Rapid Actuation of Thermo-Responsive Polymer Networks: Investigation of the Transition Kinetics
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35420812
PubMed Central
PMC9059119
DOI
10.1021/acs.jpcb.2c01160
Knihovny.cz E-zdroje
- MeSH
- hydrogely chemie MeSH
- kinetika MeSH
- kovové nanočástice * MeSH
- polymery * chemie MeSH
- teplota MeSH
- zlato MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hydrogely MeSH
- polymery * MeSH
- zlato MeSH
The swelling and collapsing of thermo-responsive poly(N-isopropylacrylamide)-based polymer (pNIPAAm) networks are investigated in order to reveal the dependency on their kinetics and maximum possible actuation speed. The pNIPAAm-based network was attached as thin hydrogel film to lithographically prepared gold nanoparticle arrays to exploit their localized surface plasmon resonance (LSPR) for rapid local heating. The same substrate also served for LSPR-based monitoring of the reversible collapsing and swelling of the pNIPAAm network through its pronounced refractive index changes. The obtained data reveal signatures of multiple phases during the volume transition, which are driven by the diffusion of water molecules into and out of the network structure and by polymer chain re-arrangement. For the micrometer-thick hydrogel film in the swollen state, the layer can respond as fast as several milliseconds depending on the strength of the heating optical pulse and on the tuning of the ambient temperature with respect to the lower critical solution temperature of the polymer. Distinct differences in the time constants of swelling and collapse are observed and attributed to the dependence of the cooperative diffusion coefficient of polymer chains on polymer volume fraction. The reported results may provide guidelines for novel miniature actuator designs and micromachines that take advantages of the non-reciprocal temperature-induced volume transitions in thermo-responsive hydrogel materials.
CEST Competence Center for Electrochemical Surface Technologies Tulln an der Donau 3430 Austria
Czech Academy of Sciences FZU Institute of Physics Na Slovance 2 Prague 182 21 Czech Republic
Macromolecular Chemistry Department Chemistry Biology University of Siegen Siegen 57076 Germany
Zobrazit více v PubMed
Cao X.; Lai S.; James Lee L. Design of a Self-Regulated Drug Delivery Device. Biomed. Microdevices 2001, 3, 109–118. 10.1023/a:1011494008729. DOI
Zhu K.; Hou D.; Fei Y.; Peng B.; Wang Z.; Xu W.; Zhu B.; Li L.-L.; Wang H. Thermosensitive Hydrogel Interface Switching from Hydrophilic Lubrication to Infection Defense. ACS Appl. Bio Mater. 2019, 2, 3582–3590. 10.1021/acsabm.9b00457. PubMed DOI
Gisbert Quilis N.; van Dongen M.; Venugopalan P.; Kotlarek D.; Petri C.; Moreno Cencerrado A.; Stanescu S.; Toca Herrera J. L.; Jonas U.; Möller M.; et al. Actively Tunable Collective Localized Surface Plasmons by Responsive Hydrogel Membrane. Adv. Opt. Mater. 2019, 7, 1900342.10.1002/adom.201900342. DOI
Toma M.; Jonas U.; Mateescu A.; Knoll W.; Dostalek J. Active Control of SPR by Thermoresponsive Hydrogels for Biosensor Applications. J. Phys. Chem. C 2013, 117, 11705–11712. 10.1021/jp400255u. PubMed DOI PMC
Özkale B.; Parreira R.; Bekdemir A.; Pancaldi L.; Özelçi E.; Amadio C.; Kaynak M.; Stellacci F.; Mooney D. J.; Sakar M. S. Modular Soft Robotic Microdevices for Dexterous Biomanipulation. Lab Chip 2019, 19, 778–788. 10.1039/c8lc01200h. PubMed DOI PMC
Rehor I.; Maslen C.; Moerman P. G.; van Ravensteijn B. G. P.; van Alst R.; Groenewold J.; Eral H. B.; Kegel W. K. Photoresponsive Hydrogel Microcrawlers Exploit Friction Hysteresis to Crawl by Reciprocal Actuation. Soft Robot. 2021, 8, 10–18. 10.1089/soro.2019.0169. PubMed DOI
Roy D.; Brooks W. L. A.; Sumerlin B. S. New Directions in Thermoresponsive Polymers. Chem. Soc. Rev. 2013, 42, 7214–7243. 10.1039/c3cs35499g. PubMed DOI
Mateescu A.; Wang Y.; Dostalek J.; Jonas U. Thin Hydrogel Films for Optical Biosensor Applications. Membranes 2012, 2, 40–69. 10.3390/membranes2010040. PubMed DOI PMC
Wang Y.; Huang C.-J.; Jonas U.; Wei T.; Dostalek J.; Knoll W. Biosensor Based on Hydrogel Optical Waveguide Spectroscopy. Biosens. Bioelectron. 2010, 25, 1663–1668. 10.1016/j.bios.2009.12.003. PubMed DOI
Aulasevich A.; Roskamp R. F.; Jonas U.; Menges B.; Dostálek J.; Knoll W. Optical Waveguide Spectroscopy for the Investigation of Protein-Functionalized Hydrogel Films. Macromol. Rapid Commun. 2009, 30, 872–877. 10.1002/marc.200800747. PubMed DOI
Yin J.; Li C.; Wang D.; Liu S. FRET-Derived Ratiometric Fluorescent K+ Sensors Fabricated from Thermoresponsive Poly(N -Isopropylacrylamide) Microgels Labeled with Crown Ether Moieties. J. Phys. Chem. B 2010, 114, 12213–12220. 10.1021/jp1052369. PubMed DOI
Mourran A.; Jung O.; Vinokur R.; Möller M. Microgel That Swims to the Beat of Light. Eur. Phys. J. B 2021, 44, 79.10.1140/epje/s10189-021-00084-z. PubMed DOI PMC
Nishiguchi A.; Zhang H.; Schweizerhof S.; Schulte M. F.; Mourran A.; Möller M. 4D Printing of a Light-Driven Soft Actuator with Programmed Printing Density. ACS Appl. Mater. Interfaces 2020, 12, 12176–12185. 10.1021/acsami.0c02781. PubMed DOI PMC
Dong L.; Agarwal A. K.; Beebe D. J.; Jiang H. Adaptive Liquid Microlenses Activated by Stimuli-Responsive Hydrogels. Nature 2006, 442, 551–554. 10.1038/nature05024. PubMed DOI
Gao W.; Dong R.; Thamphiwatana S.; Li J.; Gao W.; Zhang L.; Wang J. Artificial Micromotors in the Mouse’s Stomach: A Step toward in Vivo Use of Synthetic Motors. ACS Nano 2015, 9, 117–123. 10.1021/nn507097k. PubMed DOI PMC
Sershen S. R.; Mensing G. A.; Ng M.; Halas N. J.; Beebe D. J.; West J. L. Independent Optical Control of Microfluidic Valves Formed from Optomechanically Responsive Nanocomposite Hydrogels. Adv. Mater. 2005, 17, 1366–1368. 10.1002/adma.200401239. PubMed DOI
Mourran A.; Zhang H.; Vinokur R.; Möller M. Soft Microrobots Employing Nonequilibrium Actuation via Plasmonic Heating. Adv. Mater. 2017, 29, 1604825.10.1002/adma.201604825. PubMed DOI
Ding T.; Valev V. K.; Salmon A. R.; Forman C. J.; Smoukov S. K.; Scherman O. A.; Frenkel D.; Baumberg J. J. Light-Induced Actuating Nanotransducers. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 5503–5507. 10.1073/pnas.1524209113. PubMed DOI PMC
Gallagher S.; Florea L.; Fraser K.; Diamond D. Swelling and Shrinking Properties of Thermo-Responsive Polymeric Ionic Liquid Hydrogels with Embedded Linear PNIPAAM. Int. J. Mol. Sci. 2014, 15, 5337–5349. Vol. 15, Pages 5337-534910.3390/ijms15045337. PubMed DOI PMC
Winkler P.; Belitsch M.; Tischler A.; Häfele V.; Ditlbacher H.; Krenn J. R.; Hohenau A.; Nguyen M.; Félidj N.; Mangeney C. Nanoplasmonic Heating and Sensing to Reveal the Dynamics of Thermoresponsive Polymer Brushes. Appl. Phys. Lett. 2015, 107, 141906.10.1063/1.4932968. DOI
Govorov A. O.; Zhang W.; Skeini T.; Richardson H.; Lee J.; Kotov N. A. Gold Nanoparticle Ensembles as Heaters and Actuators: Melting and Collective Plasmon Resonances. Nanoscale Res. Lett. 2006, 1, 84–90. 10.1007/s11671-006-9015-7. DOI
Nguyen M.; Sun X.; Lacaze E.; Winkler P. M.; Hohenau A.; Krenn J. R.; Bourdillon C.; Lamouri A.; Grand J.; Lévi G.; et al. Engineering Thermoswitchable Lithographic Hybrid Gold Nanorods as Plasmonic Devices for Sensing and Active Plasmonics Applications. ACS Photonics 2015, 2, 1199–1208. 10.1021/acsphotonics.5b00280. DOI
Liu G.; Zhang G. Collapse and Swelling of Thermally Sensitive Poly (N-Isopropylacrylamide) Brushes Monitored with a Quartz Crystal Microbalance. J. Phys. Chem. B 2005, 109, 743–747. 10.1021/jp046903m. PubMed DOI
Gisbert Quilis N.; Lequeux M.; Venugopalan P.; Khan I.; Knoll W.; Boujday S.; Lamy de la Chapelle M.; Dostalek J. Tunable Laser Interference Lithography Preparation of Plasmonic Nanoparticle Arrays Tailored for SERS. Nanoscale 2018, 10, 10268–10276. 10.1039/c7nr08905h. PubMed DOI
Sergelen K.; Petri C.; Jonas U.; Dostalek J. Free-Standing Hydrogel-Particle Composite Membrane with Dynamically Controlled Permeability. Biointerphases 2017, 12, 051002.10.1116/1.4996952. PubMed DOI
Beines P. W.; Klosterkamp I.; Menges B.; Jonas U.; Knoll W. Responsive Thin Hydrogel Layers from Photo-Cross-Linkable Poly(N-Isopropylacrylamide) Terpolymers. Langmuir 2007, 23, 2231–2238. 10.1021/la063264t. PubMed DOI
Petri C.Synthesis and Characterization of Novel Photo- Crosslinkable Poly (2-Oxazoline)-Based Hydrogel Systems for the Application as Biosensor Matrix, Ph.D. Thesis, 2018.
Johnson P. B.; Christy R. W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370.10.1103/physrevb.6.4370. DOI
Johnson P.; Christy R. Optical Constants of Transition Metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys. Rev. B 1974, 9, 5056.10.1103/physrevb.9.5056. DOI
Hageneder S.; Jungbluth V.; Soldo R.; Petri C.; Pertiller M.; Kreivi M.; Weinhäusel A.; Jonas U.; Dostalek J. Responsive Hydrogel Binding Matrix for Dual Signal Amplification in Fluorescence Affinity Biosensors and Peptide Microarrays. ACS Appl. Mater. Interfaces 2021, 13, 27645–27655. 10.1021/acsami.1c05950. PubMed DOI
Baffou G.; Berto P.; Bermúdez Ureña E.; Quidant R.; Monneret S.; Polleux J.; Rigneault H. Photoinduced Heating of Nanoparticle Arrays. ACS Nano 2013, 7, 6478–6488. 10.1021/nn401924n. PubMed DOI
Tanaka T.; Sato E.; Hirokawa Y.; Hirotsu S.; Peetermans J. Critical Kinetics of Volume Phase Transition of Gels. Phys. Rev. Lett. 1985, 55, 2455.10.1103/physrevlett.55.2455. PubMed DOI
Jia D.; Muthukumar M. Theory of Charged Gels: Swelling, Elasticity, and Dynamics. Gels 2021, 7, 49.Page 49 202110.3390/gels7020049. PubMed DOI PMC
Toomey R.; Vidyasagar A.; Ortiz O. Swelling Behavior of Thin Hydrogel Coatings. Funct. Polym. Films 2011, 2, 649–667. 10.1002/9783527638482.ch19. DOI
Gianneli M.; Roskamp R. F.; Jonas U.; Loppinet B.; Fytas G.; Knoll W. Dynamics of Swollen Gel Layers Anchored to Solid Surfaces. Soft Matter 2008, 4, 1443–1447. 10.1039/b801468j. PubMed DOI
Sultan E.; Boudaoud A. The Buckling of a Swollen Thin Gel Layer Bound to a Compliant Substrate. J. Appl. Mech. 2008, 75, 0510021–0510025. 10.1115/1.2936922. DOI
Erman B.; Flory P. J. Critical Phenomena and Transitions in Swollen Polymer Networks and in Linear Macromolecules. Macromolecules 2002, 19, 2342–2353. 10.1021/ma00163a003. DOI
Plasmon-Enhanced Multiphoton Polymer Crosslinking for Selective Modification of Plasmonic Hotspots