Advancements in solar technologies for sustainable development of agricultural sector in India: a comprehensive review on challenges and opportunities
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35419684
DOI
10.1007/s11356-022-20133-0
PII: 10.1007/s11356-022-20133-0
Knihovny.cz E-zdroje
- Klíčová slova
- Agriculture, Future potential, Government initiatives, Indian context, Policies, Solar energy,
- MeSH
- lidé MeSH
- sluneční záření MeSH
- technologie MeSH
- trvale udržitelný rozvoj * MeSH
- voda MeSH
- zemědělství * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- voda MeSH
Agriculture is the main occupation of the majority of people in India. The majority of the population in India is dependent (directly or indirectly) on agriculture as an occupation. The agriculture sector requires more freshwater and power for better yield in the current scenario. Nevertheless, the ever-increasing rate of energy consumption, limited fossil fuels, and rising pollution have made the expansion of renewable resources essential. Due to the suitable solar potential available in India, the deployment of solar energy has been more as compared to other renewable resources. The current study aims to discuss the various technologies, initiatives and policies of solar energy usage in agriculture. This work delivers an assessment of the advancement of solar energy vis-à-vis agricultural applications through the greenhouse concept and photovoltaic approach in India. Various agricultural applications of solar energy, such as solar water desalination system, solar water pumping system, solar crop dryer system for food safety, etc. are discussed as a means to promote solar-based technology. It also highlights the scenario of solar energy in India with important accomplishments, developmental approaches, and future potential. In-depth studies of various policies and government initiatives including those in research and development are also discussed. The current survey on solar technologies will be an aid to agribusiness frameworks to comprehend the statuses, obstructions, and extent of advancement. Finally, some future recommendations for further developments in this approach are discussed. This work sheds light on varied areas of solar energy-assisted agricultural systems as a potentially sustainable and eco-friendly pathway.
Department of Green Chemistry and Technology Ghent University 9000 Ghent Belgium
Department of Mechanical Engineering VNR VJIET Nizampet Hyderabad Telangana 500090 India
School of Mechanical Engineering Lovely Professional University Phagwara Punjab 144001 India
Uttaranchal Institute of Technology Uttaranchal University Dehradun Uttarakhand 248007 India
Zobrazit více v PubMed
Abdolzadeh M, Ameri M (2009) Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells. Renew Energy 34:91–96. https://doi.org/10.1016/j.renene.2008.03.024 DOI
Agrawal S, Jain A (2019) Sustainable deployment of solar irrigation pumps: key determinants and strategies. Wiley Interdiscip Rev: Energy Environ 8:1–14. https://doi.org/10.1002/wene.325 DOI
Ahmed S, Mahmood A, Hasan A et al (2016) A comparative review of China, India and Pakistan renewable energy sectors and sharing opportunities. Renew Sust Energ Rev 57:216–225. https://doi.org/10.1016/j.rser.2015.12.191 DOI
Akkala SR, Kaviti AK, ArunKumar T, Sikarwar VS (2021) Progress on suspended nanostructured engineering materials powered solar distillation-a review. Renew Sust Energ Rev 143:110848
Al-Karaghouli A, Kazmerski LL (2014) Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew Sust Energ Rev 41:1277–1287
Al-Karaghouli A, Renne D, Kazmerski LL (2009) Solar and wind opportunities for water desalination in the Arab regions. Renew Sust Energ Rev 13:2397–2407. https://doi.org/10.1016/j.rser.2008.05.007 DOI
Angmo P, Dolma T, Namgail D et al (2019) Passive solar greenhouse for round the year vegetable cultivation in trans-Himalayan Ladakh region, India. Def Life Sci J 4:103–116 DOI
Arjunan TV, Aybar HŞ, Nedunchezhian N (2009) Status of solar desalination in India. Renew Sust Energ Rev 13:2408–2418. https://doi.org/10.1016/j.rser.2009.03.006 DOI
Bakirci K, Yuksel B (2011) Experimental thermal performance of a solar source heat-pump system for residential heating in cold climate region. Appl Therm Eng 31:1508–1518. https://doi.org/10.1016/j.applthermaleng.2011.01.039 DOI
Bal LM, Satya S, Naik SN (2010) Solar dryer with thermal energy storage systems for drying agricultural food products: a review. Renew Sust Energ Rev 14:2298–2314. https://doi.org/10.1016/j.rser.2010.04.014 DOI
Bayrakci AG, Koçar G (2012) Utilization of renewable energies in Turkey’s agriculture. Renew Sust Energ Rev 16:618–633. https://doi.org/10.1016/j.rser.2011.08.027 DOI
Belessiotis V, Delyannis E (2011) Solar drying. Sol Energy 85:1665–1691. https://doi.org/10.1016/j.solener.2009.10.001 DOI
Benghanem M, Daffallah KO, Joraid AA et al (2013) Performances of solar water pumping system using helical pump for a deep well: a case study for Madinah, Saudi Arabia. Energy Convers Manag 65:50–56. https://doi.org/10.1016/j.enconman.2012.08.013 DOI
Bhanu AS, Elavarasan E, Natarajan SK et al (2021) Experimental investigation of drying kinetics of poovan banana under forced convection solar drying. Lecture Notes Mech Eng 52:621–631. https://doi.org/10.1007/978-981-33-4795-3_56 DOI
Blanco J, Malato S, Fernández-Ibañez P et al (2009) Review of feasible solar energy applications to water processes. Renew Sust Energ Rev 13:1437–1445. https://doi.org/10.1016/j.rser.2008.08.016 DOI
Bouchekima B (2003) A small solar desalination plant for the production of drinking water in remote arid areas of southern Algeria. Desalination 159:197–204. https://doi.org/10.1016/S0011-9164(03)90071-3 DOI
Byrne P, Fournaison L, Delahaye A et al (2015) A review on the coupling of cooling, desalination and solar photovoltaic systems. Renew Sust Energ Rev 47:703–717. https://doi.org/10.1016/j.rser.2015.03.083 DOI
Chandel SS, Nagaraju Naik M, Chandel R (2015) Review of solar photovoltaic water pumping system technology for irrigation and community drinking water supplies. Renew Sust Energ Rev 49:1084–1099. https://doi.org/10.1016/j.rser.2015.04.083 DOI
Daghigh R, Ruslan MH, Sulaiman MY, Sopian K (2010) Review of solar assisted heat pump drying systems for agricultural and marine products. Renew Sust Energ Rev 14:2564–2579. https://doi.org/10.1016/j.rser.2010.04.004 DOI
De Munari A, Capão DPS, Richards BS, Schäfer AI (2009) Application of solar-powered desalination in a remote town in South Australia. Desalination 248:72–82. https://doi.org/10.1016/j.desal.2008.05.040 DOI
Elangovan E, Natarajan SK (2021a) Effects of pretreatments on quality attributes, moisture diffusivity, and activation energy of solar dried ivy gourd. J Food Process Eng 44:e13653. https://doi.org/10.1111/JFPE.13653 DOI
Elangovan E, Natarajan SK (2021b) Experimental research of drying characteristic of red banana in a single slope direct solar dryer based on natural and forced convection. Food Technol Biotechnol 59:137–146. https://doi.org/10.17113/FTB.59.02.21.6876 DOI
Elangovan E, Natarajan SK (2021c) Effect of pretreatments on drying of red dacca in a single slope solar dryer. J Food Process Eng 44:e13823. https://doi.org/10.1111/JFPE.13823 DOI
Elangovan E, Natarajan SK (2021d) Experimental study on drying kinetics of ivy gourd using solar dryer. J Food Process Eng 44:e13714. https://doi.org/10.1111/JFPE.13714 DOI
Elavarasan E, Kumar Y, Mouresh R, Natarajan SK (2021) Study of drying kinetics of tomato in a solar dryer. Lecture Notes Mech Eng 52:349–358. https://doi.org/10.1007/978-981-33-4795-3_33 DOI
El-Sebaii AA, Shalaby SM (2012) Solar drying of agricultural products: a review. Renew Sust Energ Rev 16:37–43. https://doi.org/10.1016/j.rser.2011.07.134 DOI
Esen M, Yuksel T (2013) Experimental evaluation of using various renewable energy sources for heating a greenhouse. Energy Build 65:340–351. https://doi.org/10.1016/j.enbuild.2013.06.018 DOI
Fabrizio E (2012) Energy reduction measures in agricultural greenhouses heating: envelope, systems and solar energy collection. Energy Build 53:57–63. https://doi.org/10.1016/j.enbuild.2012.07.003 DOI
Fadhel MI, Sopian K, Daud WRW, Alghoul MA (2011) Review on advanced of solar assisted chemical heat pump dryer for agriculture produce. Renew Sust Energ Rev 15:1152–1168. https://doi.org/10.1016/j.rser.2010.10.007 DOI
Fu HD, Pei G, Ji J et al (2012) Experimental study of a photovoltaic solar-assisted heat-pump/heat-pipe system. Appl Therm Eng 40:343–350. https://doi.org/10.1016/j.applthermaleng.2012.02.036 DOI
Fudholi A, Sopian K, Ruslan MH et al (2010) Review of solar dryers for agricultural and marine products. Renew Sust Energ Rev 14:1–30. https://doi.org/10.1016/j.rser.2009.07.032 DOI
García-Rodríguez L (2003) Renewable energy applications in desalination: state of the art. Sol Energy 75:381–393. https://doi.org/10.1016/j.solener.2003.08.005 DOI
Garg P (2012) Energy scenario and vision 2020 in India. J SustainEnergy Environ 3:7–17
Ghermandi A, Messalem R (2009) Desalination and water treatment solar-driven desalination with reverse osmosis: the state of the art. Desalin Water Treat 7:285–296 DOI
Ghoneim AA (2006) Design optimization of photovoltaic powered water pumping systems. Energy Convers Manag 47:1449–1463. https://doi.org/10.1016/j.enconman.2005.08.015 DOI
Gopal C, Mohanraj M, Chandramohan P, Chandrasekar P (2013) Renewable energy source water pumping systems - a literature review. Renew Sust Energ Rev 25:351–370. https://doi.org/10.1016/j.rser.2013.04.012 DOI
Gorbe E, Calatayud A (2012) Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. Sci Hortic 138:24–35. https://doi.org/10.1016/j.scienta.2012.02.002 DOI
Government of India Ministry of New and Renewable Energy (n.d.) https://www.mnre.gov.in/ . Accessed 25 Aug 2021
Government of India Power Sector at a Glance ALL INDIA | Ministry of Power (n.d.). https://powermin.gov.in/en/content/power-sector-glance-all-india . Accessed 27 Sep 2021
Han J, Mol APJ, Lu Y (2010) Solar water heaters in China: a new day dawning. Energy Policy 38:383–391. https://doi.org/10.1016/j.enpol.2009.09.029 DOI
Hassanien RHE, Li M, Dong Lin W (2016) Advanced applications of solar energy in agricultural greenhouses. Renew Sust Energ Rev 54:989–1001. https://doi.org/10.1016/j.rser.2015.10.095 DOI
Hawlader MNA, Chou SK, Jahangeer KA et al (2003) Solar-assisted heat-pump dryer and water heater. Appl Energy 74:185–193. https://doi.org/10.1016/S0306-2619(02)00145-9 DOI
Ji J, Pei G, Chow T-T et al (2008) Experimental study of photovoltaic solar assisted heat pump system. Sol Energy 82:43–52. https://doi.org/10.1016/j.solener.2007.04.006 DOI
Joyce A, Loureiro D, Rodrigues C, Castro S (2001) Small reverse osmosis units using PV systems for water purification in rural places. Desalination 137:39–44. https://doi.org/10.1016/S0011-9164(01)00202-8 DOI
Kar SK, Sharma A, Roy B (2016) Solar energy market developments in India. Renew Sust Energ Rev 62:121–133. https://doi.org/10.1016/j.rser.2016.04.043 DOI
Kaviti AK, Akkala SR, Sikarwar VS (2021) Productivity enhancement of stepped solar still by loading with magnets and suspended micro charcoal powder. Energy Sources A: Recovery Util Environ Eff, pp 1–19
Khare V, Nema S, Baredar P (2013) Status of solar wind renewable energy in India. Renew Sust Energ Rev 27:1–10. https://doi.org/10.1016/J.RSER.2013.06.018 DOI
Kondareddy R, Sivakumaran N, Radhakrishnan K, Nayak PK (2020) Performance analysis of solar tunnel dryer with thermal storage and photovoltaic system for drying star fruit. IOP Conf Series: Earth Environ Sci 463:012138. https://doi.org/10.1088/1755-1315/463/1/012138 DOI
Kopalakrishnaswami AS, Natarajan SK (2022) Comparative study of modified conical cavity receiver with other receivers for solar paraboloidal dish collector system. Environ Sci Pollut Res 29(5):7548–7558 DOI
Kumar NS, Reddy KS (2010) Investigation of convection and radiation heat losses from modified cavity receiver of solar parabolic dish using asymptotic computational fluid dynamics. Heat Transfer Eng 31:597–607. https://doi.org/10.1080/01457630903425890 DOI
Kumar Sahu S, Vadivukkarasan M, Suman D et al (2019) Experimental investigations of stagnation temperature and overall heat transfer coefficient of flat receiver for solar parabolic dish concentrator system. J Phys Conf Ser 1276:012053. https://doi.org/10.1088/1742-6596/1276/1/012053 DOI
Kumar M, Reddy KS, Adake RV, Rao CVKN (2015) Solar powered micro-irrigation system for small holders of dryland agriculture in India. Agric Water Manag 158:112–119. https://doi.org/10.1016/j.agwat.2015.05.006 DOI
Kumar M, Sansaniwal SK, Khatak P (2016) Progress in solar dryers for drying various commodities. Renew Sust Energ Rev 55:346–360. https://doi.org/10.1016/j.rser.2015.10.158 DOI
Kumar S, Sethuraman C, Srinivas K (2017) Solar powered automatic drip irrigation system (SPADIS) using wireless sensor network technology. Int Res J Eng Technol (IRJET) 4:722–731
Kumar M, Kumar N, Srinivas K (2019) Greenhouse farming in high altitude areas of north-west Himalayan region of India: a success story. Int J Agric Sci 11:7944–7949
Kumaresan G, Sridhar R, Velraj R (2012) Performance studies of a solar parabolic trough collector with a thermal energy storage system. Energy 47:395–402. https://doi.org/10.1016/j.energy.2012.09.036 DOI
Laborde HM, França KB, Neff H, Lima AMN (2001) Optimization strategy for a small-scale reverse osmosis water desalination system based on solar energy. Desalination 133:1–12. https://doi.org/10.1016/S0011-9164(01)00078-9 DOI
Lamrani B, Kuznik F, Draoui A (2020) Thermal performance of a coupled solar parabolic trough collector latent heat storage unit for solar water heating in large buildings. Renew Energy 162:411–426. https://doi.org/10.1016/j.renene.2020.08.038 DOI
Langridge D, Lawrance W, Wichert B (1996) Development of a photovoltaic pumping system using a brushless DC motor and helical rotor pump. Sol Energy 56:151–160 DOI
Li C, Goswami Y, Stefanakos E (2013) Solar assisted sea water desalination: a review. Renew Sust Energ Rev 19:136–163. https://doi.org/10.1016/j.rser.2012.04.059 DOI
Mahjoubi A, Mechlouch RF, Ben BA (2011) A low cost wireless data acquisition system for a remote photovoltaic (PV) water pumping system. Energies 4:68–89. https://doi.org/10.3390/en4010068 DOI
Marmouch H, Orfi J, Ben NS (2009) Effect of a cooling tower on a solar desalination system. Desalination 238:281–289. https://doi.org/10.1016/j.desal.2008.02.019 DOI
Meah K, Fletcher S, Ula S (2008) Solar photovoltaic water pumping for remote locations. Renew Sust Energ Rev 12:472–487. https://doi.org/10.1016/j.rser.2006.10.008 DOI
Ministry of New and Renewable Energy (n.d.) Revision of cumulative targets under National Solar Mission from 20,000 MW by 2021-22 to 1,00,000 MW. https://pib.gov.in/newsite/printrelease.aspx?relid=122566
Mishra D, Ghosh S (2018) View of Thermal modelling and performance assessment of a circular greenhouse with solar chimney assisted ventilation and fog Cooling. CIGR 20:108–118
Mohiuddin SA, Kaviti AK, Rao TS, Sikarwar VS (2022) Historic review and recent progress in internal design modification in solar stills. Environ Sci Pollut Res, pp 1–54
Mortezapour H, Ghobadian B, Minaei S, Khoshtaghaza MH (2012) Saffron drying with a heat pump-assisted hybrid photovoltaic-thermal solar dryer. Dry Technol 30:560–566. https://doi.org/10.1080/07373937.2011.645261 DOI
Nafey AS, Fath HES, El-Helaby SO, Soliman A (2004a) Solar desalination using humidification-dehumidification processes. Part II. An experimental investigation. Energy Convers Manag 45:1263–1277. https://doi.org/10.1016/S0196-8904(03)00152-3 DOI
Nafey AS, Fath HES, El-Helaby SO, Soliman AM (2004b) Solar desalination using humidification dehumidification processes. Part I. A numerical investigation. Energy Convers Manag 45:1243–1261. https://doi.org/10.1016/S0196-8904(03)00151-1 DOI
Natarajan SK, Elavarasan E (2019) Experimental investigation of drying potato for Karaikal climatic condition. IOP Conf Series: Earth Environ Sci 312:012021. https://doi.org/10.1088/1755-1315/312/1/012021 DOI
Natarajan SK, Reddy KS, Mallick TK (2012) Heat loss characteristics of trapezoidal cavity receiver for solar linear concentrating system. Appl Energy 93:523–531. https://doi.org/10.1016/j.apenergy.2011.12.011 DOI
Natarajan SK, Kumar A, Mohamed R et al (2019a) Design and development of dual axis sun tracking system for floating PV plant. IOP Conf Series: Earth Environ Sci 312:012001. https://doi.org/10.1088/1755-1315/312/1/012001 DOI
Natarajan SK, Raviteja B, Sri Harshavardhan D et al (2019b) Numerical study of natural convection in flat receiver with and without secondary reflector for solar parabolic dish system. IOP Conf Series: Earth Environ Sci 312:012020. https://doi.org/10.1088/1755-1315/312/1/012020 DOI
Natarajan SK, Sankaranarayanasamy K, Ponnusamy S et al (2019c) Experimental comparative study on reduction in the moisture content of cucumber in a double slope solar dryer with open sun drying method. J Phys Conf Ser 1276:012054. https://doi.org/10.1088/1742-6596/1276/1/012054 DOI
Natarajan SK, Thampi V, Shaw R et al (2019d) Experimental analysis of a two-axis tracking system for solar parabolic dish collector. Int J Energy Res 43:1012–1018. https://doi.org/10.1002/er.4300 DOI
Natarajan SK, Suraparaju SK, Elavarasan RM et al (2021) An experimental study on eco-friendly and cost-effective natural materials for productivity enhancement of single slope solar still. Environ Sci Pollut Res 29:1917–1936. https://doi.org/10.1007/s11356-021-15764-8 DOI
Natarajan SK, Suraparaju SK, Elavarasan RM (2022) A review on low-temperature thermal desalination approach. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-19147-5
National Institute of Solar Energy International Solar Alliance (n.d.). https://isolaralliance.org/ . Accessed 25 Aug 2021
Nautiyal H, Varun (2012) Progress in renewable energy under clean development mechanism in India. Renew Sust Energ Rev 16:2913–2919. https://doi.org/10.1016/j.rser.2012.02.008 DOI
Ozgener O (2010) Use of solar assisted geothermal heat pump and small wind turbine systems for heating agricultural and residential buildings. Energy 35:262–268. https://doi.org/10.1016/j.energy.2009.09.018 DOI
Ozgener O, Hepbasli A (2005) Performance analysis of a solar-assisted ground-source heat pump system for greenhouse heating: An experimental study. Build Environ 40:1040–1050. https://doi.org/10.1016/j.buildenv.2004.08.030 DOI
Ozgener O, Hepbasli A (2007a) A review on the energy and exergy analysis of solar assisted heat pump systems. Renew Sust Energ Rev 11:482–496. https://doi.org/10.1016/j.rser.2004.12.010 DOI
Ozgener O, Hepbasli A (2007b) A parametrical study on the energetic and exergetic assessment of a solar-assisted vertical ground-source heat pump system used for heating a greenhouse. Build Environ 42:11–24. https://doi.org/10.1016/j.buildenv.2005.07.003 DOI
Pardhi CB, Bhagoria JL (2013) Development and performance evaluation of mixed-mode solar dryer with forced convection. Int J Energy Environ Eng 4:1–8. https://doi.org/10.1186/2251-6832-4-23 DOI
Parida B, Iniyan S, Goic R (2011) A review of solar photovoltaic technologies. Renew Sust Energ Rev 15:1625–1636. https://doi.org/10.1016/j.rser.2010.11.032 DOI
Patel SK, Kumar B, Pal P et al (2020) Production of potable water from Gomti River by using modified double slope solar still with external mounted reflectors. Sol Energy 209:576–589. https://doi.org/10.1016/j.solener.2020.09.036 DOI
Pillai IR, Banerjee R (2009) Renewable energy in India: status and potential. Energy 34:970–980. https://doi.org/10.1016/j.energy.2008.10.016 DOI
Poonia S, Singh AK, Jain D (2018) Design development and performance evaluation of photovoltaic/thermal (PV/T) hybrid solar dryer for drying of ber (Zizyphus mauritiana) fruit. Cogent Eng 5:1–18. https://doi.org/10.1080/23311916.2018.1507084 DOI
Prakash O, Kumar A (2014) Solar greenhouse drying: a review. Renew Sust Energ Rev 29:905–910. https://doi.org/10.1016/j.rser.2013.08.084 DOI
Prakash O, Laguri V, Pandey A et al (2016) Review on various modelling techniques for the solar dryers. Renew Sust Energ Rev 62:396–417. https://doi.org/10.1016/j.rser.2016.04.028 DOI
Prasanna NS, Manjula B (2018) Review on drying of agricultural produce using solar assisted heat pump drying. International Journal of. Agric Eng 11:409–420. https://doi.org/10.15740/has/ijae/11.2/409-420 DOI
Priyanka U, Rathinakumari AC, Kumaran GS (2017) Dehydration of onion slices in a solar tunnel dryer. Green Farm 8:736–742
Purohit P, Michaelowa A (2008) CDM potential of SPV pumps in India. Renew Sust Energ Rev 12:181–199. https://doi.org/10.1016/j.rser.2006.05.011 DOI
Qiblawey HM, Banat F (2008) Solar thermal desalination technologies. Desalination 220:633–644. https://doi.org/10.1016/j.desal.2007.01.059 DOI
Ramos JS, Ramos HM (2009a) Sustainable application of renewable sources in water pumping systems: optimized energy system configuration. Energy Policy 37:633–643. https://doi.org/10.1016/j.enpol.2008.10.006 DOI
Ramos JS, Ramos HM (2009b) Solar powered pumps to supply water for rural or isolated zones: a case study. Energy Sustain Dev 13:151–158. https://doi.org/10.1016/j.esd.2009.06.006 DOI
Rampinelli GA, Krenzinger A, Chenlo Romero F (2014) Mathematical models for efficiency of inverters used in grid connected photovoltaic systems. Renew Sust Energ Rev 34:578–587. https://doi.org/10.1016/j.rser.2014.03.047 DOI
Ranjan KR, Kaushik SC, Panwar NL (2016) Energy and exergy analysis of passive solar distillation systems. Int J Low-Carbon Technol 11:211–221. https://doi.org/10.1093/ijlct/ctt069 DOI
Rathore NS, Panwar NL (2011) Design and development of energy efficient solar tunnel dryer for industrial drying. Clean Techn Environ Policy 13:125–132. https://doi.org/10.1007/s10098-010-0279-3 DOI
Ravi Kumar K, Krishna Chaitanya NVV, Sendhil Kumar N (2021) Solar thermal energy technologies and its applications for process heating and power generation – a review. J Clean Prod 282:125296. https://doi.org/10.1016/j.jclepro.2020.125296 DOI
Ray AK, Rakshit D, Ravikumar K (2021) High-temperature latent thermal storage system for solar power: materials, concepts, and challenges. Clean Eng Technol 4:100155. https://doi.org/10.1016/j.clet.2021.100155 DOI
Reddy KS, Ananthsornaraj C (2020) Design, development and performance investigation of solar parabolic trough collector for large-scale solar power plants. Renew Energy 146:1943–1957. https://doi.org/10.1016/j.renene.2019.07.158 DOI
Roonprasang N, Namprakai P, Pratinthong N (2008) Experimental studies of a new solar water heater system using a solar water pump. Energy 33:639–646. https://doi.org/10.1016/j.energy.2007.12.002 DOI
Rymbai H, Roy AR, Deshmukh NA et al (2014) An overview of potential applications of GIS in horticultural crops: special reference to fruit yielding trees. J Tree Sci 33:17–23
Sahoo SK (2016) Renewable and sustainable energy reviews solar photovoltaic energy progress in India: a review. Renew Sust Energ Rev 59:927–939. https://doi.org/10.1016/j.rser.2016.01.049 DOI
Sahu SK, Arjun Singh K, Natarajan SK (2021a) Electricity generation using solar parabolic dish system with thermoelectric generator—an experimental investigation. Heat Transfer 50:7784–7797. https://doi.org/10.1002/htj.22253 DOI
Sahu SK, Arjun Singh K, Natarajan SK (2021b) Design and development of a low-cost solar parabolic dish concentrator system with manual dual-axis tracking. Int J Energy Res 45:6446–6456. https://doi.org/10.1002/er.6164 DOI
Sahu SK, Arjun Singh K, Natarajan SK (2021c) Impact of double trumpet-shaped secondary reflector on flat receiver of a solar parabolic dish collector system. Energy Sources, Part A: Recover Util Environ Effects 00:1–19. https://doi.org/10.1080/15567036.2021.1918803 DOI
Sampathkumar A, Natarajan SK (2021a) Experimental investigation on productivity enhancement in single slope solar still using Borassus flabellifer micro-sized particles. Mater Lett 299:130097. https://doi.org/10.1016/j.matlet.2021.130097 DOI
Sampathkumar A, Natarajan SK (2021b) Experimental investigation of single slope solar still with Eucheuma (agar-agar) fibre for augmentation of freshwater yield: thermo-economic analysis. Environ Prog Sustain Energy 2021:13750. https://doi.org/10.1002/EP.13750 DOI
Sampathkumar A, Natarajan SK (2022) Experimental analysis on single slope solar still by the inclusion of agar-agar (Eucheuma) fibre and micro phase change material for the productivity enhancement. J Energy Storage 50:104284. https://doi.org/10.1016/j.est.2022.104284 DOI
Sendhil Kumar N, Reddy KS (2008) Comparison of receivers for solar dish collector system. Energy Convers Manag 49:812–819. https://doi.org/10.1016/j.enconman.2007.07.026 DOI
Sethi VP, Sharma SK (2008) Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications. Sol Energy 82:832–859. https://doi.org/10.1016/j.solener.2008.02.010 DOI
Sevik S, Aktas M, Dogan H, Kocak S (2010) Mushroom drying with solar assisted heat pump system. Energy Convers Manag 51:1741–1743. https://doi.org/10.1016/j.enconman.2010.02.003 DOI
Sharma A (2011) A comprehensive study of solar power in India and World. Renew Sust Energ Rev 15:1767–1776. https://doi.org/10.1016/j.rser.2010.12.017 DOI
Sharma NK, Tiwari PK, Sood YR (2012) Solar energy in India: strategies, policies, perspectives and future potential. Renew Sust Energ Rev 16:933–941. https://doi.org/10.1016/j.rser.2011.09.014 DOI
Sharma A, Srivastava K, Kar SK (2015) Jawaharlal Nehru National Solar Mission in India. Green Energy Technol 201:47–67. https://doi.org/10.1007/978-81-322-2337-5_3 DOI
Singh DB, Tiwari GN, Al-Helal IM et al (2016) Effect of energy matrices on life cycle cost analysis of passive solar stills. Sol Energy 134:9–22. https://doi.org/10.1016/j.solener.2016.04.039 DOI
Sripadmanabhan Indira S, Vaithilingam CA, Chong KK et al (2020) A review on various configurations of hybrid concentrator photovoltaic and thermoelectric generator system. Sol Energy 201:122–148. https://doi.org/10.1016/j.solener.2020.02.090 DOI
Suraparaju SK, Natarajan SK (2020) Performance analysis of single slope solar desalination setup with natural fiber. Desalin Water Treat 193:64–71. https://doi.org/10.5004/dwt.2020.25679 DOI
Suraparaju SK, Natarajan SK (2021a) Productivity enhancement of single-slope solar still with novel bottom finned absorber basin inserted in phase change material (PCM): techno-economic and enviro-economic analysis. Environ Sci Pollut Res 28:45985–46006. https://doi.org/10.1007/s11356-021-13495-4 DOI
Suraparaju SK, Natarajan SK (2021b) Experimental investigation of single-basin solar still using solid staggered fins inserted in paraffin wax PCM bed for enhancing productivity. Environ Sci Pollut Res 28:20330–20343. https://doi.org/10.1007/s11356-020-11980-w DOI
Suraparaju SK, Natarajan SK (2021c) Augmentation of freshwater productivity in single slope solar still using Luffa acutangula fibres. Water Sci Technol 84:2943–2957. https://doi.org/10.2166/wst.2021.298 DOI
Suraparaju SK, Kartheek G, Sunil Reddy GV, Natarajan SK (2019) A short review on recent trends and applications of thermoelectric generators. IOP Conf Series: Earth Environ Sci 312:012013. https://doi.org/10.1088/1755-1315/312/1/012013 DOI
Suraparaju SK, Dhanusuraman R, Natarajan SK (2021a) Performance evaluation of single slope solar still with novel pond fibres. Process Saf Environ Prot 154:142–154. https://doi.org/10.1016/j.psep.2021.08.011 DOI
Suraparaju SK, Ramasamy D, Natarajan SK (2021b) Augmentation of freshwater productivity in a single-slope solar still using ball marbles. Environ Sci Pollut Res 28:65974–65986. https://doi.org/10.1007/s11356-021-15117-5 DOI
Suraparaju SK, Sampathkumar A, Natarajan SK (2021c) Experimental and economic analysis of energy storage - based single - slope solar still with hollow - finned absorber basin. Heat Transfer 50:5516–5537. https://doi.org/10.1002/htj.22136 DOI
Suraparaju SK, Jha N, Manoj S, Natarajan SK (2022a) Mathematical modelling and performance analysis of single slope solar desalination system. In: Govindan K, Kumar H, Yadav S (eds) Advances in Mechanical and Materials Technology. Springer Singapore, Singapore, pp 17–33 DOI
Suraparaju SK, Sampathkumar A, Natarajan SK (2022b) A mini state of art survey on photovoltaic/thermal desalination systems. In: Govindan K, Kumar H, Yadav S (eds) Advances in Mechanical and Materials Technology. Springer Singapore, Singapore, pp 1–15
Sutthivirode K, Namprakai P, Roonprasang N (2009) A new version of a solar water heating system coupled with a solar water pump. Appl Energy 86:1423–1430. https://doi.org/10.1016/j.apenergy.2008.12.002 DOI
Thavasi V, Ramakrishna S (2009) Asia energy mixes from socio-economic and environmental perspectives. Energy Policy 37:4240–4250. https://doi.org/10.1016/j.enpol.2009.05.061 DOI
Thirunavukkarasu V, Cheralathan M (2020) An experimental study on energy and exergy performance of a spiral tube receiver for solar parabolic dish concentrator. Energy 192:116635. https://doi.org/10.1016/j.energy.2019.116635 DOI
Thirunavukkarasu V, Nair VU, Tiwari K, Cheralathan M (2020) Experimental investigation on thermal performance of cavity receiver integrated with short-term thermal energy storage for a solar parabolic dish concentrator. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-10387-6
Tripathy A (2013) Renewable energy at a glance. Akshay Urja 1:48
Tripathy PP, Kumar S (2009) Neural network approach for food temperature prediction during solar drying. Int J Therm Sci 48:1452–1459. https://doi.org/10.1016/j.ijthermalsci.2008.11.014 DOI
Vadiee A, Martin V (2012) Energy management in horticultural applications through the closed greenhouse concept, state of the art. Renew Sust Energ Rev 16:5087–5100. https://doi.org/10.1016/j.rser.2012.04.022 DOI
Vazini Modabber H, Khoshgoftar Manesh MH (2021) 4E dynamic analysis of a water-power cogeneration plant integrated with solar parabolic trough collector and absorption chiller. Thermal Sci Eng Progress 21:100785. https://doi.org/10.1016/j.tsep.2020.100785 DOI
Vick BD, Neal BA (2012) Analysis of off-grid hybrid wind turbine/solar PV water pumping systems. Sol Energy 86:1197–1207. https://doi.org/10.1016/j.solener.2012.01.012 DOI
Werner M, Schäfer AI (2007) Social aspects of a solar-powered desalination unit for remote Australian communities. Desalination 203:375–393. https://doi.org/10.1016/j.desal.2006.05.008 DOI
Yildiz A, Ozgener O, Ozgener L (2011) Exergetic performance assessment of solar photovoltaic cell (PV) assisted earth to air heat exchanger (EAHE) system for solar greenhouse cooling. Energy Build 43:3154–3160. https://doi.org/10.1016/j.enbuild.2011.08.013 DOI
Yildiz A, Ozgener O, Ozgener L (2012) Energetic performance analysis of a solar photovoltaic cell (PV) assisted closed loop earth-to-air heat exchanger for solar greenhouse cooling: an experimental study for low energy architecture in Aegean Region. Renew Energy 44:281–287. https://doi.org/10.1016/j.renene.2012.01.091 DOI