Novel Slippery Liquid-Infused Porous Surfaces (SLIPS) Based on Electrospun Polydimethylsiloxane/Polystyrene Fibrous Structures Infused with Natural Blackseed Oil
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NPRP13S-0123-200153
Qatar National Research Fund
JSREP 07-022-3-010
Qatar National Research Fund
DKRVO (RP/CPS/2020/001)
Ministry of Education, Youth and Sports of the Czech Republic
DKRVO (RP/CPS/2020/002)
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
35409042
PubMed Central
PMC8998331
DOI
10.3390/ijms23073682
PII: ijms23073682
Knihovny.cz E-zdroje
- Klíčová slova
- BSO infusion, electrospinning, hydrophobic fibrous structures, plasma treatment, slippery surfaces,
- MeSH
- dimethylpolysiloxany * MeSH
- Escherichia coli MeSH
- polymery chemie MeSH
- polystyreny * MeSH
- poréznost MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- baysilon MeSH Prohlížeč
- dimethylpolysiloxany * MeSH
- polymery MeSH
- polystyreny * MeSH
Hydrophobic fibrous slippery liquid-infused porous surfaces (SLIPS) were fabricated by electrospinning polydimethylsiloxane (PDMS) and polystyrene (PS) as a carrier polymer on plasma-treated polyethylene (PE) and polyurethane (PU) substrates. Subsequent infusion of blackseed oil (BSO) into the porous structures was applied for the preparation of the SLIPS. SLIPS with infused lubricants can act as a repellency layer and play an important role in the prevention of biofilm formation. The effect of polymer solutions used in the electrospinning process was investigated to obtain well-defined hydrophobic fibrous structures. The surface properties were analyzed through various optical, macroscopic and spectroscopic techniques. A comprehensive investigation of the surface chemistry, surface morphology/topography, and mechanical properties was carried out on selected samples at optimized conditions. The electrospun fibers prepared using a mixture of PDMS/PS in the ratio of 1:1:10 (g/g/mL) using tetrahydrofuran (THF) solvent showed the best results in terms of fiber uniformity. The subsequent infusion of BSO into the fabricated PDMS/PS fiber mats exhibited slippery behavior regarding water droplets. Moreover, prepared SLIPS exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli bacterium strains.
Center for Advanced Materials Qatar University Doha P O Box 2713 Qatar
Chemical Engineering Program Texas A and M University at Qatar Doha P O Box 23874 Qatar
Faculty of Technology Tomas Bata University in Zlin Vavreckova 275 760 01 Zlin Czech Republic
Zobrazit více v PubMed
Lejars M., Margaillan A., Bressy C. Fouling release coatings: A nontoxic alternative to biocidal antifouling coatings. Chem. Rev. 2012;112:4347–4390. doi: 10.1021/cr200350v. PubMed DOI
Sanchez-Cano C., Carril M. Recent developments in the design of non-biofouling coatings for nanoparticles and surfaces. Int. J. Mol. Sci. 2020;21:1007. doi: 10.3390/ijms21031007. PubMed DOI PMC
Li Q., Guo Z. Lubricant-infused slippery surfaces: Facile fabrication, unique liquid repellence and antireflective properties. J. Colloid Interface Sci. 2019;536:507–515. doi: 10.1016/j.jcis.2018.10.083. PubMed DOI
Zhou T., Yang J., Zhu D., Zheng J., Handschuh-Wang S., Zhou X., Zhang J., Liu Y., Liu Z., He C., et al. Hydrophilic Sponges for Leaf-Inspired Continuous Pumping of Liquids. Adv. Sci. 2017;4:1700028. doi: 10.1002/advs.201700028. PubMed DOI PMC
Cui Y., Li D., Bai H. Bioinspired Smart Materials for Directional Liquid Transport. Ind. Eng. Chem. Res. 2017;56:4887–4897. doi: 10.1021/acs.iecr.7b00583. DOI
Chen X., Ren K., Wang J., Lei W., Ji J. Infusing Lubricant onto Erasable Microstructured Surfaces toward Guided Sliding of Liquid Droplets. ACS Appl. Mater. Interfaces. 2017;9:1959–1967. doi: 10.1021/acsami.6b14081. PubMed DOI
Cao M., Jin X., Peng Y., Yu C., Li K., Liu K., Jiang L. Unidirectional Wetting Properties on Multi-Bioinspired Magnetocontrollable Slippery Microcilia. Adv. Mater. 2017;29:1606869. doi: 10.1002/adma.201606869. PubMed DOI
Lv J., Liu Y., Wei J., Chen E., Qin L., Yu Y. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature. 2016;537:179. doi: 10.1038/nature19344. PubMed DOI
Dinh N.X., Chi D.T., Lan N.T., Lan H., Van Tuan H., Van Quy N., Phan V.N., Huy T.Q., Le A.-T. Water-dispersible silver nanoparticles-decorated carbon nanomaterials: Synthesis and enhanced antibacterial activity. Appl. Phys. A. 2015;119:85–95. doi: 10.1007/s00339-014-8962-6. DOI
Yuan W., Jiang G., Che J., Qi X., Xu R., Chang M.W., Chen Y., Lim S.Y., Dai J., Chan-Park M.B. Deposition of Silver Nanoparticles on Multiwalled Carbon Nanotubes Grafted with Hyperbranched Poly(amidoamine) and Their Antimicrobial Effects. J. Phys. Chem. C. 2008;112:18754–18759. doi: 10.1021/jp807133j. DOI
Liao C., Li Y., Tjong S.C. Graphene nanomaterials: Synthesis, biocompatibility, and cytotoxicity. Int. J. Mol. Sci. 2018;19:3564. doi: 10.3390/ijms19113564. PubMed DOI PMC
Armendáriz-Ontiveros M.M., García García A., de los Santos Villalobos S., Fimbres Weihs G.A. Biofouling performance of RO membranes coated with Iron NPs on graphene oxide. Desalination. 2019;451:45–58. doi: 10.1016/j.desal.2018.07.005. DOI
Park K.C., Kim P., Grinthal A., He N., Fox D., Weaver J.C., Aizenberg J. Condensation on slippery asymmetric bumps. Nature. 2016;531:78–82. doi: 10.1038/nature16956. PubMed DOI
Wong T.S., Kang S.H., Tang S.K.Y., Smythe E.J., Hatton B.D., Grinthal A., Aizenberg J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature. 2011;477:443–447. doi: 10.1038/nature10447. PubMed DOI
Zhang X., Zhi D., Sun L., Zhao Y., Tiwari M.K., Carmalt C.J., Parkin I.P., Lu Y. Super-durable, non-fluorinated superhydrophobic free-standing items. J. Mater. Chem. A. 2018;6:357–362. doi: 10.1039/C7TA08895G. DOI
Jia S., Chen H., Luo S., Qing Y., Deng S., Yan N., Wu Y. One-step approach to prepare superhydrophobic wood with enhanced mechanical and chemical durability: Driving of alkali. Appl. Surf. Sci. 2018;455:115–122. doi: 10.1016/j.apsusc.2018.05.169. DOI
Chen H., Zhang P., Zhang L., Liu H., Jiang Y., Zhang D., Han Z., Jiang L. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature. 2016;532:85–89. doi: 10.1038/nature17189. PubMed DOI
Niu H., Wang H., Zhou H., Lin T. Ultrafine PDMS fibers: Preparation from in situ curing-electrospinning and mechanical characterization. RSC Adv. 2014;4:11782–11787. doi: 10.1039/C4RA00232F. DOI
Cortese B., D’Amone S., Manca M., Viola I., Cingolani R., Gigli G. Superhydrophobicity Due to the Hierarchical Scale Roughness of PDMS Surfaces. Langmuir. 2008;24:2712–2718. doi: 10.1021/la702764x. PubMed DOI
Nakajima A., Fujishima A., Hashimoto K., Watanabe T. Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate. Adv. Mater. 1999;11:1365–1368. doi: 10.1002/(SICI)1521-4095(199911)11:16<1365::AID-ADMA1365>3.0.CO;2-F. DOI
Li L., Xiao Z., Tan S., Pu L., Zhang Z. Composite PDMS membrane with high flux for the separation of organics from water by pervaporation. J. Memb. Sci. 2004;243:177–187. doi: 10.1016/j.memsci.2004.06.015. DOI
Fujii T. PDMS-based microfluidic devices for biomedical applications. Microelectron. Eng. 2002;61–62:907–914. doi: 10.1016/S0167-9317(02)00494-X. DOI
Jin M., Feng X., Xi J., Zhai J., Cho K., Feng L., Jiang L. Super-Hydrophobic PDMS Surface with Ultra-Low Adhesive Force. Macromol. Rapid Commun. 2005;26:1805–1809. doi: 10.1002/marc.200500458. DOI
Brady R.F., Singer I.L. Mechanical factors favoring release from fouling release coatings. Biofouling. 2000;15:73–81. doi: 10.1080/08927010009386299. PubMed DOI
Kuliasha C.A., Finlay J.A., Franco S.C., Clare A.S., Stafslien S.J., Brennan A.B. Marine anti-biofouling efficacy of amphiphilic poly(coacrylate) grafted PDMSe: Effect of graft molecular weight. Biofouling. 2017;33:252–267. doi: 10.1080/08927014.2017.1288807. PubMed DOI
Tribou M., Swain G. The use of proactive in-water grooming to improve the performance of ship hull antifouling coatings. Biofouling. 2010;26:47–56. doi: 10.1080/08927010903290973. PubMed DOI
Shivapooja P., Yu Q., Orihuela B., Mays R., Rittschof D., Genzer J., López G.P. Modification of Silicone Elastomer Surfaces with Zwitterionic Polymers: Short-Term Fouling Resistance and Triggered Biofouling Release. ACS Appl. Mater. Interfaces. 2015;7:25586–25591. doi: 10.1021/acsami.5b09199. PubMed DOI
Wang J., He C. Photopolymerized biomimetic self-adhesive Polydimethylsiloxane-based amphiphilic cross-linked coating for anti-biofouling. Appl. Surf. Sci. 2019;463:1097–1106. doi: 10.1016/j.apsusc.2018.08.214. DOI
Demir M.M., Yilgor I., Yilgor E., Erman B. Electrospinning of polyurethane fibers. Polymer. 2002;43:3303–3309. doi: 10.1016/S0032-3861(02)00136-2. DOI
Greiner A., Wendorff J.H. Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. Engl. 2007;46:5670–5703. doi: 10.1002/anie.200604646. PubMed DOI
Li D., Xia Y. Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning. Nano Lett. 2004;4:933–938. doi: 10.1021/nl049590f. DOI
Reneker D.H., Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7:216–223. doi: 10.1088/0957-4484/7/3/009. DOI
Uyar T., Besenbacher F. Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity. Polymer. 2008;49:5336–5343. doi: 10.1016/j.polymer.2008.09.025. DOI
Nitanan T., Akkaramongkolporn P., Ngawhirunpat T., Rojanarata T., Panomsuk S., Opanasopit P. Fabrication and evaluation of cationic exchange nanofibers for controlled drug delivery systems. Int. J. Pharm. 2013;450:345–353. doi: 10.1016/j.ijpharm.2013.04.031. PubMed DOI
Emo B., Eberlin C.T., Hixon K.R., Growney Kalaf E.A., Laktas J.M., Sell S.A. A study on the potential of doped electrospun polystyrene fibers in arsenic filtration. J. Environ. Chem. Eng. 2017;5:232–239. doi: 10.1016/j.jece.2016.11.039. DOI
Jia H., Zhu G., Vugrinovich B., Kataphinan W., Reneker D.H., Wang P. Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol. Prog. 2002;18:1027–1032. doi: 10.1021/bp020042m. PubMed DOI
Baker S.C., Atkin N., Gunning P.A., Granville N., Wilson K., Wilson D., Southgate J. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies. Biomaterials. 2006;27:3136–3146. doi: 10.1016/j.biomaterials.2006.01.026. PubMed DOI
Bassi A.K., Gough J.E., Zakikhani M., Downes S. The chemical and physical properties of poly(ε-caprolactone) scaffolds functionalised with poly(vinyl phosphonic acid-co-acrylic acid) J. Tissue Eng. 2011;2:1–9. doi: 10.4061/2011/615328. PubMed DOI PMC
Larrondo L., Manley R.S.J. Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J. Polym. Sci. Polym. Phys. Ed. 1981;19:909–920. doi: 10.1002/pol.1981.180190601. DOI
Liu H., Gough C.R., Deng Q., Gu Z., Wang F., Hu X. Recent advances in electrospun sustainable composites for biomedical, environmental, energy, and packaging applications. Int. J. Mol. Sci. 2020;21:4019. doi: 10.3390/ijms21114019. PubMed DOI PMC
Huang Z.M., Zhang Y.Z., Kotaki M., Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003;63:2223–2253. doi: 10.1016/S0266-3538(03)00178-7. DOI
Deitzel J.M., Kleinmeyer J., Harris D., Beck Tan N.C. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer. 2001;42:261–272. doi: 10.1016/S0032-3861(00)00250-0. DOI
Haider S., Al-Zeghayer Y., Ahmed Ali F.A., Haider A., Mahmood A., Al-Masry W.A., Imran M., Aijaz M.O. Highly aligned narrow diameter chitosan electrospun nanofibers. J. Polym. Res. 2013;20:105. doi: 10.1007/s10965-013-0105-9. DOI
Matabola K.P., Moutloali R.M. The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers- Effect of sodium chloride. J. Mater. Sci. 2013;48:5475–5482. doi: 10.1007/s10853-013-7341-6. DOI
Mohammed S.J., Amin H.H.H., Aziz S.B., Sha A.M., Hassan S., Abdul Aziz J.M., Rahman H.S. Structural Characterization, Antimicrobial Activity, and in Vitro Cytotoxicity Effect of Black Seed Oil. Evid. -Based Complement. Altern. Med. 2019;2019 doi: 10.1155/2019/6515671. PubMed DOI PMC
Dinagaran S., Sridhar S., Eganathan P. Chemical composition and antioxidant activities of black seed oil (Nigella sativa L.) Int. J. Pharm. Sci. Res. 2016;7:4473. doi: 10.13040/IJPSR.0975-8232.7(11).4473-79. DOI
Nair M.K.M., Vasudevan P., Venkitanarayanan K. Antibacterial effect of black seed oil on Listeria monocytogenes. Food Control. 2005;16:395–398. doi: 10.1016/j.foodcont.2004.04.006. DOI
Moghadas H., Saidi M.S., Kashaninejad N., Kiyoumarsioskouei A., Nguyen N.T. Fabrication and characterization of low-cost, bead-free, durable and hydrophobic electrospun membrane for 3D cell culture. Biomed. Microdevices. 2017;19:74. doi: 10.1007/s10544-017-0215-y. PubMed DOI
Izdihar K., Razak H.R.A., Supion N., Karim M.K.A., Osman N.H., Norkhairunnisa M. Structural, mechanical, and dielectric properties of polydimethylsiloxane and silicone elastomer for the fabrication of clinical-grade kidney phantom. Appl. Sci. 2021;11:1172. doi: 10.3390/app11031172. DOI
Al-Kadhemy M.F.H., Rasheed Z.S., Salim S.R. Fourier transform infrared spectroscopy for irradiation coumarin doped polystyrene polymer films by alpha ray. J. Radiat. Res. Appl. Sci. 2016;9:321–331. doi: 10.1016/j.jrras.2016.02.004. DOI
Johnson L.M., Gao L., Shields C.W., Smith M., Efimenko K., Cushing K., Genzer J., López G.P. Elastomeric microparticles for acoustic mediated bioseparations. J. Nanobiotechnol. 2013;11:22. doi: 10.1186/1477-3155-11-22. PubMed DOI PMC
Abusrafa A.E., Habib S., Krupa I., Ouederni M., Popelka A. Modification of polyethylene by RF plasma in different/mixture gases. Coatings. 2019;9:145. doi: 10.3390/coatings9020145. DOI
Abusrafa A.E., Habib S., Popelka A. Surface functionalization of a polyurethane surface via radio-frequency cold plasma treatment using different gases. Coatings. 2020;10:1067. doi: 10.3390/coatings10111067. DOI
Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992;7:1564–1583. doi: 10.1557/JMR.1992.1564. DOI