Early cephalopod evolution clarified through Bayesian phylogenetic inference
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35421982
PubMed Central
PMC9008929
DOI
10.1186/s12915-022-01284-5
PII: 10.1186/s12915-022-01284-5
Knihovny.cz E-zdroje
- Klíčová slova
- Bayesian phylogenetics, Cephalopoda, Endoceratoidea, Fossilized birth-death process, Multiceratoidea, Nautiloidea, Orthoceratoidea, Phylogeny, Posterior clade probabilities, Tree similarities,
- MeSH
- Bayesova věta MeSH
- fylogeneze MeSH
- hlavonožci * genetika MeSH
- pravděpodobnost MeSH
- zkameněliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Despite the excellent fossil record of cephalopods, their early evolution is poorly understood. Different, partly incompatible phylogenetic hypotheses have been proposed in the past, which reflected individual author's opinions on the importance of certain characters but were not based on thorough cladistic analyses. At the same time, methods of phylogenetic inference have undergone substantial improvements. For fossil datasets, which typically only include morphological data, Bayesian inference and in particular the introduction of the fossilized birth-death model have opened new possibilities. Nevertheless, many tree topologies recovered from these new methods reflect large uncertainties, which have led to discussions on how to best summarize the information contained in the posterior set of trees. RESULTS: We present a large, newly compiled morphological character matrix of Cambrian and Ordovician cephalopods to conduct a comprehensive phylogenetic analysis and resolve existing controversies. Our results recover three major monophyletic groups, which correspond to the previously recognized Endoceratoidea, Multiceratoidea, and Orthoceratoidea, though comprising slightly different taxa. In addition, many Cambrian and Early Ordovician representatives of the Ellesmerocerida and Plectronocerida were recovered near the root. The Ellesmerocerida is para- and polyphyletic, with some of its members recovered among the Multiceratoidea and early Endoceratoidea. These relationships are robust against modifications of the dataset. While our trees initially seem to reflect large uncertainties, these are mainly a consequence of the way clade support is measured. We show that clade posterior probabilities and tree similarity metrics often underestimate congruence between trees, especially if wildcard taxa are involved. CONCLUSIONS: Our results provide important insights into the earliest evolution of cephalopods and clarify evolutionary pathways. We provide a classification scheme that is based on a robust phylogenetic analysis. Moreover, we provide some general insights on the application of Bayesian phylogenetic inference on morphological datasets. We support earlier findings that quartet similarity metrics should be preferred over the Robinson-Foulds distance when higher-level phylogenetic relationships are of interest and propose that using a posteriori pruned maximum clade credibility trees help in assessing support for phylogenetic relationships among a set of relevant taxa, because they provide clade support values that better reflect the phylogenetic signal.
Geckoella Ltd Suite 323 7 Bridge Street Taunton TA1 1TG UK
Institute of Geology Czech Academy of Sciences Rozvojová 269 16500 Prague Czech Republic
Natural England Rivers House East Quay Bridgwater TA6 4YS UK
Zobrazit více v PubMed
Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1:16048. PubMed
King B. Bayesian tip-dated phylogenetics in Paleontology: topological effects and stratigraphic fit. Syst Biol. 2021;70:283–294. PubMed
Guillerme T, Cooper N. Effects of missing data on topological inference using a total evidence approach. Mol Phylogenet Evol. 2016;94:146–158. PubMed
Luo A, Duchêne DA, Zhang C, Zhu C-D, Ho SYW. A simulation-based evaluation of tip-dating under the fossilized birth-death process. Syst Biol. 2020;69:325–344. PubMed PMC
Mongiardino Koch N, Parry LA. Death is on our side: paleontological data drastically modify phylogenetic hypotheses. Syst Biol. 2020;69:1052–1067. PubMed
Mongiardino Koch N, Garwood RJ, Parry LA. Fossils improve phylogenetic analyses of morphological characters. Proc R Soc B Biol Sci. 2021;288:20210044. PubMed PMC
Wright AM. A systematist’s guide to estimating Bayesian phylogenies from morphological data. Insect Syst Divers. 2019;3:2. PubMed PMC
Heath TA, Huelsenbeck JP, Stadler T. The fossilized birth-death process for coherent calibration of divergence-time estimates. Proc Natl Acad Sci. 2014;111:E2957–E2966. PubMed PMC
Stadler T. Sampling-through-time in birth-death trees. J Theor Biol. 2010;267:396–404. PubMed
Gavryushkina A, Welch D, Stadler T, Drummond AJ. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput Biol. 2014;10:e1003919. PubMed PMC
Bapst DW, Wright AM, Matzke NJ, Lloyd GT. Topology, divergence dates, and macroevolutionary inferences vary between different tip-dating approaches applied to fossil theropods (Dinosauria) Biol Lett. 2016;12:20160237. PubMed PMC
Simões TR, Caldwell MW, Pierce SE. Sphenodontian phylogeny and the impact of model choice in Bayesian morphological clock estimates of divergence times and evolutionary rates. BMC Biol. 2020;18:191. PubMed PMC
May MR, Contreras DL, Sundue MA, Nagalingum NS, Looy CV, Rothfels CJ. Inferring the total-evidence timescale of marattialean fern evolution in the face of model sensitivity. Syst Biol. 2021;70:1232–1255. PubMed PMC
Barido-Sottani J, van Tiel NMA, Hopkins MJ, Wright DF, Stadler T, Warnock RCM. Ignoring fossil age uncertainty leads to inaccurate topology and divergence time estimates in time calibrated tree inference. Front Ecol Evol. 2020;8:1–13.
O’Reilly JE, Donoghue PCJ. The effect of fossil sampling on the estimation of divergence times with the fossilized birth-death process. Syst Biol. 2020;69:124–138. PubMed
Heled J, Bouckaert RR. Looking for trees in the forest: summary tree from posterior samples. BMC Evol Biol. 2013;13:221. PubMed PMC
O’Reilly JE, Donoghue PCJ. The efficacy of consensus tree methods for summarizing phylogenetic relationships from a posterior sample of trees estimated from morphological data. Syst Biol. 2018;67:354–362. PubMed PMC
Holder MT, Sukumaran J, Lewis PO. A justification for reporting the majority-rule consensus tree in Bayesian phylogenetics. Syst Biol. 2008;57:814–821. PubMed
Vernygora OV, Simões TR, Campbell EO. Evaluating the performance of probabilistic algorithms for phylogenetic analysis of big morphological datasets: a simulation study. Syst Biol. 2020;69:1088–1105. PubMed
King B, Qiao T, Lee MSY, Zhu M, Long JA. Bayesian morphological clock methods resurrect placoderm monophyly and reveal rapid early evolution in jawed vertebrates. Syst Biol. 2017;66:499–516. PubMed
Gavryushkina A, Heath TA, Ksepka DT, Stadler T, Welch D, Drummond AJ. Bayesian total-evidence dating reveals the recent crown radiation of penguins. Syst Biol. 2017;66:57–73. PubMed PMC
Smith MR. Bayesian and parsimony approaches reconstruct informative trees from simulated morphological datasets. Biol Lett. 2019;15:20180632. PubMed PMC
Nixon KC, Wheeler QD. Extinction and the origin of species. In: Novacek MJ, Wheeler QD, editors. Extinction and phylogeny. New York: Columbia University Press; 1992. pp. 119–143.
Wilkinson M. Majority-rule reduced consensus trees and their use in bootstrapping. Mol Biol Evol. 1996;13:437–444. PubMed
Kearney M, Clark JM. Problems due to missing data in phylogenetic analyses including fossils: a critical review. J Vertebr Paleontol. 2003;23:263–274.
Aberer AJ, Krompass D, Stamatakis A. Pruning rogue taxa improves phylogenetic accuracy: an efficient algorithm and webservice. Syst Biol. 2013;62:162–166. PubMed PMC
Pol D, Escapa IH. Unstable taxa in cladistic analysis: identification and the assessment of relevant characters. Cladistics. 2009;25:515–527. PubMed
Smith SA, Dunn CW. Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics. 2008;24:715–716. PubMed
Siu-Ting K, Pisani D, Creevey CJ, Wilkinson M. Concatabominations: identifying unstable taxa in morphological phylogenetics using a heuristic extension to safe taxonomic reduction. Syst Biol. 2015;64:137–143. PubMed PMC
Bergmann S, Lieb B, Ruth P, Markl J. The hemocyanin from a living fossil, the Cephalopod Nautilus pompilius: protein structure, gene organization, and evolution. J Mol Evol. 2006;62:362–374. PubMed
Warnke KM, Meyer A, Ebner B, Lieb B. Assessing divergence time of Spirulida and Sepiida (Cephalopoda) based on hemocyanin sequences. Mol Phylogenet Evol. 2011;58:390–394. PubMed
Kröger B, Vinther J, Fuchs D. Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules: extant cephalopods are younger than previously realised and were under major selection to become agile, shell-less predators. BioEssays. 2011;33:602–613. PubMed
Tanner AR, Fuchs D, Winkelmann IE, Gilbert MTP, Pankey MS, Ribeiro ÂM, et al. Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the Mesozoic marine revolution. Proc R Soc B Biol Sci. 2017;284:20162818. PubMed PMC
Uribe JE, Zardoya R. Revisiting the phylogeny of Cephalopoda using complete mitochondrial genomes. J Molluscan Stud. 2017;83:133–144.
Bonacum J, Landman NH, Mapes RH, White MM, White A-J, Irlam J. Evolutionary radiation of present-day Nautilus and Allonautilus. Am Malacol Bull. 2011;29:77–93.
Warnock RCM, Yang Z, Donoghue PCJ. Exploring uncertainty in the calibration of the molecular clock. Biol Lett. 2012;8:156–159. PubMed PMC
Ho SYW, Phillips MJ. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol. 2009;58:367–380. PubMed
Dzik J. Phylogeny of the Nautiloidea. Palaeontol Pol. 1984;45:1–320.
King AH, Evans DH. High-level classification of the nautiloid cephalopods: a proposal for the revision of the Treatise Part K. Swiss J Palaeontol. 2019;138:65–85.
Klug C, Kröger B, Vinther J, Fuchs D, De Baets K. Ancestry, origin and early evolution of ammonoids. In: Klug C, Korn D, De Baets K, Kruta I, Mapes RH, editors. Ammonoid Paleobiology: from macroevolution to paleogeography. Topics in Geobiology 44. Dordrecht: Springer; 2015. pp. 3–24.
Flower RH, Kummel B. A classification of the Nautiloidea. J Paleontol. 1950;24:604–616.
Teichert C, Kummel B, Sweet WC, Stenzel HB, Furnish WM, Glenister BF, et al. Treatise on invertebrate palaeontology, Part K, Mollusca 3, Cephalopoda. Lawrence: Geological Society of America and University of Kansas Press; 1964.
Turek V, Marek J. Notes on the phylogeny of the Nautiloidea. Paläontol Z. 1986;60:245–253.
Wade M. Nautiloids and their descendants: cephalopod classification in 1986. New Mex Bur Min Miner Resour Mem. 1988;44:15–25.
Mutvei H. Characterization of two new superorders Nautilosiphonata and Calciosiphonata and a new order Cyrtocerinida of the subclass Nautiloidea; siphuncular structure in the Ordovician nautiloid Bathmoceras (Cephalopoda) GFF. 2015;137:164–174.
Mutvei H. Characterization of nautiloid orders Ellesmerocerida, Oncocerida, Tarphycerida, Discosorida and Ascocerida: new superorder Multiceratoidea. GFF. 2013;135:171–183.
Paterson JR, Edgecombe GD, Lee MSY. Trilobite evolutionary rates constrain the duration of the Cambrian explosion. PNAS. 2019;116:4394–4399. PubMed PMC
Wright DF. Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata) J Paleontol. 2017;91:799–814.
Kröger B, Zhang Y-B. Pulsed cephalopod diversification during the Ordovician. Palaeogeogr Palaeoclimatol Palaeoecol. 2009;273:174–183.
Smith MR. Information theoretic generalized Robinson–Foulds metrics for comparing phylogenetic trees. Bioinformatics. 2020;36:5007–5013. PubMed
Chen J-Y, Teichert C. Cambrian Cephalopoda of China. Palaeontogr Abteilung A. 1983;181:1–102.
Mutvei H, Zhang Y-B, Dunca E. Late Cambrian plectronocerid nautiloids and their role in cephalopod evolution. Palaeontology. 2007;50:1327–1333.
Mutvei H. Restudy of some plectronocerid nautiloids (Cephalopoda) from the late Cambrian of China; discussion on nautiloid evolution and origin of the siphuncle. GFF. 2020;142:115–124.
Wade M, Stait B. Subclass Nautiloidea – introduction and fossil record. In: Beesley PL, Ross GJB, Wells A, editors. Mollusca: the Southern synthesis, Part A, Fauna of Australia. Canberra: Australian Biological Resources Study; 1993. pp. 485–493.
Kröger B. A new genus of middle Tremadocian orthoceratoids and the early Ordovician origin of orthoceratoid cephalopods. Acta Palaeontol Pol. 2008;53:745–749.
Shevyrev AA. The cephalopod macrosystem: a historical review, the present state of knowledge, and unsolved problems: 3. Classification of Bactritoidea and Ammonoidea. Paleontol J. 2006;40:150–161.
Kröger B, Isakar M. Revision of annulated orthoceridan cephalopods of the Baltoscandic Ordovician. Foss Rec. 2006;9:137–163.
Evans DH. The Lower Ordovician cephalopod faunas of the Durness group, North-West Scotland. Monogr Palaeontogr Soc. 2011;165:1–131.
Kröger B. Revision of Middle Ordovician orthoceratacean nautiloids from Baltoscandia. Acta Palaeontol Pol. 2004;49:57–74.
Kröger B, Lefebvre B. Palaeogeography and palaeoecology of early Floian (Early Ordovician) cephalopods from the Upper Fezouata Formation, Anti-Atlas, Morocco. Foss Rec. 2012;15:61–75.
Mutvei H. Connecting ring structure and its significance for classification of the orthoceratid cephalopods. Acta Palaeontol Pol. 2002;47:157–168.
Kröger B. Early growth-stages and classification of orthoceridan cephalopods of the Darriwillian (Middle Ordovician) of Baltoscandia. Lethaia. 2006;39:129–139.
Fang X, Zhang Y-B, Chen T-E, Zhang Y-D. A quantitative study of the Ordovician cephalopod species Sinoceras chinense (Foord) and its palaeobiogeographic implications. Alcheringa. 2017;41:321–334.
Aubrechtová M, Meidla T. Lituitid cephalopods from the upper Darriwilian and basal Sandbian (Middle–Upper Ordovician) of Estonia. GFF. 2020;142:1–30.
Niko S, Sone M, Leman MS. Ordovician Orthocerida and Pseudorthocerida (Cephalopoda: Nautiloidea) from the Lower Setul Limestone of the Langkawi Islands, Malaysia. J Syst Palaeontol. 2020;18:381–414.
Flower RH. Studies of the Actinoceratida. New Mex Bur Min Miner Resour Mem. 1957;2:1–73.
Zhen YY, Zhang Y, Wang Z, Percival IG. Huaiyuan Epeirogeny—Shaping Ordovician stratigraphy and sedimentation on the North China Platform. Palaeogeogr Palaeoclimatol Palaeoecol. 2016;448:363–370.
Nicoll RS, Laurie JR, Kelman A, Gorter JD. Reworked latest Cambrian (Furongian) and Early Ordovician conodonts from the Late Devonian of the Amadeus Basin, central Australia. Mem Assoc Australas Palaeontol. 2007;34:545–554.
Mutvei H. Characterization of actinoceratoid cephalopods by their siphuncular structure. Lethaia. 1996;29:339–348.
Flower RH, Teichert C. The cephalopod order Discosorida. Univ Kansas Paleontol Contrib. 1957;6:1–144.
Kröger B, Mapes RH. Carboniferous Actinoceratoid Nautiloidea (Cephalopoda)—a new perspective. J Paleontol. 2007;81:714–724.
Flower RH. Status of endoceroid classification. J Paleontol. 1955;29:329–371.
Evans DH, King AH. Resolving polyphyly within the Endocerida: the Bisonocerida nov., a new order of early Palaeozoic nautiloids. Geobios. 2012;45:19–28.
Chen J-Y, Teichert C. The Ordovician cephalopod suborder Cyrtocerinina (order Ellesmerocerida) Palaeontol Cathayana. 1987;3:145–229.
Mutvei H. Siphuncular structure in Silurian discosorid and ascocerid nautiloids (Cephalopoda) from Gotland, Sweden: implications for interpretation of mode of life and phylogeny. GFF. 2012;134:27–37.
Stait B. Ordovician nautiloids of Tasmania – Gouldoceratidae fam. nov. (Discosorida) Proc R Soc Vic. 1984;96:187–207.
Stait B, Wyatt D, Burrett CF. Ordovician nautiloid faunas of Langkawi Islands, Malaysia and Tarutao Island, Thailand. Neues Jahrb Geol Paläontol Abh. 1987;174:373–391.
Kröger B. The cephalopods of the Boda Limestone, Late Ordovician, of Dalarna, Sweden. Eur J Taxon. 2013;41:1–110.
Flower RH. Development of the Mixochoanites. J Paleontol. 1941;15:523–548.
Wilkinson M. Common cladistic information and its consensus representation: reduced Adams and reduced cladistic consensus trees and profiles. Syst Biol. 1994;43:343–368.
Thorley JL, Wilkinson M, Charleston M. The information content of consensus trees. In: Rizzi A, Vichi M, Bock HH, editors. Advances in data science and classification. Studies in classification, data analysis, and knowledge organization. Berlin, Heidelberg: Springer; 1998. pp. 91–98.
Klug C, Landman NH, Fuchs D, Mapes RH, Pohle A, Guériau P, et al. Anatomy and evolution of the first Coleoidea in the Carboniferous. Commun Biol. 2019;2:280. PubMed PMC
Kröger B. Some lesser known features of the ancient cephalopod order Ellesmerocerida (Nautiloidea, Cephalopoda) Palaeontology. 2007;50:565–572.
Pohle A, Klug C, Toom U, Kröger B. Conch structures, soft-tissue imprints and taphonomy of the Middle Ordovician cephalopod Tragoceras falcatum from Estonia. Foss Impr. 2019;75:70–78.
Parins-Fukuchi C. Use of continuous traits can improve morphological phylogenetics. Syst Biol. 2018;67:328–339. PubMed
Zhang R, Drummond AJ, Mendes FK. Scalable total-evidence inference from molecular and continuous characters in a Bayesian framework. bioRxiv. 2021. 10.1101/2021.04.21.440863.
Puttick MN. Partially incorrect fossil data augment analyses of discrete trait evolution in living species. Biol Lett. 2016;12:20160392. PubMed PMC
Klopfstein S, Spasojevic T. Illustrating phylogenetic placement of fossils using RoguePlots: an example from ichneumonid parasitoid wasps (Hymenoptera, Ichneumonidae) and an extensive morphological matrix. PLoS One. 2019;14:e0212942. PubMed PMC
Neige P , Rouget, I, Moyne, S. Phylogenetic practices among scholars of fossil cephalopods, with special reference to cladistics. In: Landman NH, Davis RA, Mapes RH, editors. Cephalopods present and past: new insights and fresh perspectives. Dordrecht: Springer; 2007. p. 3–14.
Brazeau MD. Problematic character coding methods in morphology and their effects. Biol J Linn Soc. 2011;104:489–498.
Strong EE, Lipscomb D. Character coding and inapplicable data. Cladistics. 1999;15:363–371. PubMed
Goloboff PA, De Laet J, Ríos-Tamayo D, Szumik CA. A reconsideration of inapplicable characters, and an approximation with step-matrix recoding. Cladistics. 2021;37:596–629. PubMed
Brazeau MD, Guillerme T, Smith MR. An algorithm for morphological phylogenetic analysis with inapplicable data. Syst Biol. 2019;68:619–631. PubMed PMC
De Laet J. Parsimony analysis of unaligned sequence data: maximization of homology and minimization of homoplasy, not minimization of operationally defined total cost or minimization of equally weighted transformations. Cladistics. 2015;31:550–567. PubMed
Tarasov S. Integration of anatomy ontologies and Evo-Devo using structured Markov models suggests a new framework for modeling discrete phenotypic traits. Syst Biol. 2019;68:698–716. PubMed PMC
Goloboff PA, Mattoni CI, Quinteros AS. Continuous characters analyzed as such. Cladistics. 2006;22:589–601. PubMed
Simões TR, Caldwell MW, Palci A, Nydam RL. Giant taxon-character matrices: quality of character constructions remains critical regardless of size. Cladistics. 2017;33:198–219. PubMed
Matzke NJ, Irmis RB. Including autapomorphies is important for paleontological tip-dating with clocklike data, but not with non-clock data. PeerJ. 2018;6:e4553. PubMed PMC
Fang X, Kröger B, Zhang Y-D, Zhang Y-B, Chen T-E. Palaeogeographic distribution and diversity of cephalopods during the Cambrian–Ordovician transition. Palaeoworld. 2019;28:51–57.
Flower RH. The nautiloid order Ellesmeroceratida (Cephalopoda) New Mex Bur Min Miner Resour Mem. 1964;12:1–164.
King AH. A review of the cyclostomiceratid nautiloids, including new taxa from the Lower Ordovician of Öland, Sweden. Palaeontology. 1998;41:335–347.
Bremer B, Jansen RK, Oxelman B, Backlund M, Lantz H, Kim K-J. More characters or more taxa for a robust phylogeny – case study from the coffee family (Rubiaceae) Syst Biol. 1999;48:413–435. PubMed
Hillis DM, Pollock DD, McGuire JA, Zwickl DJ. Is sparse taxon sampling a problem for phylogenetic inference? Syst Biol. 2003;52:124–126. PubMed PMC
Scotland RW, Olmstead RG, Bennett JR. Phylogeny reconstruction: the role of morphology. Syst Biol. 2003;52:539–548. PubMed
Smith MR, Caron J-B. Primitive soft-bodied cephalopods from the Cambrian. Nature. 2010;465:469–472. PubMed
Smith MR, Caron J-B. Nectocaris and early cephalopod evolution: reply to Mazurek & Zaton. Lethaia. 2011;44:369–372.
Smith MR. Nectocaridid ecology, diversity, and affinity: early origin of a cephalopod-like body plan. Palaeobiology. 2013;39:297–321.
Smith MR. An Ordovician nectocaridid hints at an endocochleate origin of Cephalopoda. J Paleontol. 2019;94:64–69.
Mazurek D, Zatoń M. Is Nectocaris pteryx a cephalopod? Lethaia. 2011;44:2–4.
Runnegar B. Once again: is Nectocaris pteryx a stem-group cephalopod? Lethaia. 2011;44(4):373.
Stöger I, Stigwart JD, Kano Y, Knebelsberger T, Marshall BA, Schwabe E, Schrödl M. The continuing debate on deep molluscan phylogeny: evidence for Serialia (Mollusca, Monoplacophora + Polyplacophora) BioMed Research Int. 2013;407072:1–18. PubMed PMC
Zhuravlev AY. The early history of the metazoa – a paleontologist’s viewpoint. Biol Bull Rev. 2015;5:415–461. PubMed
Hildenbrand A, Austermann G, Fuchs D, Bengtson P, Stinnesbeck W. A potential cephalopod from the early Cambrian of eastern Newfoundland, Canada. Commun Biol. 2021;4:388. PubMed PMC
Shigeno S, Sasaki T, Moritaki T, Kasugai T, Vecchione M, Agata K. Evolution of the cephalopod head complex by assembly of multiple molluscan body parts: evidence from Nautilus embryonic development. J Morphol. 2008;269:1–17. PubMed
Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput Biol. 2019;15:e1006650. PubMed PMC
Lewis PO. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol. 2001;50:913–925. PubMed
Harrison LB, Larsson HCE. Among-character rate variation distributions in phylogenetic analysis of discrete morphological characters. Syst Biol. 2015;64:307–324. PubMed
Bergström SM, Chen X, Gutiérrez-Marco JC, Dronov A. The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ13C chemostratigraphy. Lethaia. 2009;42:97–107.
Kröger B, Lintulaakso K. Rnames, a stratigraphical database designed for the statistical analysis of fossil occurrences – the Ordovician diversification as a case study. Palaeontol Electron. 2017;20.1.1T:1–12.
Barido-Sottani J, Aguirre-Fernández G, Hopkins MJ, Stadler T, Warnock R. Ignoring stratigraphic age uncertainty leads to erroneous estimates of species divergence times under the fossilized birth–death process. Proc R Soc B Biol Sci. 2019;286:20190685. PubMed PMC
King B, Rücklin M. Tip dating with fossil sites and stratigraphic sequences. PeerJ. 2020;8:e9368. PubMed PMC
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst Biol. 2018;67:901–904. PubMed PMC
Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math Biosci. 1981;53:131–147.
R Core Team . R: a language and environment for statistical computing. 2018.
Sand A, Holt MK, Johansen J, Brodal GS, Mailund T, Pedersen CNS. tqDist: a library for computing the quartet and triplet distances between binary or general trees. Bioinformatics. 2014;30:2079–2080. PubMed
Smith MR. Quartet: comparison of phylogenetic trees using quartet and split measures. R package version 1.2.2. 2019.
Jombart T, Balloux F, Dray S. adephylo: new tools investigating the phylogenetic signal in biological traits. Bioinformatics. 2010;26:1907–1909. PubMed