Pericardial Fluid Accumulates microRNAs That Regulate Heart Fibrosis after Myocardial Infarction

. 2024 Jul 30 ; 25 (15) : . [epub] 20240730

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39125899

Grantová podpora
2022.08730.PTDC Fundação para a Ciência e Tecnologia
POCI-01-0145-FEDER-016385 Fundação para a Ciência e Tecnologia
POCI-01-0145-FEDER-030985 Fundação para a Ciência e Tecnologia
FIS-FIS-2015-01_CCV_20150630- 157 Infarmed

Pericardial fluid (PF) has been suggested as a reservoir of molecular targets that can be modulated for efficient repair after myocardial infarction (MI). Here, we set out to address the content of this biofluid after MI, namely in terms of microRNAs (miRs) that are important modulators of the cardiac pathological response. PF was collected during coronary artery bypass grafting (CABG) from two MI cohorts, patients with non-ST-segment elevation MI (NSTEMI) and patients with ST-segment elevation MI (STEMI), and a control group composed of patients with stable angina and without previous history of MI. The PF miR content was analyzed by small RNA sequencing, and its biological effect was assessed on human cardiac fibroblasts. PF accumulates fibrotic and inflammatory molecules in STEMI patients, namely causing the soluble suppression of tumorigenicity 2 (ST-2), which inversely correlates with the left ventricle ejection fraction. Although the PF of the three patient groups induce similar levels of fibroblast-to-myofibroblast activation in vitro, RNA sequencing revealed that PF from STEMI patients is particularly enriched not only in pro-fibrotic miRs but also anti-fibrotic miRs. Among those, miR-22-3p was herein found to inhibit TGF-β-induced human cardiac fibroblast activation in vitro. PF constitutes an attractive source for screening diagnostic/prognostic miRs and for unveiling novel therapeutic targets in cardiac fibrosis.

Zobrazit více v PubMed

Khan M.A., Hashim M.J., Mustafa H., Baniyas M.Y., Al Suwaidi S., AlKatheeri R., Alblooshi F.M.K., Almatrooshi M., Alzaabi M.E.H., Al Darmaki R.S., et al. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus. 2020;12:e9349. doi: 10.7759/cureus.9349. PubMed DOI PMC

Blom J.N., Feng Q. Cardiac repair by epicardial EMT: Current targets and a potential role for the primary cilium. Pharmacol. Ther. 2018;186:114–129. doi: 10.1016/j.pharmthera.2018.01.002. PubMed DOI

Abbott J.D., Ahmed H.N., Vlachos H.A., Selzer F., Williams D.O. Comparison of Outcome in Patients With ST-Elevation Versus Non–ST-Elevation Acute Myocardial Infarction Treated With Percutaneous Coronary Intervention (from the National Heart, Lung, and Blood Institute Dynamic Registry) Am. J. Cardiol. 2007;100:190–195. doi: 10.1016/j.amjcard.2007.02.083. PubMed DOI

García-García C., Subirana I., Sala J., Bruguera J., Sanz G., Valle V., Arós F., Fiol M., Molina L., Serra J., et al. Long-Term Prognosis of First Myocardial Infarction According to the Electrocardiographic Pattern (ST Elevation Myocardial Infarction, Non-ST Elevation Myocardial Infarction and Non-Classified Myocardial Infarction) and Revascularization Procedures. Am. J. Cardiol. 2011;108:1061–1067. doi: 10.1016/j.amjcard.2011.06.003. PubMed DOI

Thygesen K., Alpert J.S., Jaffe A.S., Simoons M.L., Chaitman B.R., White H.D., The Writing Group on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction Third universal definition of myocardial infarction. Nat. Rev. Cardiol. 2012;9:620–633. doi: 10.1038/nrcardio.2012.122. PubMed DOI

Ma L., Sun P., Zhang J.C., Zhang Q., Yao S.L. Proinflammatory effects of S100A8/A9 via TLR4 and RAGE signaling pathways in BV-2 microglial cells. Int. J. Mol. Med. 2017;40:31–38. doi: 10.3892/ijmm.2017.2987. PubMed DOI PMC

Frangogiannis N.G. The mechanistic basis of infarct healing. Antioxid. Redox Signal. 2006;8:1907–1939. doi: 10.1089/ars.2006.8.1907. PubMed DOI

Bergmann O., Zdunek S., Felker A., Salehpour M., Alkass K., Bernard S., Sjostrom S.L., Szewczykowska M., Jackowska T., Dos Remedios C., et al. Dynamics of Cell Generation and Turnover in the Human Heart. Cell. 2015;161:1566–1575. doi: 10.1016/j.cell.2015.05.026. PubMed DOI

Bergmann O., Bhardwaj R.D., Bernard S., Zdunek S., Barnabé-Heider F., Walsh S., Zupicich J., Alkass K., Buchholz B.A., Druid H., et al. Evidence for Cardiomyocyte Renewal in Humans. Science. 2009;324:98–102. doi: 10.1126/science.1164680. PubMed DOI PMC

Travers J.G., Kamal F.A., Robbins J., Yutzey K.E., Blaxall B.C. Cardiac Fibrosis: The Fibroblast Awakens. Circ. Res. 2016;118:1021–1040. doi: 10.1161/circresaha.115.306565. PubMed DOI PMC

Hinderer S., Schenke-Layland K. Cardiac fibrosis—A short review of causes and therapeutic strategies. Adv. Drug Deliv. Rev. 2019;146:77–82. doi: 10.1016/j.addr.2019.05.011. PubMed DOI

Spach M.S., Boineau J.P. Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: A major mechanism of structural heart disease arrhythmias. Pacing Clin. Electrophysiol. PACE. 1997;20:397–413. doi: 10.1111/j.1540-8159.1997.tb06199.x. PubMed DOI

Silva A.C., Pereira C., Fonseca A., Pinto-do-Ó P., Nascimento D.S. Bearing My Heart: The Role of Extracellular Matrix on Cardiac Development, Homeostasis, and Injury Response. Front. Cell Dev. Biol. 2020;8:621644. doi: 10.3389/fcell.2020.621644. PubMed DOI PMC

Perestrelo A.R., Silva A.C., Cruz J.O.-D.L., Martino F., Horváth V., Caluori G., Polanský O., Vinarský V., Azzato G., Marco G.d., et al. Multiscale Analysis of Extracellular Matrix Remodeling in the Failing Heart. Circ. Res. 2021;128:24–38. doi: 10.1161/CIRCRESAHA.120.317685. PubMed DOI

van den Borne S.W.M., Diez J., Blankesteijn W.M., Verjans J., Hofstra L., Narula J. Myocardial remodeling after infarction: The role of myofibroblasts. Nat. Reviews. Cardiol. 2010;7:30–37. doi: 10.1038/nrcardio.2009.199. PubMed DOI

Limana F., Bertolami C., Mangoni A., Di Carlo A., Avitabile D., Mocini D., Iannelli P., De Mori R., Marchetti C., Pozzoli O., et al. Myocardial infarction induces embryonic reprogramming of epicardial c-kit+ cells: Role of the pericardial fluid. J. Mol. Cell. Cardiol. 2010;48:609–618. doi: 10.1016/j.yjmcc.2009.11.008. PubMed DOI

Trindade F., Vitorino R., Leite-Moreira A., Falcão-Pires I. Pericardial fluid: An underrated molecular library of heart conditions and a potential vehicle for cardiac therapy. Basic Res. Cardiol. 2019;114:10. doi: 10.1007/s00395-019-0716-3. PubMed DOI

Beltrami C., Besnier M., Shantikumar S., Shearn A.I., Rajakaruna C., Laftah A., Sessa F., Spinetti G., Petretto E., Angelini G.D., et al. Human Pericardial Fluid Contains Exosomes Enriched with Cardiovascular-Expressed MicroRNAs and Promotes Therapeutic Angiogenesis. Mol. Ther. 2017;25:679–693. doi: 10.1016/j.ymthe.2016.12.022. PubMed DOI PMC

Foglio E., Puddighinu G., Fasanaro P., D’Arcangelo D., Perrone G.A., Mocini D., Campanella C., Coppola L., Logozzi M., Azzarito T., et al. Exosomal clusterin, identified in the pericardial fluid, improves myocardial performance following MI through epicardial activation, enhanced arteriogenesis and reduced apoptosis. Int. J. Cardiol. 2015;197:333–347. doi: 10.1016/j.ijcard.2015.06.008. PubMed DOI

Catalanotto C., Cogoni C., Zardo G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int. J. Mol. Sci. 2016;17:1712. doi: 10.3390/ijms17101712. PubMed DOI PMC

Varzideh F., Kansakar U., Donkor K., Wilson S., Jankauskas S.S., Mone P., Wang X., Lombardi A., Santulli G. Cardiac Remodeling After Myocardial Infarction: Functional Contribution of microRNAs to Inflammation and Fibrosis. Front. Cardiovasc. Med. 2022;9:863238. doi: 10.3389/fcvm.2022.863238. PubMed DOI PMC

Kuosmanen S.M., Hartikainen J., Hippeläinen M., Kokki H., Levonen A.L., Tavi P. MicroRNA profiling of pericardial fluid samples from patients with heart failure. PLoS ONE. 2015;10:e0119646. doi: 10.1371/journal.pone.0119646. PubMed DOI PMC

Liu L., Chen Y., Shu J., Tang C.-E., Jiang Y., Luo F. Identification of microRNAs enriched in exosomes in human pericardial fluid of patients with atrial fibrillation based on bioinformatic analysis. J. Thorac. Dis. 2020;12:5617–5627. doi: 10.21037/jtd-20-2066. PubMed DOI PMC

Liu L., Luo F., Lei K. Exosomes Containing LINC00636 Inhibit MAPK1 through the miR-450a-2-3p Overexpression in Human Pericardial Fluid and Improve Cardiac Fibrosis in Patients with Atrial Fibrillation. Mediat. Inflamm. 2021;2021:9960241. doi: 10.1155/2021/9960241. PubMed DOI PMC

Khudiakov A.A., Panshin D.D., Fomicheva Y.V., Knyazeva A.A., Simonova K.A., Lebedev D.S., Mikhaylov E.N., Kostareva A.A. Different Expressions of Pericardial Fluid MicroRNAs in Patients With Arrhythmogenic Right Ventricular Cardiomyopathy and Ischemic Heart Disease Undergoing Ventricular Tachycardia Ablation. Front. Cardiovasc. Med. 2021;8:647812. doi: 10.3389/fcvm.2021.647812. PubMed DOI PMC

Miyamoto S., Usami S., Kuwabara Y., Horie T., Baba O., Hakuno D., Nakashima Y., Nishiga M., Izuhara M., Nakao T., et al. Expression Patterns of miRNA-423-5p in the Serum and Pericardial Fluid in Patients Undergoing Cardiac Surgery. PLoS ONE. 2015;10:e0142904. doi: 10.1371/journal.pone.0142904. PubMed DOI PMC

Schoettler F.I., Hassanabad A.F., Jadli A.S., Patel V.B., Fedak P.W.M. Exploring the role of pericardial miRNAs and exosomes in modulating cardiac fibrosis. Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol. 2024:107671. doi: 10.1016/j.carpath.2024.107671. PubMed DOI

Fiedler J., Thum T. MicroRNAs in Myocardial Infarction. Arterioscler. Thromb. Vasc. Biol. 2013;33:201–205. doi: 10.1161/ATVBAHA.112.300137. PubMed DOI

Cheng Y., Zhang C. MicroRNA-21 in cardiovascular disease. J. Cardiovasc. Transl. Res. 2010;3:251–255. doi: 10.1007/s12265-010-9169-7. PubMed DOI PMC

Huang S., Chen M., Li L., He M., Hu D., Zhang X., Li J., Tanguay R.M., Feng J., Cheng L., et al. Circulating MicroRNAs and the occurrence of acute myocardial infarction in Chinese populations. Circ. Cardiovasc. Genet. 2014;7:189–198. doi: 10.1161/CIRCGENETICS.113.000294. PubMed DOI

Vegter E.L., Ovchinnikova E.S., van Veldhuisen D.J., Jaarsma T., Berezikov E., van der Meer P., Voors A.A. Low circulating microRNA levels in heart failure patients are associated with atherosclerotic disease and cardiovascular-related rehospitalizations. Clin. Res. Cardiol. 2017;106:598–609. doi: 10.1007/s00392-017-1096-z. PubMed DOI PMC

Vegter E.L., van der Meer P., de Windt L.J., Pinto Y.M., Voors A.A. MicroRNAs in heart failure: From biomarker to target for therapy. Eur. J. Heart Fail. 2016;18:457–468. doi: 10.1002/ejhf.495. PubMed DOI

Ramanujam D., Sassi Y., Laggerbauer B., Engelhardt S. Viral Vector-Based Targeting of miR-21 in Cardiac Nonmyocyte Cells Reduces Pathologic Remodeling of the Heart. Mol. Ther. J. Am. Soc. Gene Ther. 2016;24:1939–1948. doi: 10.1038/mt.2016.166. PubMed DOI PMC

de Jong S., van Veen T.A., de Bakker J.M., Vos M.A., van Rijen H.V. Biomarkers of myocardial fibrosis. J. Cardiovasc. Pharmacol. 2011;57:522–535. doi: 10.1097/FJC.0b013e31821823d9. PubMed DOI

Zhang W., Chang H., Zhang H., Zhang L. MiR-30e Attenuates Isoproterenol-induced Cardiac Fibrosis Through Suppressing Snai1/TGF-β Signaling. J. Cardiovasc. Pharmacol. 2017;70:362–368. doi: 10.1097/FJC.0000000000000526. PubMed DOI PMC

Nagpal V., Rai R., Place A.T., Murphy S.B., Verma S.K., Ghosh A.K., Vaughan D.E. MiR-125b Is Critical for Fibroblast-to-Myofibroblast Transition and Cardiac Fibrosis. Circulation. 2016;133:291–301. doi: 10.1161/CIRCULATIONAHA.115.018174. PubMed DOI PMC

Yuan J., Chen H., Ge D., Xu Y., Xu H., Yang Y., Gu M., Zhou Y., Zhu J., Ge T., et al. Mir-21 Promotes Cardiac Fibrosis After Myocardial Infarction Via Targeting Smad7. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2017;42:2207–2219. doi: 10.1159/000479995. PubMed DOI

He Q., Wang C.M., Qin J.Y., Zhang Y.J., Xia D.S., Chen X., Guo S.Z., Zhao X.D., Guo Q.Y., Lu C.Z. Effect of miR-203 expression on myocardial fibrosis. Eur. Rev. Med. Pharmacol. Sci. 2017;21:837–842. PubMed

Bayoumi A.S., Teoh J.P., Aonuma T., Yuan Z., Ruan X., Tang Y., Su H., Weintraub N.L., Kim I.M. MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovasc. Res. 2017;113:1603–1614. doi: 10.1093/cvr/cvx132. PubMed DOI PMC

Hong Y., Cao H., Wang Q., Ye J., Sui L., Feng J., Cai X., Song H., Zhang X., Chen X. MiR-22 may Suppress Fibrogenesis by Targeting TGFβR I in Cardiac Fibroblasts. Cell Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2016;40:1345–1353. doi: 10.1159/000453187. PubMed DOI

Wang X., Wang L., Sun Y., Chen B., Xiong L., Chen J., Huang M., Wu J., Tan X., Zheng Y., et al. MiR-22-3p inhibits fibrotic cataract through inactivation of HDAC6 and increase of α-tubulin acetylation. Cell Prolif. 2020;53:e12911. doi: 10.1111/cpr.12911. PubMed DOI PMC

Zhang H., Wen H., Huang Y. MicroRNA-146a attenuates isoproterenol-induced cardiac fibrosis by inhibiting FGF2. Exp. Ther. Med. 2022;24:506. doi: 10.3892/etm.2022.11433. PubMed DOI PMC

Wang S., Cao X., Ge L., Gu Y., Lv X., Getachew T., Mwacharo J.M., Haile A., Sun W. MiR-22-3p Inhibits Proliferation and Promotes Differentiation of Skeletal Muscle Cells by Targeting IGFBP3 in Hu Sheep. Animals. 2022;12:114. doi: 10.3390/ani12010114. PubMed DOI PMC

Gupta S.K., Foinquinos A., Thum S., Remke J., Zimmer K., Bauters C., Groote P.d., Boon R.A., Windt L.J.d., Preissl S., et al. Preclinical Development of a MicroRNA-Based Therapy for Elderly Patients With Myocardial Infarction. J. Am. Coll. Cardiol. 2016;68:1557–1571. doi: 10.1016/j.jacc.2016.07.739. PubMed DOI

Fatehi Hassanabad A., Zarzycki A., Deniset J.F., Fedak P.W. An overview of human pericardial space and pericardial fluid. Cardiovasc. Pathol. 2021;53:107346. doi: 10.1016/j.carpath.2021.107346. PubMed DOI

Suryadevara K., George M., Jena A., Dhandapani V.E., Damodharan N., J J. Evaluation of soluble ST2 as a novel cardiovascular biomarker in patients with acute myocardial infarction. Int. J. Res. Med. Sci. 2016;4:5297–5301. doi: 10.18203/2320-6012.ijrms20164198. DOI

Kakkar R., Lee R.T. The IL-33/ST2 pathway: Therapeutic target and novel biomarker. Nat. Rev. Drug Discov. 2008;7:827–840. doi: 10.1038/nrd2660. PubMed DOI PMC

Yuan Z., Li H., Sun Y., Qiu J., Xu H., Liu J., Zhou M., Chen A., Ye X., Wang Z., et al. Pericardial fluid levels of growth differentiation factor 15 in patients with or without coronary artery disease: A prospective study. Ann. Transl. Med. 2020;8:113. doi: 10.21037/atm.2019.12.92. PubMed DOI PMC

Kempf T., Björklund E., Olofsson S., Lindahl B., Allhoff T., Peter T., Tongers J., Wollert K.C., Wallentin L. Growth-differentiation factor-15 improves risk stratification in ST-segment elevation myocardial infarction. Eur. Heart J. 2007;28:2858–2865. doi: 10.1093/eurheartj/ehm465. PubMed DOI

Ege T., Canbaz S., Yuksel V., Duran E. Effect of pericardial fluid pro-inflammatory cytokines on hemodynamic parameters. Cytokine. 2003;23:47–51. doi: 10.1016/S1043-4666(03)00180-7. PubMed DOI

Oyama J.-I., Shimokawa H., Morita S., Yasui H., Takeshita A. Elevated interleukin-1β in pericardial fluid of patients with ischemic heart disease. Coron. Artery Dis. 2001;12:567–571. doi: 10.1097/00019501-200111000-00007. PubMed DOI

Nemeth Z., Cziraki A., Szabados S., Horvath I., Koller A. Pericardial fluid of cardiac patients elicits arterial constriction: Role of endothelin-1. Can. J. Physiol. Pharmacol. 2015;93:779–785. doi: 10.1139/cjpp-2015-0030. PubMed DOI

Böhm F., Pernow J. The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovasc. Res. 2007;76:8–18. doi: 10.1016/j.cardiores.2007.06.004. PubMed DOI

Chinyere I.R., Bradley P., Uhlorn J., Eason J., Mohran S., Repetti G.G., Daugherty S., Koevary J.W., Goldman S., Lancaster J.J. Epicardially Placed Bioengineered Cardiomyocyte Xenograft in Immune-Competent Rat Model of Heart Failure. Stem Cells Int. 2021;2021:9935679. doi: 10.1155/2021/9935679. PubMed DOI PMC

Yang X., Li X., Lin Q., Xu Q. Up-regulation of microRNA-203 inhibits myocardial fibrosis and oxidative stress in mice with diabetic cardiomyopathy through the inhibition of PI3K/Akt signaling pathway via PIK3CA. Gene. 2019;715:143995. doi: 10.1016/j.gene.2019.143995. PubMed DOI

Zhou X.L., Xu H., Liu Z.B., Wu Q.C., Zhu R.R., Liu J.C. miR-21 promotes cardiac fibroblast-to-myofibroblast transformation and myocardial fibrosis by targeting Jagged1. J. Cell. Mol. Med. 2018;22:3816–3824. doi: 10.1111/jcmm.13654. PubMed DOI PMC

Thum T., Gross C., Fiedler J., Fischer T., Kissler S., Bussen M., Galuppo P., Just S., Rottbauer W., Frantz S., et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–984. doi: 10.1038/nature07511. PubMed DOI

Abbas N., Haas J.A., Xiao K., Fuchs M., Just A., Pich A., Perbellini F., Werlein C., Ius F., Ruhparwar A., et al. Inhibition of miR-21: Cardioprotective effects in human failing myocardium ex vivo. Eur. Heart J. 2024;45:ehae102. doi: 10.1093/eurheartj/ehae102. PubMed DOI PMC

Zhang M., Hu Y., Li H., Guo X., Zhong J., He S. miR-22-3p as a potential biomarker for coronary artery disease based on integrated bioinformatics analysis. Front. Genet. 2022;13:936937. doi: 10.3389/fgene.2022.936937. PubMed DOI PMC

Maciejak A., Kiliszek M., Opolski G., Segiet A., Matlak K., Dobrzycki S., Tulacz D., Sygitowicz G., Burzynska B., Gora M. miR-22-5p revealed as a potential biomarker involved in the acute phase of myocardial infarction via profiling of circulating microRNAs. Mol. Med. Rep. 2016;14:2867–2875. doi: 10.3892/mmr.2016.5566. PubMed DOI

Wang Y., Chang W., Zhang Y., Zhang L., Ding H., Qi H., Xue S., Yu H., Hu L., Liu D., et al. Circulating miR-22-5p and miR-122-5p are promising novel biomarkers for diagnosis of acute myocardial infarction. J. Cell. Physiol. 2019;234:4778–4786. doi: 10.1002/jcp.27274. PubMed DOI

Zhao X.S., Ren Y., Wu Y., Ren H.K., Chen H. MiR-30b-5p and miR-22-3p restrain the fibrogenesis of post-myocardial infarction in mice via targeting PTAFR. Eur. Rev. Med. Pharmacol. Sci. 2020;24:3993–4004. doi: 10.26355/eurrev_202004_20869. PubMed DOI

Jazbutyte V., Fiedler J., Kneitz S., Galuppo P., Just A., Holzmann A., Bauersachs J., Thum T. MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age. 2013;35:747–762. doi: 10.1007/s11357-012-9407-9. PubMed DOI PMC

Hall C., Law J.P., Reyat J.S., Cumberland M.J., Hang S., Vo N.T.N., Raniga K., Weston C.J., O’Shea C., Townend J.N., et al. Chronic activation of human cardiac fibroblasts in vitro attenuates the reversibility of the myofibroblast phenotype. Sci. Rep. 2023;13:12137. doi: 10.1038/s41598-023-39369-y. PubMed DOI PMC

Huang Z.P., Wang D.Z. miR-22 in cardiac remodeling and disease. Trends Cardiovasc. Med. 2014;24:267–272. doi: 10.1016/j.tcm.2014.07.005. PubMed DOI PMC

Fan Y., Siklenka K., Arora S.K., Ribeiro P., Kimmins S., Xia J. miRNet—Dissecting miRNA-target interactions and functional associations through network-based visual analysis. Nucleic Acids Res. 2016;44:W135–W141. doi: 10.1093/nar/gkw288. PubMed DOI PMC

Filgueira C.S., Igo S.R., Wang D.K., Hirsch M., Schulz D.G., Bruckner B.A., Grattoni A. Technologies for intrapericardial delivery of therapeutics and cells. Adv. Drug Deliv. Rev. 2019;151:222–232. doi: 10.1016/j.addr.2019.02.006. PubMed DOI

Vitsios D.M., Enright A.J. Chimira: Analysis of small RNA sequencing data and microRNA modifications. Bioinformatics. 2015;31:3365–3367. doi: 10.1093/bioinformatics/btv380. PubMed DOI PMC

Babicki S., Arndt D., Marcu A., Liang Y., Grant J.R., Maciejewski A., Wishart D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016;44:W147–W153. doi: 10.1093/nar/gkw419. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...