illness. American Academy of Microbiology (Colloqiua Reports) [(accessed on 15 August 2021)];2005 :1–14. Available online: https://www.ncbi.nlm.nih.gov/books/NBK561283/pdf/Bookshelf_NBK561283.pdf.
European Commission Possible Links between Crohn’s Disease and Paratuberculosis. Report of the Scientific Committee on Animal Health and Animal Welfare, Adopted 21 March 2000. [(accessed on 15 August 2021)];2000 Available online: https://centaur.vri.cz/docs/2019/REFERENCES/EU_Commission_2000.pdf.
Hruska K. Mycobacterium Paratuberculosis–Milk Survey UK (3): A Comment. A ProMED-Mail Post. 1998. [(accessed on 15 August 2021)]. Available online: https://centaur.vri.cz/docs/2019/REFERENCES/ProMED_1998.pdf.
Hruska K., Pavlik I. Bacterial Triggers in the Etiology of Crohn’s Disease and Other Autoimmune and Autoinflammatory Diseases, Publication Excerpts. EU Research Project Pathogen Combat. 2009. [(accessed on 16 August 2021)]. Available online: https://centaur.vri.cz/docs/2019/REFERENCES/PUBLICATIONS_EXCERPTS.pdf.
Hruska K., Pavlik I. Bacterial Triggers in the Etiology of Crohn’s Disease and Other Autoimmune and Autoinflammatory Diseases, List of Participants. EU Research Project Pathogen Combat. 2009. [(accessed on 16 August 2021)]. Available online: https://centaur.vri.cz/docs/2019/REFERENCES/WELCOME.pdf.
Lipton J.E., Kuenstner J.T., Barash D., Biesecker J. The New Paradigm for Crohn’s Disease: A Call to Action. 2005. [(accessed on 16 August 2021)]. Available online: http://www.aeii.org/DraLipton/Call26.pdf.
Nacy C., Buckley M. Mycobacterium avium Paratuberculosis: Infrequent Human Pathogen or Public Health Threat? A Report from the American Academy of Microbiology. [(accessed on 16 August 2021)];2008 :1–37. Available online: https://www.ncbi.nlm.nih.gov/books/NBK563535/pdf/Bookshelf_NBK563535.pdf. PubMed
Sweeney R.W., Collins M.T., Koets A.P., McGuirk S.M., Roussel A.J. Paratuberculosis (Johne’s Disease) in Cattle and Other Susceptible Species. J. Vet. Intern. Med. 2012;26:1239–1250. doi: 10.1111/j.1939-1676.2012.01019.x. PubMed DOI