Targeting the Aryl Hydrocarbon Receptor with Microbial Metabolite Mimics Alleviates Experimental Colitis in Mice
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Cytochrome P-450 CYP1A1 MeSH
- Indoles pharmacology therapeutic use MeSH
- Colitis * chemically induced drug therapy MeSH
- Mice MeSH
- Receptors, Aryl Hydrocarbon * agonists genetics metabolism MeSH
- Thiazoles pharmacology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Cytochrome P-450 CYP1A1 MeSH
- Indoles MeSH
- Receptors, Aryl Hydrocarbon * MeSH
- Thiazoles MeSH
Targeting the aryl hydrocarbon receptor (AhR) is an emerging therapeutic strategy for multiple diseases (e.g., inflammatory bowel disease). Thermosporothrix hazakensis microbial metabolite 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is a putative AhR endogenous ligand. To improve the chemical stability, we synthesized a series of ITE chemical mimics. Using a series of in vitro assays, we identified 2-(1H-indole-3-carbonyl)-N-methyl thiazole-4-carboxamide (ITE-CONHCH3) as a highly potent (EC50 = 1.6 nM) AhR agonist with high affinity (Ki = 88 nM). ITE-CONHCH3 triggered AhR nuclear translocation and dimerization of AhR-ARNT, enhanced AhR binding in the CYP1A1 promoter, and induced AhR-regulated genes in an AhR-dependent manner. The metabolic stability of ITE-CONHCH3 in a cell culture was 10 times higher than that of ITE. Finally, we observed protective effects of ITE-CONHCH3 in mice with DSS-induced colitis. Overall, we demonstrate and validate a concept of microbial metabolite mimicry in the therapeutic targeting of AhR.
References provided by Crossref.org