Semantic clustering analysis of E3-ubiquitin ligases in gastrointestinal tract defines genes ontology clusters with tissue expression patterns
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LQ1604
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_013/0001789
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015040
Ministerstvo Školství, Mládeže a Tělovýchovy
LQ1604
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018126
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_013/0001789
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/16_013/0001789
Ministerstvo Školství, Mládeže a Tělovýchovy
LQ1604
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO 68378050
Akademie Věd České Republiky
RVO 68378050
Akademie Věd České Republiky
RVO 68378050
Akademie Věd České Republiky
RVO 68378050
Akademie Věd České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000765
Research Center for Informatics, CTU
CZ.02.1.01/0.0/0.0/16_019/0000765
Research Center for Informatics, CTU
PubMed
35413796
PubMed Central
PMC9006408
DOI
10.1186/s12876-022-02265-2
PII: 10.1186/s12876-022-02265-2
Knihovny.cz E-zdroje
- Klíčová slova
- Cluster analysis, GIT, Gene redundancy, Regeneration, Semantic biclustering, Ub-ligase,
- MeSH
- gastrointestinální trakt metabolismus MeSH
- lidé MeSH
- myši MeSH
- sémantika * MeSH
- shluková analýza MeSH
- ubikvitin genetika metabolismus MeSH
- ubikvitinligasy * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ubikvitin MeSH
- ubikvitinligasy * MeSH
BACKGROUND: Ubiquitin ligases (Ub-ligases) are essential intracellular enzymes responsible for the regulation of proteome homeostasis, signaling pathway crosstalk, cell differentiation and stress responses. Individual Ub-ligases exhibit their unique functions based on the nature of their substrates. They create a complex regulatory network with alternative and feedback pathways to maintain cell homeostasis, being thus important players in many physiological and pathological conditions. However, the functional classification of Ub-ligases needs to be revised and extended. METHODS: In the current study, we used a novel semantic biclustering technique for expression profiling of Ub-ligases and ubiquitination-related genes in the murine gastrointestinal tract (GIT). We accommodated a general framework of the algorithm for finding tissue-specific gene expression clusters in GIT. In order to test identified clusters in a biological system, we used a model of epithelial regeneration. For this purpose, a dextran sulfate sodium (DSS) mouse model, following with in situ hybridization, was used to expose genes with possible compensatory features. To determine cell-type specific distribution of Ub-ligases and ubiquitination-related genes, principal component analysis (PCA) and Uniform Manifold Approximation and Projection technique (UMAP) were used to analyze the Tabula Muris scRNA-seq data of murine colon followed by comparison with our clustering results. RESULTS: Our established clustering protocol, that incorporates the semantic biclustering algorithm, demonstrated the potential to reveal interesting expression patterns. In this manner, we statistically defined gene clusters consisting of the same genes involved in distinct regulatory pathways vs distinct genes playing roles in functionally similar signaling pathways. This allowed us to uncover the potentially redundant features of GIT-specific Ub-ligases and ubiquitination-related genes. Testing the statistically obtained results on the mouse model showed that genes clustered to the same ontology group simultaneously alter their expression pattern after induced epithelial damage, illustrating their complementary role during tissue regeneration. CONCLUSIONS: An optimized semantic clustering protocol demonstrates the potential to reveal a readable and unique pattern in the expression profiling of GIT-specific Ub-ligases, exposing ontologically relevant gene clusters with potentially redundant features. This extends our knowledge of ontological relationships among Ub-ligases and ubiquitination-related genes, providing an alternative and more functional gene classification. In a similar way, semantic cluster analysis could be used for studding of other enzyme families, tissues and systems.
Zobrazit více v PubMed
Berndsen CE, Wolberger C. New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol. 2014;21(4):301–307. doi: 10.1038/nsmb.2780. PubMed DOI
Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment. Nat Med. 2014;20(11):1242–1253. doi: 10.1038/nm.3739. PubMed DOI
Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–479. doi: 10.1146/annurev.biochem.67.1.425. PubMed DOI
Grabbe C, Husnjak K, Dikic I. The spatial and temporal organization of ubiquitin networks. Nat Rev Mol Cell Biol. 2011;12(5):295–307. doi: 10.1038/nrm3099. PubMed DOI PMC
Samji T, Hong S, Means RE. The membrane associated RING-CH proteins: a family of E3 ligases with diverse roles through the cell. Int Sch Res Notices. 2014;2014:637295. PubMed PMC
Ardley HC, Robinson PA. E3 ubiquitin ligases. Essays Biochem. 2005;41:15–30. doi: 10.1042/bse0410015. PubMed DOI
Vittal V, Stewart MD, Brzovic PS, Klevit RE. Regulating the regulators: recent revelations in the control of E3 ubiquitin ligases. J Biol Chem. 2015;290(35):21244–21251. doi: 10.1074/jbc.R115.675165. PubMed DOI PMC
Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem. 2017;86:129–157. doi: 10.1146/annurev-biochem-060815-014922. PubMed DOI
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Gene Ontol Consort Nat Genet. 2000;25(1):25–29. doi: 10.1038/75556. PubMed DOI PMC
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–15550. doi: 10.1073/pnas.0506580102. PubMed DOI PMC
Malinka F, Zelezny F, Klema J. Finding semantic patterns in omics data using concept rule learning with an ontology-based refinement operator. BioData Min. 2020;13:13. doi: 10.1186/s13040-020-00219-6. PubMed DOI PMC
Klema J, Malinka F, Zelezny F. Semantic biclustering for finding local, interpretable and predictive expression patterns. BMC Genomics. 2017;18(Suppl 7):752. doi: 10.1186/s12864-017-4132-5. PubMed DOI PMC
Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature. 2011;469(7330):415–418. doi: 10.1038/nature09637. PubMed DOI PMC
Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell. 2010;143(1):134–144. doi: 10.1016/j.cell.2010.09.016. PubMed DOI
Furness JB, Rivera LR, Cho HJ, Bravo DM, Callaghan B. The gut as a sensory organ. Nat Rev Gastroenterol Hepatol. 2013;10(12):729–740. doi: 10.1038/nrgastro.2013.180. PubMed DOI
Schuijers J, Clevers H. Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins. EMBO J. 2012;31(12):2685–2696. doi: 10.1038/emboj.2012.149. PubMed DOI PMC
Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449(7165):1003–1007. doi: 10.1038/nature06196. PubMed DOI
Beumer J, Clevers H. Cell fate specification and differentiation in the adult mammalian intestine. Nat Rev Mol Cell Biol. 2021;22(1):39–53. doi: 10.1038/s41580-020-0278-0. PubMed DOI
Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, et al. A single-cell survey of the small intestinal epithelium. Nature. 2017;551(7680):333–339. doi: 10.1038/nature24489. PubMed DOI PMC
Gallo LH, Ko J, Donoghue DJ. The importance of regulatory ubiquitination in cancer and metastasis. Cell Cycle. 2017;16(7):634–648. doi: 10.1080/15384101.2017.1288326. PubMed DOI PMC
Liu L, Wong CC, Gong B, Yu J. Functional significance and therapeutic implication of ring-type E3 ligases in colorectal cancer. Oncogene. 2018;37(2):148–159. doi: 10.1038/onc.2017.313. PubMed DOI PMC
Tabula Muris C. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature. 2018;562(7727):367–72. doi: 10.1038/s41586-018-0590-4. PubMed DOI PMC
Eichele DD, Kharbanda KK. Dextran sodium sulfate colitis murine model: an indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol. 2017;23(33):6016–6029. doi: 10.3748/wjg.v23.i33.6016. PubMed DOI PMC
Wilkinson DG, Nieto MA. Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol. 1993;225:361–373. doi: 10.1016/0076-6879(93)25025-W. PubMed DOI
Petri V, Jayaraman P, Tutaj M, Hayman GT, Smith JR, De Pons J, et al. The pathway ontology—updates and applications. J Biomed Semantics. 2014;5(1):7. doi: 10.1186/2041-1480-5-7. PubMed DOI PMC
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353–D361. doi: 10.1093/nar/gkw1092. PubMed DOI PMC
Turnley AM, Faux CH, Rietze RL, Coonan JR, Bartlett PF. Suppressor of cytokine signaling 2 regulates neuronal differentiation by inhibiting growth hormone signaling. Nat Neurosci. 2002;5(11):1155–1162. doi: 10.1038/nn954. PubMed DOI
Frantsve J, Schwaller J, Sternberg DW, Kutok J, Gilliland DG. Socs-1 inhibits TEL-JAK2-mediated transformation of hematopoietic cells through inhibition of JAK2 kinase activity and induction of proteasome-mediated degradation. Mol Cell Biol. 2001;21(10):3547–3557. doi: 10.1128/MCB.21.10.3547-3557.2001. PubMed DOI PMC
Kamizono S, Hanada T, Yasukawa H, Minoguchi S, Kato R, Minoguchi M, et al. The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2. J Biol Chem. 2001;276(16):12530–12538. doi: 10.1074/jbc.M010074200. PubMed DOI
Chikuma S, Kanamori M, Mise-Omata S, Yoshimura A. Suppressors of cytokine signaling: potential immune checkpoint molecules for cancer immunotherapy. Cancer Sci. 2017;108(4):574–580. doi: 10.1111/cas.13194. PubMed DOI PMC
Uchil PD, Hinz A, Siegel S, Coenen-Stass A, Pertel T, Luban J, et al. TRIM protein-mediated regulation of inflammatory and innate immune signaling and its association with antiretroviral activity. J Virol. 2013;87(1):257–272. doi: 10.1128/JVI.01804-12. PubMed DOI PMC
Jenkins K, Khoo JJ, Sadler A, Piganis R, Wang D, Borg NA, et al. Mitochondrially localised MUL1 is a novel modulator of antiviral signaling. Immunol Cell Biol. 2013;91(4):321–330. doi: 10.1038/icb.2013.7. PubMed DOI
Castro A, Bernis C, Vigneron S, Labbe JC, Lorca T. The anaphase-promoting complex: a key factor in the regulation of cell cycle. Oncogene. 2005;24(3):314–325. doi: 10.1038/sj.onc.1207973. PubMed DOI
Dong Y, Hakimi MA, Chen X, Kumaraswamy E, Cooch NS, Godwin AK, et al. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol Cell. 2003;12(5):1087–1099. doi: 10.1016/S1097-2765(03)00424-6. PubMed DOI
Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, et al. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. Biochim Biophys Acta. 2013;1833(1):122–139. doi: 10.1016/j.bbamcr.2012.10.010. PubMed DOI PMC
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36(5):411–420. doi: 10.1038/nbt.4096. PubMed DOI PMC
Hao Y, Hao S, Andersen-Nissen E, Mauck WM, III, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;40:1011. PubMed PMC
Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME, Leyrat AA, et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol. 2011;29(12):1120–1127. doi: 10.1038/nbt.2038. PubMed DOI PMC
Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science. 2001;294(5549):2155–2158. doi: 10.1126/science.1065718. PubMed DOI
Gregorieff A, Stange DE, Kujala P, Begthel H, van den Born M, Korving J et al. The ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in the intestinal epithelium. Gastroenterology. 2009; 137(4):1333–45.e1-3. PubMed
Gerbe F, Brulin B, Makrini L, Legraverend C, Jay P. DCAMKL-1 expression identifies Tuft cells rather than stem cells in the adult mouse intestinal epithelium. Gastroenterology. 2009;137(6):2179–80. doi: 10.1053/j.gastro.2009.06.072. PubMed DOI
Facer P, Bishop AE, Lloyd RV, Wilson BS, Hennessy RJ, Polak JM. Chromogranin: a newly recognized marker for endocrine cells of the human gastrointestinal tract. Gastroenterology. 1985;89(6):1366–1373. doi: 10.1016/0016-5085(85)90657-2. PubMed DOI
Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS One. 2008;3(1):e1487. doi: 10.1371/journal.pone.0001487. PubMed DOI PMC
El-Brolosy MA, Stainier DYR. Genetic compensation: a phenomenon in search of mechanisms. PLoS Genet. 2017;13(7):e1006780. doi: 10.1371/journal.pgen.1006780. PubMed DOI PMC
El-Brolosy MA, Kontarakis Z, Rossi A, Kuenne C, Gunther S, Fukuda N, et al. Genetic compensation triggered by mutant mRNA degradation. Nature. 2019;568(7751):193–197. doi: 10.1038/s41586-019-1064-z. PubMed DOI PMC
Mukherjee AS, Beermann W. Synthesis of ribonucleic acid by the X-chromosomes of Drosophila melanogaster and the problem of dosage compensation. Nature. 1965;207(998):785–786. doi: 10.1038/207785a0. PubMed DOI
Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature. 2002;418(6896):387–391. doi: 10.1038/nature00935. PubMed DOI
White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, et al. Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell. 2013;154(2):452–464. doi: 10.1016/j.cell.2013.06.022. PubMed DOI PMC
Tautz D. Redundancies, development and the flow of information. BioEssays. 1992;14(4):263–266. doi: 10.1002/bies.950140410. PubMed DOI
Teng X, Dayhoff-Brannigan M, Cheng WC, Gilbert CE, Sing CN, Diny NL, et al. Genome-wide consequences of deleting any single gene. Mol Cell. 2013;52(4):485–494. doi: 10.1016/j.molcel.2013.09.026. PubMed DOI PMC
Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet. 2004;5(2):101–113. doi: 10.1038/nrg1272. PubMed DOI
Cereda M, Mourikis TP, Ciccarelli FD. Genetic redundancy, functional compensation, and cancer vulnerability. Trends Cancer. 2016;2(4):160–162. doi: 10.1016/j.trecan.2016.03.003. PubMed DOI
Ghafouri-Fard S, Oskooei VK, Azari I, Taheri M. Suppressor of cytokine signaling (SOCS) genes are downregulated in breast cancer. World J Surg Oncol. 2018;16(1):226. doi: 10.1186/s12957-018-1529-9. PubMed DOI PMC
Yoshikawa H, Matsubara K, Qian GS, Jackson P, Groopman JD, Manning JE, et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet. 2001;28(1):29–35. PubMed
Kim MH, Kim MS, Kim W, Kang MA, Cacalano NA, Kang SB, et al. Suppressor of cytokine signaling (SOCS) genes are silenced by DNA hypermethylation and histone deacetylation and regulate response to radiotherapy in cervical cancer cells. PLoS One. 2015;10(4):e0123133. doi: 10.1371/journal.pone.0123133. PubMed DOI PMC
Sutherland KD, Lindeman GJ, Choong DY, Wittlin S, Brentzell L, Phillips W, et al. Differential hypermethylation of SOCS genes in ovarian and breast carcinomas. Oncogene. 2004;23(46):7726–7733. doi: 10.1038/sj.onc.1207787. PubMed DOI
Chu Q, Shen D, He L, Wang H, Liu C, Zhang W. Prognostic significance of SOCS3 and its biological function in colorectal cancer. Gene. 2017;627:114–122. doi: 10.1016/j.gene.2017.06.013. PubMed DOI
Tobelaim WS, Beaurivage C, Champagne A, Pomerleau V, Simoneau A, Chababi W, et al. Tumour-promoting role of SOCS1 in colorectal cancer cells. Sci Rep. 2015;5:14301. doi: 10.1038/srep14301. PubMed DOI PMC