Pericardial Fluid Accumulates microRNAs That Regulate Heart Fibrosis after Myocardial Infarction
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2022.08730.PTDC
Fundação para a Ciência e Tecnologia
POCI-01-0145-FEDER-016385
Fundação para a Ciência e Tecnologia
POCI-01-0145-FEDER-030985
Fundação para a Ciência e Tecnologia
FIS-FIS-2015-01_CCV_20150630- 157
Infarmed
PubMed
39125899
PubMed Central
PMC11313565
DOI
10.3390/ijms25158329
PII: ijms25158329
Knihovny.cz E-zdroje
- Klíčová slova
- cardiac fibroblasts, fibrosis, miR-22-3p, miRNAs, myocardial infarction, pericardial fluid,
- MeSH
- fibroblasty metabolismus MeSH
- fibróza * MeSH
- infarkt myokardu s elevacemi ST úseků metabolismus patologie genetika MeSH
- infarkt myokardu * metabolismus genetika patologie MeSH
- interleukin-1 receptor-like 1 protein metabolismus genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikro RNA * genetika metabolismus MeSH
- myokard metabolismus patologie MeSH
- perikardiální tekutina * metabolismus MeSH
- senioři MeSH
- transformující růstový faktor beta metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- IL1RL1 protein, human MeSH Prohlížeč
- interleukin-1 receptor-like 1 protein MeSH
- mikro RNA * MeSH
- MIRN22 microRNA, human MeSH Prohlížeč
- transformující růstový faktor beta MeSH
Pericardial fluid (PF) has been suggested as a reservoir of molecular targets that can be modulated for efficient repair after myocardial infarction (MI). Here, we set out to address the content of this biofluid after MI, namely in terms of microRNAs (miRs) that are important modulators of the cardiac pathological response. PF was collected during coronary artery bypass grafting (CABG) from two MI cohorts, patients with non-ST-segment elevation MI (NSTEMI) and patients with ST-segment elevation MI (STEMI), and a control group composed of patients with stable angina and without previous history of MI. The PF miR content was analyzed by small RNA sequencing, and its biological effect was assessed on human cardiac fibroblasts. PF accumulates fibrotic and inflammatory molecules in STEMI patients, namely causing the soluble suppression of tumorigenicity 2 (ST-2), which inversely correlates with the left ventricle ejection fraction. Although the PF of the three patient groups induce similar levels of fibroblast-to-myofibroblast activation in vitro, RNA sequencing revealed that PF from STEMI patients is particularly enriched not only in pro-fibrotic miRs but also anti-fibrotic miRs. Among those, miR-22-3p was herein found to inhibit TGF-β-induced human cardiac fibroblast activation in vitro. PF constitutes an attractive source for screening diagnostic/prognostic miRs and for unveiling novel therapeutic targets in cardiac fibrosis.
Cardiovascular R and D Center Faculty of Medicine University of Porto 4150 180 Porto Portugal
Center for Translational Medicine St Anne's Hospital 60200 Brno Czech Republic
Chemical and Biomolecular Sciences School of Health Polytechnic of Porto 4200 465 Porto Portugal
Department of Biomedical Sciences Faculty of Medicine Masaryk University 62500 Brno Czech Republic
i3S Institute for Research and Innovation in Health University of Porto 4200 135 Porto Portugal
ICBAS Instituto de Ciências Biomédicas Abel Salazar University of Porto 4050 313 Porto Portugal
INEB Instituto Nacional de Engenharia Biomédica University of Porto 4200 135 Porto Portugal
INL International Iberian Nanotechnology Laboratory 4715 330 Braga Portugal
Zobrazit více v PubMed
Khan M.A., Hashim M.J., Mustafa H., Baniyas M.Y., Al Suwaidi S., AlKatheeri R., Alblooshi F.M.K., Almatrooshi M., Alzaabi M.E.H., Al Darmaki R.S., et al. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus. 2020;12:e9349. doi: 10.7759/cureus.9349. PubMed DOI PMC
Blom J.N., Feng Q. Cardiac repair by epicardial EMT: Current targets and a potential role for the primary cilium. Pharmacol. Ther. 2018;186:114–129. doi: 10.1016/j.pharmthera.2018.01.002. PubMed DOI
Abbott J.D., Ahmed H.N., Vlachos H.A., Selzer F., Williams D.O. Comparison of Outcome in Patients With ST-Elevation Versus Non–ST-Elevation Acute Myocardial Infarction Treated With Percutaneous Coronary Intervention (from the National Heart, Lung, and Blood Institute Dynamic Registry) Am. J. Cardiol. 2007;100:190–195. doi: 10.1016/j.amjcard.2007.02.083. PubMed DOI
García-García C., Subirana I., Sala J., Bruguera J., Sanz G., Valle V., Arós F., Fiol M., Molina L., Serra J., et al. Long-Term Prognosis of First Myocardial Infarction According to the Electrocardiographic Pattern (ST Elevation Myocardial Infarction, Non-ST Elevation Myocardial Infarction and Non-Classified Myocardial Infarction) and Revascularization Procedures. Am. J. Cardiol. 2011;108:1061–1067. doi: 10.1016/j.amjcard.2011.06.003. PubMed DOI
Thygesen K., Alpert J.S., Jaffe A.S., Simoons M.L., Chaitman B.R., White H.D., The Writing Group on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction Third universal definition of myocardial infarction. Nat. Rev. Cardiol. 2012;9:620–633. doi: 10.1038/nrcardio.2012.122. PubMed DOI
Ma L., Sun P., Zhang J.C., Zhang Q., Yao S.L. Proinflammatory effects of S100A8/A9 via TLR4 and RAGE signaling pathways in BV-2 microglial cells. Int. J. Mol. Med. 2017;40:31–38. doi: 10.3892/ijmm.2017.2987. PubMed DOI PMC
Frangogiannis N.G. The mechanistic basis of infarct healing. Antioxid. Redox Signal. 2006;8:1907–1939. doi: 10.1089/ars.2006.8.1907. PubMed DOI
Bergmann O., Zdunek S., Felker A., Salehpour M., Alkass K., Bernard S., Sjostrom S.L., Szewczykowska M., Jackowska T., Dos Remedios C., et al. Dynamics of Cell Generation and Turnover in the Human Heart. Cell. 2015;161:1566–1575. doi: 10.1016/j.cell.2015.05.026. PubMed DOI
Bergmann O., Bhardwaj R.D., Bernard S., Zdunek S., Barnabé-Heider F., Walsh S., Zupicich J., Alkass K., Buchholz B.A., Druid H., et al. Evidence for Cardiomyocyte Renewal in Humans. Science. 2009;324:98–102. doi: 10.1126/science.1164680. PubMed DOI PMC
Travers J.G., Kamal F.A., Robbins J., Yutzey K.E., Blaxall B.C. Cardiac Fibrosis: The Fibroblast Awakens. Circ. Res. 2016;118:1021–1040. doi: 10.1161/circresaha.115.306565. PubMed DOI PMC
Hinderer S., Schenke-Layland K. Cardiac fibrosis—A short review of causes and therapeutic strategies. Adv. Drug Deliv. Rev. 2019;146:77–82. doi: 10.1016/j.addr.2019.05.011. PubMed DOI
Spach M.S., Boineau J.P. Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: A major mechanism of structural heart disease arrhythmias. Pacing Clin. Electrophysiol. PACE. 1997;20:397–413. doi: 10.1111/j.1540-8159.1997.tb06199.x. PubMed DOI
Silva A.C., Pereira C., Fonseca A., Pinto-do-Ó P., Nascimento D.S. Bearing My Heart: The Role of Extracellular Matrix on Cardiac Development, Homeostasis, and Injury Response. Front. Cell Dev. Biol. 2020;8:621644. doi: 10.3389/fcell.2020.621644. PubMed DOI PMC
Perestrelo A.R., Silva A.C., Cruz J.O.-D.L., Martino F., Horváth V., Caluori G., Polanský O., Vinarský V., Azzato G., Marco G.d., et al. Multiscale Analysis of Extracellular Matrix Remodeling in the Failing Heart. Circ. Res. 2021;128:24–38. doi: 10.1161/CIRCRESAHA.120.317685. PubMed DOI
van den Borne S.W.M., Diez J., Blankesteijn W.M., Verjans J., Hofstra L., Narula J. Myocardial remodeling after infarction: The role of myofibroblasts. Nat. Reviews. Cardiol. 2010;7:30–37. doi: 10.1038/nrcardio.2009.199. PubMed DOI
Limana F., Bertolami C., Mangoni A., Di Carlo A., Avitabile D., Mocini D., Iannelli P., De Mori R., Marchetti C., Pozzoli O., et al. Myocardial infarction induces embryonic reprogramming of epicardial c-kit+ cells: Role of the pericardial fluid. J. Mol. Cell. Cardiol. 2010;48:609–618. doi: 10.1016/j.yjmcc.2009.11.008. PubMed DOI
Trindade F., Vitorino R., Leite-Moreira A., Falcão-Pires I. Pericardial fluid: An underrated molecular library of heart conditions and a potential vehicle for cardiac therapy. Basic Res. Cardiol. 2019;114:10. doi: 10.1007/s00395-019-0716-3. PubMed DOI
Beltrami C., Besnier M., Shantikumar S., Shearn A.I., Rajakaruna C., Laftah A., Sessa F., Spinetti G., Petretto E., Angelini G.D., et al. Human Pericardial Fluid Contains Exosomes Enriched with Cardiovascular-Expressed MicroRNAs and Promotes Therapeutic Angiogenesis. Mol. Ther. 2017;25:679–693. doi: 10.1016/j.ymthe.2016.12.022. PubMed DOI PMC
Foglio E., Puddighinu G., Fasanaro P., D’Arcangelo D., Perrone G.A., Mocini D., Campanella C., Coppola L., Logozzi M., Azzarito T., et al. Exosomal clusterin, identified in the pericardial fluid, improves myocardial performance following MI through epicardial activation, enhanced arteriogenesis and reduced apoptosis. Int. J. Cardiol. 2015;197:333–347. doi: 10.1016/j.ijcard.2015.06.008. PubMed DOI
Catalanotto C., Cogoni C., Zardo G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int. J. Mol. Sci. 2016;17:1712. doi: 10.3390/ijms17101712. PubMed DOI PMC
Varzideh F., Kansakar U., Donkor K., Wilson S., Jankauskas S.S., Mone P., Wang X., Lombardi A., Santulli G. Cardiac Remodeling After Myocardial Infarction: Functional Contribution of microRNAs to Inflammation and Fibrosis. Front. Cardiovasc. Med. 2022;9:863238. doi: 10.3389/fcvm.2022.863238. PubMed DOI PMC
Kuosmanen S.M., Hartikainen J., Hippeläinen M., Kokki H., Levonen A.L., Tavi P. MicroRNA profiling of pericardial fluid samples from patients with heart failure. PLoS ONE. 2015;10:e0119646. doi: 10.1371/journal.pone.0119646. PubMed DOI PMC
Liu L., Chen Y., Shu J., Tang C.-E., Jiang Y., Luo F. Identification of microRNAs enriched in exosomes in human pericardial fluid of patients with atrial fibrillation based on bioinformatic analysis. J. Thorac. Dis. 2020;12:5617–5627. doi: 10.21037/jtd-20-2066. PubMed DOI PMC
Liu L., Luo F., Lei K. Exosomes Containing LINC00636 Inhibit MAPK1 through the miR-450a-2-3p Overexpression in Human Pericardial Fluid and Improve Cardiac Fibrosis in Patients with Atrial Fibrillation. Mediat. Inflamm. 2021;2021:9960241. doi: 10.1155/2021/9960241. PubMed DOI PMC
Khudiakov A.A., Panshin D.D., Fomicheva Y.V., Knyazeva A.A., Simonova K.A., Lebedev D.S., Mikhaylov E.N., Kostareva A.A. Different Expressions of Pericardial Fluid MicroRNAs in Patients With Arrhythmogenic Right Ventricular Cardiomyopathy and Ischemic Heart Disease Undergoing Ventricular Tachycardia Ablation. Front. Cardiovasc. Med. 2021;8:647812. doi: 10.3389/fcvm.2021.647812. PubMed DOI PMC
Miyamoto S., Usami S., Kuwabara Y., Horie T., Baba O., Hakuno D., Nakashima Y., Nishiga M., Izuhara M., Nakao T., et al. Expression Patterns of miRNA-423-5p in the Serum and Pericardial Fluid in Patients Undergoing Cardiac Surgery. PLoS ONE. 2015;10:e0142904. doi: 10.1371/journal.pone.0142904. PubMed DOI PMC
Schoettler F.I., Hassanabad A.F., Jadli A.S., Patel V.B., Fedak P.W.M. Exploring the role of pericardial miRNAs and exosomes in modulating cardiac fibrosis. Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol. 2024:107671. doi: 10.1016/j.carpath.2024.107671. PubMed DOI
Fiedler J., Thum T. MicroRNAs in Myocardial Infarction. Arterioscler. Thromb. Vasc. Biol. 2013;33:201–205. doi: 10.1161/ATVBAHA.112.300137. PubMed DOI
Cheng Y., Zhang C. MicroRNA-21 in cardiovascular disease. J. Cardiovasc. Transl. Res. 2010;3:251–255. doi: 10.1007/s12265-010-9169-7. PubMed DOI PMC
Huang S., Chen M., Li L., He M., Hu D., Zhang X., Li J., Tanguay R.M., Feng J., Cheng L., et al. Circulating MicroRNAs and the occurrence of acute myocardial infarction in Chinese populations. Circ. Cardiovasc. Genet. 2014;7:189–198. doi: 10.1161/CIRCGENETICS.113.000294. PubMed DOI
Vegter E.L., Ovchinnikova E.S., van Veldhuisen D.J., Jaarsma T., Berezikov E., van der Meer P., Voors A.A. Low circulating microRNA levels in heart failure patients are associated with atherosclerotic disease and cardiovascular-related rehospitalizations. Clin. Res. Cardiol. 2017;106:598–609. doi: 10.1007/s00392-017-1096-z. PubMed DOI PMC
Vegter E.L., van der Meer P., de Windt L.J., Pinto Y.M., Voors A.A. MicroRNAs in heart failure: From biomarker to target for therapy. Eur. J. Heart Fail. 2016;18:457–468. doi: 10.1002/ejhf.495. PubMed DOI
Ramanujam D., Sassi Y., Laggerbauer B., Engelhardt S. Viral Vector-Based Targeting of miR-21 in Cardiac Nonmyocyte Cells Reduces Pathologic Remodeling of the Heart. Mol. Ther. J. Am. Soc. Gene Ther. 2016;24:1939–1948. doi: 10.1038/mt.2016.166. PubMed DOI PMC
de Jong S., van Veen T.A., de Bakker J.M., Vos M.A., van Rijen H.V. Biomarkers of myocardial fibrosis. J. Cardiovasc. Pharmacol. 2011;57:522–535. doi: 10.1097/FJC.0b013e31821823d9. PubMed DOI
Zhang W., Chang H., Zhang H., Zhang L. MiR-30e Attenuates Isoproterenol-induced Cardiac Fibrosis Through Suppressing Snai1/TGF-β Signaling. J. Cardiovasc. Pharmacol. 2017;70:362–368. doi: 10.1097/FJC.0000000000000526. PubMed DOI PMC
Nagpal V., Rai R., Place A.T., Murphy S.B., Verma S.K., Ghosh A.K., Vaughan D.E. MiR-125b Is Critical for Fibroblast-to-Myofibroblast Transition and Cardiac Fibrosis. Circulation. 2016;133:291–301. doi: 10.1161/CIRCULATIONAHA.115.018174. PubMed DOI PMC
Yuan J., Chen H., Ge D., Xu Y., Xu H., Yang Y., Gu M., Zhou Y., Zhu J., Ge T., et al. Mir-21 Promotes Cardiac Fibrosis After Myocardial Infarction Via Targeting Smad7. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2017;42:2207–2219. doi: 10.1159/000479995. PubMed DOI
He Q., Wang C.M., Qin J.Y., Zhang Y.J., Xia D.S., Chen X., Guo S.Z., Zhao X.D., Guo Q.Y., Lu C.Z. Effect of miR-203 expression on myocardial fibrosis. Eur. Rev. Med. Pharmacol. Sci. 2017;21:837–842. PubMed
Bayoumi A.S., Teoh J.P., Aonuma T., Yuan Z., Ruan X., Tang Y., Su H., Weintraub N.L., Kim I.M. MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovasc. Res. 2017;113:1603–1614. doi: 10.1093/cvr/cvx132. PubMed DOI PMC
Hong Y., Cao H., Wang Q., Ye J., Sui L., Feng J., Cai X., Song H., Zhang X., Chen X. MiR-22 may Suppress Fibrogenesis by Targeting TGFβR I in Cardiac Fibroblasts. Cell Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2016;40:1345–1353. doi: 10.1159/000453187. PubMed DOI
Wang X., Wang L., Sun Y., Chen B., Xiong L., Chen J., Huang M., Wu J., Tan X., Zheng Y., et al. MiR-22-3p inhibits fibrotic cataract through inactivation of HDAC6 and increase of α-tubulin acetylation. Cell Prolif. 2020;53:e12911. doi: 10.1111/cpr.12911. PubMed DOI PMC
Zhang H., Wen H., Huang Y. MicroRNA-146a attenuates isoproterenol-induced cardiac fibrosis by inhibiting FGF2. Exp. Ther. Med. 2022;24:506. doi: 10.3892/etm.2022.11433. PubMed DOI PMC
Wang S., Cao X., Ge L., Gu Y., Lv X., Getachew T., Mwacharo J.M., Haile A., Sun W. MiR-22-3p Inhibits Proliferation and Promotes Differentiation of Skeletal Muscle Cells by Targeting IGFBP3 in Hu Sheep. Animals. 2022;12:114. doi: 10.3390/ani12010114. PubMed DOI PMC
Gupta S.K., Foinquinos A., Thum S., Remke J., Zimmer K., Bauters C., Groote P.d., Boon R.A., Windt L.J.d., Preissl S., et al. Preclinical Development of a MicroRNA-Based Therapy for Elderly Patients With Myocardial Infarction. J. Am. Coll. Cardiol. 2016;68:1557–1571. doi: 10.1016/j.jacc.2016.07.739. PubMed DOI
Fatehi Hassanabad A., Zarzycki A., Deniset J.F., Fedak P.W. An overview of human pericardial space and pericardial fluid. Cardiovasc. Pathol. 2021;53:107346. doi: 10.1016/j.carpath.2021.107346. PubMed DOI
Suryadevara K., George M., Jena A., Dhandapani V.E., Damodharan N., J J. Evaluation of soluble ST2 as a novel cardiovascular biomarker in patients with acute myocardial infarction. Int. J. Res. Med. Sci. 2016;4:5297–5301. doi: 10.18203/2320-6012.ijrms20164198. DOI
Kakkar R., Lee R.T. The IL-33/ST2 pathway: Therapeutic target and novel biomarker. Nat. Rev. Drug Discov. 2008;7:827–840. doi: 10.1038/nrd2660. PubMed DOI PMC
Yuan Z., Li H., Sun Y., Qiu J., Xu H., Liu J., Zhou M., Chen A., Ye X., Wang Z., et al. Pericardial fluid levels of growth differentiation factor 15 in patients with or without coronary artery disease: A prospective study. Ann. Transl. Med. 2020;8:113. doi: 10.21037/atm.2019.12.92. PubMed DOI PMC
Kempf T., Björklund E., Olofsson S., Lindahl B., Allhoff T., Peter T., Tongers J., Wollert K.C., Wallentin L. Growth-differentiation factor-15 improves risk stratification in ST-segment elevation myocardial infarction. Eur. Heart J. 2007;28:2858–2865. doi: 10.1093/eurheartj/ehm465. PubMed DOI
Ege T., Canbaz S., Yuksel V., Duran E. Effect of pericardial fluid pro-inflammatory cytokines on hemodynamic parameters. Cytokine. 2003;23:47–51. doi: 10.1016/S1043-4666(03)00180-7. PubMed DOI
Oyama J.-I., Shimokawa H., Morita S., Yasui H., Takeshita A. Elevated interleukin-1β in pericardial fluid of patients with ischemic heart disease. Coron. Artery Dis. 2001;12:567–571. doi: 10.1097/00019501-200111000-00007. PubMed DOI
Nemeth Z., Cziraki A., Szabados S., Horvath I., Koller A. Pericardial fluid of cardiac patients elicits arterial constriction: Role of endothelin-1. Can. J. Physiol. Pharmacol. 2015;93:779–785. doi: 10.1139/cjpp-2015-0030. PubMed DOI
Böhm F., Pernow J. The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovasc. Res. 2007;76:8–18. doi: 10.1016/j.cardiores.2007.06.004. PubMed DOI
Chinyere I.R., Bradley P., Uhlorn J., Eason J., Mohran S., Repetti G.G., Daugherty S., Koevary J.W., Goldman S., Lancaster J.J. Epicardially Placed Bioengineered Cardiomyocyte Xenograft in Immune-Competent Rat Model of Heart Failure. Stem Cells Int. 2021;2021:9935679. doi: 10.1155/2021/9935679. PubMed DOI PMC
Yang X., Li X., Lin Q., Xu Q. Up-regulation of microRNA-203 inhibits myocardial fibrosis and oxidative stress in mice with diabetic cardiomyopathy through the inhibition of PI3K/Akt signaling pathway via PIK3CA. Gene. 2019;715:143995. doi: 10.1016/j.gene.2019.143995. PubMed DOI
Zhou X.L., Xu H., Liu Z.B., Wu Q.C., Zhu R.R., Liu J.C. miR-21 promotes cardiac fibroblast-to-myofibroblast transformation and myocardial fibrosis by targeting Jagged1. J. Cell. Mol. Med. 2018;22:3816–3824. doi: 10.1111/jcmm.13654. PubMed DOI PMC
Thum T., Gross C., Fiedler J., Fischer T., Kissler S., Bussen M., Galuppo P., Just S., Rottbauer W., Frantz S., et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–984. doi: 10.1038/nature07511. PubMed DOI
Abbas N., Haas J.A., Xiao K., Fuchs M., Just A., Pich A., Perbellini F., Werlein C., Ius F., Ruhparwar A., et al. Inhibition of miR-21: Cardioprotective effects in human failing myocardium ex vivo. Eur. Heart J. 2024;45:ehae102. doi: 10.1093/eurheartj/ehae102. PubMed DOI PMC
Zhang M., Hu Y., Li H., Guo X., Zhong J., He S. miR-22-3p as a potential biomarker for coronary artery disease based on integrated bioinformatics analysis. Front. Genet. 2022;13:936937. doi: 10.3389/fgene.2022.936937. PubMed DOI PMC
Maciejak A., Kiliszek M., Opolski G., Segiet A., Matlak K., Dobrzycki S., Tulacz D., Sygitowicz G., Burzynska B., Gora M. miR-22-5p revealed as a potential biomarker involved in the acute phase of myocardial infarction via profiling of circulating microRNAs. Mol. Med. Rep. 2016;14:2867–2875. doi: 10.3892/mmr.2016.5566. PubMed DOI
Wang Y., Chang W., Zhang Y., Zhang L., Ding H., Qi H., Xue S., Yu H., Hu L., Liu D., et al. Circulating miR-22-5p and miR-122-5p are promising novel biomarkers for diagnosis of acute myocardial infarction. J. Cell. Physiol. 2019;234:4778–4786. doi: 10.1002/jcp.27274. PubMed DOI
Zhao X.S., Ren Y., Wu Y., Ren H.K., Chen H. MiR-30b-5p and miR-22-3p restrain the fibrogenesis of post-myocardial infarction in mice via targeting PTAFR. Eur. Rev. Med. Pharmacol. Sci. 2020;24:3993–4004. doi: 10.26355/eurrev_202004_20869. PubMed DOI
Jazbutyte V., Fiedler J., Kneitz S., Galuppo P., Just A., Holzmann A., Bauersachs J., Thum T. MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age. 2013;35:747–762. doi: 10.1007/s11357-012-9407-9. PubMed DOI PMC
Hall C., Law J.P., Reyat J.S., Cumberland M.J., Hang S., Vo N.T.N., Raniga K., Weston C.J., O’Shea C., Townend J.N., et al. Chronic activation of human cardiac fibroblasts in vitro attenuates the reversibility of the myofibroblast phenotype. Sci. Rep. 2023;13:12137. doi: 10.1038/s41598-023-39369-y. PubMed DOI PMC
Huang Z.P., Wang D.Z. miR-22 in cardiac remodeling and disease. Trends Cardiovasc. Med. 2014;24:267–272. doi: 10.1016/j.tcm.2014.07.005. PubMed DOI PMC
Fan Y., Siklenka K., Arora S.K., Ribeiro P., Kimmins S., Xia J. miRNet—Dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res. 2016;44:W135–W141. doi: 10.1093/nar/gkw288. PubMed DOI PMC
Filgueira C.S., Igo S.R., Wang D.K., Hirsch M., Schulz D.G., Bruckner B.A., Grattoni A. Technologies for intrapericardial delivery of therapeutics and cells. Adv. Drug Deliv. Rev. 2019;151:222–232. doi: 10.1016/j.addr.2019.02.006. PubMed DOI
Vitsios D.M., Enright A.J. Chimira: Analysis of small RNA sequencing data and microRNA modifications. Bioinformatics. 2015;31:3365–3367. doi: 10.1093/bioinformatics/btv380. PubMed DOI PMC
Babicki S., Arndt D., Marcu A., Liang Y., Grant J.R., Maciejewski A., Wishart D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016;44:W147–W153. doi: 10.1093/nar/gkw419. PubMed DOI PMC