Schizophrenia, Bipolar Disorder and Pre-Attentional Inhibitory Deficits
Status PubMed-not-MEDLINE Jazyk angličtina Země Nový Zéland Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35422621
PubMed Central
PMC9005071
DOI
10.2147/ndt.s352157
PII: 352157
Knihovny.cz E-zdroje
- Klíčová slova
- P50, bipolar disorder, event related potentials, inhibition, neural synchrony, schizophrenia,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
According to recent findings schizophrenia and bipolar disorder as separate disease entities manifest similarities in neuropsychological functioning. Typical disturbances in both disorders are related to sensory gating deficits characterized by decreased inhibitory functions in responses to various insignificant perceptual signals which are experimentally tested by event related potentials (ERP) and measured P50 wave. In this context, recent findings implicate that disrupted binding and disintegration of consciousness in schizophrenia and bipolar disorder that are related to inhibitory deficits reflected in P50 response may explain similarities in psychotic disturbances in both disorders. With this aim, this review summarizes literature about P50 in both schizophrenia and bipolar disorder.
Zobrazit více v PubMed
Murray RM, Sham P, Van Os J, Zanelli J, Cannon M, McDonald C. A developmental model for similarities and dissimilarities between schizophrenia and bipolar disorder. Schizophr Res. 2004;71:405–416. doi:10.1016/j.schres.2004.03.002 PubMed DOI
Addington J, Addington D. Attentional vulnerability indicators in schizophrenia and bipolar disorder. Schizophr Res. 1997;23:197–204. doi:10.1016/S0920-9964(96)00105-3 PubMed DOI
Seidman LJ, Kremen WS, Koren D, Faraone SV, Goldstein JM, Tsuang MT. A comparative profile analysis of neuropsychological functioning in patients with schizophrenia and bipolar psychoses. Schizophr Res. 2002;53:31–44. doi:10.1016/S0920-9964(01)00162-1 PubMed DOI
Craddock N, O’Donovan MC, Owen MJ. Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. Schizophr Bull. 2006;32:9–16. doi:10.1093/schbul/sbj033 PubMed DOI PMC
Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB. Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry. 2005;57:252–260. doi:10.1016/j.biopsych.2004.10.019 PubMed DOI
Kaymaz N, van Os J. Murray et al. (2004) revisited: is bipolar disorder identical to schizophrenia without developmental impairment? Acta Psychiatr Scand. 2009;120:249–252. doi:10.1111/j.1600-0447.2009.01472.x PubMed DOI
Berrettini WH. Are schizophrenic and bipolar disorders related? A review of family and molecular studies. Biol Psychiatry. 2000;48:531–538. doi:10.1016/S0006-3223(00)00883-0 PubMed DOI
Taylor MA. Are schizophrenia and affective disorder related? A selective literature review. Am J Psychiatry. 1992;149:22–32. PubMed
Lapensee MA. A review of schizoaffective disorder: I. Current concepts. Can J Psychiatry. 1992;37:335–346. doi:10.1177/070674379203700507 PubMed DOI
Harrow M, MacDonald AW, Sands JR, Silverstein ML. Vulnerability to delusions over time in schizophrenia and affective disorders. Schizophr Bull. 1995;21:95–109. doi:10.1093/schbul/21.1.95 PubMed DOI
Grossman LS, Harrow M, Sands JR. Features associated with thought disorder in manic patients at 2–4-year follow-up. Am J Psychiatry. 1986;143:306–311. PubMed
Ketter TA, Wang PW, Becker OV, Nowakowska C, Yang Y. Psychotic bipolar disorders: dimensionally similar to or categorically different from schizophrenia? J Psychiatr Res. 2004;38:47–61. doi:10.1016/S0022-3956(03)00099-2 PubMed DOI
Cheniaux E, Landeira-Fernandez J, Lessa Telles L, et al. Does schizoaffective disorder really exist? A systematic review of the studies that compared schizoaffective disorder with schizophrenia or mood disorders. J Affect Disord. 2008;106:209–217. doi:10.1016/j.jad.2007.07.009 PubMed DOI
Lee KH, Williams LM, Breakspear M, Gordon E. Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Brain Res Rev. 2003;41:57–78. doi:10.1016/S0165-0173(02)00220-5 PubMed DOI
Ozerdem A, Guntekin B, Saatci E, Tunca Z, Basar E. Disturbance in long distance gamma coherence in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:861–865. doi:10.1016/j.pnpbp.2010.04.001 PubMed DOI
Kasai K, Iwanami A, Yamasue H, Kuroki N, Nakagome K, Fukuda M. Neuroanatomy and neurophysiology in schizophrenia. Neurosci Res. 2002;43:93–110. doi:10.1016/S0168-0102(02)00023-8 PubMed DOI
Whalley HC, Papmeyer M, Sprooten E, Lawrie SM, Sussmann JE, McIntosh AM. Review of functional magnetic resonance imaging studies comparing bipolar disorder and schizophrenia. Bipolar Disord. 2012;14:411–431. doi:10.1111/j.1399-5618.2012.01016.x PubMed DOI
Strakowski SM, Adler CM, Almeida J, et al. The functional neuroanatomy of bipolar disorder: a consensus model. Bipolar Disord. 2012;14:313–325. doi:10.1111/j.1399-5618.2012.01022.x PubMed DOI PMC
Fuchs EC, Doheny H, Faulkner H, et al. Genetically altered AMPA-type glutamate receptor kinetics in interneurons disrupt long-range synchrony of gamma oscillation. Proc Natl Acad Sci U S A. 2001;98:3571–3576. doi:10.1073/pnas.051631898 PubMed DOI PMC
Moxon KA, Gerhardt GA, Gulinello M, Adler LE. Inhibitory control of sensory gating in a computer model of the CA3 region of the hippocampus. Biol Cybern. 2003;88:247–264. doi:10.1007/s00422-002-0373-7 PubMed DOI PMC
Klausberger T, Somogyi P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science. 2008;321:53–57. doi:10.1126/science.1149381 PubMed DOI PMC
Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11:100–113. doi:10.1038/nrn2774 PubMed DOI
Lewis DA, Curley AA, Glausier JR, Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 2012;35:57–67. doi:10.1016/j.tins.2011.10.004 PubMed DOI PMC
Petty F. GABA and mood disorders: a brief review and hypothesis. J Affect Disord. 1995;34:275–281. doi:10.1016/0165-0327(95)00025-I PubMed DOI
Kim DJ, Bolbecker AR, Howell J, et al. Disturbed resting state EEG synchronization in bipolar disorder: a graph-theoretic analysis. NeuroImage Clin. 2013;2:414–423. doi:10.1016/j.nicl.2013.03.007 PubMed DOI PMC
Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML. Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol. 2001;41:237–260. doi:10.1146/annurev.pharmtox.41.1.237 PubMed DOI
Benes FM, Berretta S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology. 2001;25:1–27. doi:10.1016/S0893-133X(01)00225-1 PubMed DOI
Nakazawa K, Zsiros V, Jiang Z, et al. GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology. 2012;62:1574–1583. doi:10.1016/j.neuropharm.2011.01.022 PubMed DOI PMC
Levinson AJ, Young LT, Fitzgerald PB, Daskalakis ZJ. Cortical inhibitory dysfunction in bipolar disorder: a study using transcranial magnetic stimulation. J Clin Psychopharmacol. 2007;27:493–497. doi:10.1097/jcp.0b013e31814ce524 PubMed DOI
Kalkman HO, Loetscher E. GAD(67): the link between the GABA-deficit hypothesis and the dopaminergic- and glutamatergic theories of psychosis. J Neural Transm. 2003;110:803–812. doi:10.1007/s00702-003-0826-8 PubMed DOI
Olincy A, Martin L. Diminished suppression of the P50 auditory evoked potential in bipolar disorder subjects with a history of psychosis. Am J Psychiatry. 2005;162:43–49. doi:10.1176/appi.ajp.162.1.43 PubMed DOI
de Wilde OM, Bour LJ, Dingemans PM, Koelman JH, Linszen DH. A meta-analysis of P50 studies in patients with schizophrenia and relatives: differences in methodology between research groups. Schizophr Res. 2007;97:137–151. doi:10.1016/j.schres.2007.04.028 PubMed DOI
Boutros NN, Gjini K, Eickhoff SB, Urbach H, Pflieger ME. Mapping repetition suppression of the P50 evoked response to the human cerebral cortex. Clin Neurophysiol. 2013;124:675–685. doi:10.1016/j.clinph.2012.10.007 PubMed DOI PMC
Boutros NN, Belger A. Midlatency evoked potentials attenuation and augmentation reflect different aspects of sensory gating. Biol Psychiatry. 1999;45:917–922. doi:10.1016/S0006-3223(98)00253-4 PubMed DOI
Galazyuk AV, Feng AS. Encoding of sound duration by neurons in the auditory cortex of the little brown bat, Myotis lucifugus. J Comp Physiol A. 1997;180:301–311. doi:10.1007/s003590050050 PubMed DOI
Tan AY, Zhang LI, Merzenich MM, Schreiner CE. Tone-evoked excitatory and inhibitory synaptic conductances of primary auditory cortex neurons. J Neurophysiol. 2004;92:630–643. doi:10.1152/jn.01020.2003 PubMed DOI
Miller CL, Freedman R. The activity of hippocampal interneurons and pyramidal cells during the response of the hippocampus to repeated auditory stimuli. Neuroscience. 1995;69:371–381. doi:10.1016/0306-4522(95)00249-I PubMed DOI
Mears RP, Klein AC, Cromwell HC. Auditory inhibitory gating in medial prefrontal cortex: single unit and local field potential analysis. Neuroscience. 2006;141:47–65. doi:10.1016/j.neuroscience.2006.03.040 PubMed DOI
Volkov IO, Galazyuk AV. Peculiarities of inhibition in cat auditory cortex neurons evoked by tonal stimuli of various durations. Exp Brain Res. 1992;91:115–120. doi:10.1007/BF00230019 PubMed DOI
Wehr M, Zador AM. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature. 2003;426:442–446. doi:10.1038/nature02116 PubMed DOI
Boutros NN, Belger A, Campbell D, D’Souza C, Krystal J. Comparison of four components of sensory gating in schizophrenia and normal subjects: a preliminary report. Psychiatry Res. 1999;88:119–130. doi:10.1016/S0165-1781(99)00074-8 PubMed DOI
Korzyukov O, Pflieger ME, Wagner M, et al. Generators of the intracranial P50 response in auditory sensory gating. Neuroimage. 2007;35:814–826. doi:10.1016/j.neuroimage.2006.12.011 PubMed DOI PMC
Sakai M, Chimoto S, Qin L, Sato Y. Neural mechanisms of interstimulus interval-dependent responses in the primary auditory cortex of awake cats. BMC Neurosci. 2009;10:10. doi:10.1186/1471-2202-10-10 PubMed DOI PMC
Freedman R, Adams CE, Leonard S. The alpha7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J Chem Neuroanat. 2000;20:299–306. doi:10.1016/S0891-0618(00)00109-5 PubMed DOI
Bickford-Wimer PC, Nagamoto H, Johnson R, et al. Auditory sensory gating in hippocampal neurons: a model system in the rat. Biol Psychiatry. 1990;27:183–192. doi:10.1016/0006-3223(90)90648-L PubMed DOI
Miller CL, Freedman R. Medial septal neuron activity in relation to an auditory sensory gating paradigm. Neuroscience. 1993;55:373–380. doi:10.1016/0306-4522(93)90506-B PubMed DOI
Homayoun H, Moghaddam B. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci. 2007;27:11496–11500. doi:10.1523/JNEUROSCI.2213-07.2007 PubMed DOI PMC
Luntz-Leybman V, Bickford PC, Freedman R. Cholinergic gating of response to auditory stimuli in rat hippocampus. Brain Res. 1992;587:130–136. doi:10.1016/0006-8993(92)91437-J PubMed DOI
Adler LE, Olincy A, Waldo M, et al. Schizophrenia, sensory gating, and nicotinic receptors. Schizophr Bull. 1998;24:189–202. doi:10.1093/oxfordjournals.schbul.a033320 PubMed DOI
Brinkman MJ, Stauder JE. Development and gender in the P50 paradigm. Clin Neurophysiol. 2007;118:1517–1524. doi:10.1016/j.clinph.2007.04.002 PubMed DOI
Freedman R, Olincy A, Ross RG, et al. The genetics of sensory gating deficits in schizophrenia. Curr Psychiatry Rep. 2003;5:155–161. doi:10.1007/s11920-003-0032-2 PubMed DOI
Adler LE, Hoffer L, Nagamoto HT, Waldo MC, Kisley MA, Giffith JM. Yohimbine impairs P50 auditory sensory gating in normal subjects. Neuropsychopharmacology. 1994;10:249–257. doi:10.1038/npp.1994.28 PubMed DOI
Oranje B, Glenthoj BY. Clonidine normalizes levels of P50 gating in patients with schizophrenia on stable medication. Schizophr Bull. 2013;39:684–691. doi:10.1093/schbul/sbs071 PubMed DOI PMC
Zhou N, Masterson SP, Damron JK, Guido W, Bickford ME. The mouse pulvinar nucleus links the lateral extrastriate cortex, striatum, and amygdala. J Neurosci. 2018;38:347–362. doi:10.1523/JNEUROSCI.1279-17.2017 PubMed DOI PMC
Chou XL, Fang Q, Yan L, et al. Contextual and cross-modality modulation of auditory cortical processing through pulvinar mediated suppression. Elife. 2020;9. doi:10.7554/eLife.54157 PubMed DOI PMC
Fang Q, Chou XL, Peng B, Zhong W, Zhang LI, Tao HW. A differential circuit via retino-colliculo-pulvinar pathway enhances feature selectivity in visual cortex through surround suppression. Neuron. 2020;105:355–69 e6. doi:10.1016/j.neuron.2019.10.027 PubMed DOI PMC
Ibrahim LA, Mesik L, Ji XY, et al. Cross-modality sharpening of visual cortical processing through layer-1-mediated inhibition and disinhibition. Neuron. 2016;89:1031–1045. doi:10.1016/j.neuron.2016.01.027 PubMed DOI PMC
Saalmann YB, Pinsk MA, Wang L, Li X, Kastner S. The pulvinar regulates information transmission between cortical areas based on attention demands. Science. 2012;337:753–756. doi:10.1126/science.1223082 PubMed DOI PMC
Shen L, Liu D, Huang Y. Hypothesis of subcortical visual pathway impairment in schizophrenia. Med Hypotheses. 2021;156:110686. doi:10.1016/j.mehy.2021.110686 PubMed DOI
Zhuo C, Tian H, Fang T, et al. Neural mechanisms underlying visual and auditory processing impairments in schizophrenia: insight into the etiology and implications for tailoring preventive and therapeutic interventions. Am J Transl Res. 2020;12:7657–7669. PubMed PMC
Patterson JV, Hetrick WP, Boutros NN, et al. P50 sensory gating ratios in schizophrenics and controls: a review and data analysis. Psychiatry Res. 2008;158:226–247. doi:10.1016/j.psychres.2007.02.009 PubMed DOI
Olincy A, Braff DL, Adler LE, et al. Inhibition of the P50 cerebral evoked response to repeated auditory stimuli: results from the Consortium on Genetics of Schizophrenia. Schizophr Res. 2010;119:175–182. doi:10.1016/j.schres.2010.03.004 PubMed DOI PMC
Bramon E, Rabe-Hesketh S, Sham P, Murray RM, Frangou S. Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophr Res. 2004;70:315–329. doi:10.1016/j.schres.2004.01.004 PubMed DOI
Onitsuka T, Oribe N, Nakamura I, Kanba S. Review of neurophysiological findings in patients with schizophrenia. Psychiatry Clin Neurosci. 2013;67:461–470. doi:10.1111/pcn.12090 PubMed DOI
Rajji TK, Miranda D, Mulsant BH. Cognition, function, and disability in patients with schizophrenia: a review of longitudinal studies. Can J Psychiatry. 2014;59:13–17. doi:10.1177/070674371405900104 PubMed DOI PMC
Hetrick WP, Erickson MA, Smith DA. Phenomenological dimensions of sensory gating. Schizophr Bull. 2012;38:178–191. doi:10.1093/schbul/sbq054 PubMed DOI PMC
Adler LE, Pachtman E, Franks RD, Pecevich M, Waldo MC, Freedman R. Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biol Psychiatry. 1982;17:639–654. PubMed
Freedman R, Waldo M, Bickford-Wimer P, Nagamoto H. Elementary neuronal dysfunctions in schizophrenia. Schizophr Res. 1991;4:233–243. doi:10.1016/0920-9964(91)90035-P PubMed DOI
Martin LF, Freedman R. Schizophrenia and the alpha7 nicotinic acetylcholine receptor. Int Rev Neurobiol. 2007;78:225–246. PubMed
Zhang XY, Liu L, Liu S, et al. Short-term tropisetron treatment and cognitive and P50 auditory gating deficits in schizophrenia. Am J Psychiatry. 2012;169:974–981. doi:10.1176/appi.ajp.2012.11081289 PubMed DOI
Javitt DC. When doors of perception close: bottom-up models of disrupted cognition in schizophrenia. Annu Rev Clin Psychol. 2009;5:249–275. doi:10.1146/annurev.clinpsy.032408.153502 PubMed DOI PMC
Williams LE, Blackford JU, Luksik A, Gauthier I, Heckers S. Reduced habituation in patients with schizophrenia. Schizophr Res. 2013;151:124–132. doi:10.1016/j.schres.2013.10.017 PubMed DOI PMC
Chang WP, Arfken CL, Sangal MP, Boutros NN. Probing the relative contribution of the first and second responses to sensory gating indices: a meta-analysis. Psychophysiology. 2011;48:980–992. doi:10.1111/j.1469-8986.2010.01168.x PubMed DOI
Brockhaus-Dumke A, Schultze-Lutter F, Mueller R, et al. Sensory gating in schizophrenia: P50 and N100 gating in antipsychotic-free subjects at risk, first-episode, and chronic patients. Biol Psychiatry. 2008;64:376–384. doi:10.1016/j.biopsych.2008.02.006 PubMed DOI
Sanchez-Morla EM, Garcia-Jimenez MA, Barabash A, et al. P50 sensory gating deficit is a common marker of vulnerability to bipolar disorder and schizophrenia. Acta Psychiatr Scand. 2008;117:313–318. doi:10.1111/j.1600-0447.2007.01141.x PubMed DOI
Magnee MJ, Oranje B, van Engeland H, Kahn RS, Kemner C. Cross-sensory gating in schizophrenia and autism spectrum disorder: EEG evidence for impaired brain connectivity? Neuropsychologia. 2009;47:1728–1732. doi:10.1016/j.neuropsychologia.2009.02.012 PubMed DOI
Najt P, Perez J, Sanches M, Peluso MA, Glahn D, Soares JC. Impulsivity and bipolar disorder. Eur Neuropsychopharmacol. 2007;17:313–320. doi:10.1016/j.euroneuro.2006.10.002 PubMed DOI
Barratt ES. Impulsivity: integrating cognitive, behavioral, biological, and environmental data. 1993.
Swann AC, Steinberg JL, Lijffijt M, Moeller FG. Impulsivity: differential relationship to depression and mania in bipolar disorder. J Affect Disord. 2008;106:241–248. doi:10.1016/j.jad.2007.07.011 PubMed DOI PMC
Swann AC, Lijffijt M, Lane SD, et al. Pre-attentive information processing and impulsivity in bipolar disorder. J Psychiatr Res. 2013;47:1917–1924. doi:10.1016/j.jpsychires.2013.08.018 PubMed DOI
Lijffijt M, Moeller FG, Boutros NN, et al. Diminished P50, N100 and P200 auditory sensory gating in bipolar I disorder. Psychiatry Res. 2009;167:191–201. doi:10.1016/j.psychres.2008.04.001 PubMed DOI PMC
Baker N, Adler LE, Franks RD, et al. Neurophysiological assessment of sensory gating in psychiatric inpatients: comparison between schizophrenia and other diagnoses. Biol Psychiatry. 1987;22:603–617. doi:10.1016/0006-3223(87)90188-0 PubMed DOI
Adler LE, Gerhardt GA, Franks R, et al. Sensory physiology and catecholamines in schizophrenia and mania. Psychiatry Res. 1990;31:297–309. doi:10.1016/0165-1781(90)90099-Q PubMed DOI
Schulze KK, Hall MH, McDonald C, et al. P50 auditory evoked potential suppression in bipolar disorder patients with psychotic features and their unaffected relatives. Biol Psychiatry. 2007;62:121–128. doi:10.1016/j.biopsych.2006.08.006 PubMed DOI
Baars BJ. A Cognitive Theory of Consciousness. Cambridge University Press; 1993.
Baars BJ. The conscious access hypothesis: origins and recent evidence. Trends Cogn Sci. 2002;6:47–52. doi:10.1016/S1364-6613(00)01819-2 PubMed DOI
Desimone R, Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222. doi:10.1146/annurev.ne.18.030195.001205 PubMed DOI
Kanwisher N. Neural events and perceptual awareness. Cognition. 2001;79:89–113. doi:10.1016/S0010-0277(00)00125-6 PubMed DOI
Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991;1:1–47. doi:10.1093/cercor/1.1.1 PubMed DOI
Mesulam MM. From sensation to cognition. Brain. 1998;121(Pt 6):1013–1052. doi:10.1093/brain/121.6.1013 PubMed DOI
Nadel L, Jacobs WJ. Traumatic memory is special. Curr Dir Psychol Sci. 1998;7:154–157. doi:10.1111/1467-8721.ep10836842 DOI
Lavenex P, Amaral DG. Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus. 2000;10:420–430. doi:10.1002/1098-1063(2000)10:4<420::AID-HIPO8>3.0.CO;2-5 PubMed DOI
Bob P. Brain, Mind and Consciousness: Advances in Neuroscience Research. Springer; 2011.
Gilbert CD, Wiesel TN. The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Res. 1990;30:1689–1701. doi:10.1016/0042-6989(90)90153-C PubMed DOI
Francis G, Grossberg S, Mingolla E. Cortical dynamics of feature binding and reset: control of visual persistence. Vision Res. 1994;34:1089–1104. doi:10.1016/0042-6989(94)90012-4 PubMed DOI
Grossberg S, Grunewald A. Cortical synchronization and perceptual framing. J Cogn Neurosci. 1997;9:117–132. doi:10.1162/jocn.1997.9.1.117 PubMed DOI
Gray CM. The temporal correlation hypothesis of visual feature integration: still alive and well. Neuron. 1999;24:31–47, 111–125. doi:10.1016/s0896-6273(00)80820-x PubMed DOI
Ito M, Gilbert CD. Attention modulates contextual influences in the primary visual cortex of alert monkeys. Neuron. 1999;22:593–604. doi:10.1016/S0896-6273(00)80713-8 PubMed DOI
Raizada RD, Grossberg S. Context-sensitive binding by the laminar circuits of V1 and V2: a unified model of perceptual grouping, attention, and orientation contrast. Vis cogn. 2001;8:431–466. doi:10.1080/13506280143000070 DOI
Kang K, Williams LM, Hermens D, Gordon E. Neurophysiological markers of contextual processing: the relationship between P3b and Gamma synchrony and their modulation by arousal, performance and individual differences. Brain Res Cogn Brain Res. 2005;25:472–483. doi:10.1016/j.cogbrainres.2005.07.008 PubMed DOI
Singer W. Consciousness and the binding problem. Ann N Y Acad Sci. 2001;929:123–146. doi:10.1111/j.1749-6632.2001.tb05712.x PubMed DOI
Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci. 2001;2:229–239. doi:10.1038/35067550 PubMed DOI
Fell J, Fernandez G, Klaver P, Elger CE, Fries P. Is synchronized neuronal gamma activity relevant for selective attention? Brain Res Brain Res Rev. 2003;42:265–272. doi:10.1016/S0165-0173(03)00178-4 PubMed DOI
Womelsdorf T, Fries P. The role of neuronal synchronization in selective attention. Curr Opin Neurobiol. 2007;17:154–160. doi:10.1016/j.conb.2007.02.002 PubMed DOI
Jensen O, Kaiser J, Lachaux JP. Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci. 2007;30:317–324. doi:10.1016/j.tins.2007.05.001 PubMed DOI
Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci. 2009;32:209–224. doi:10.1146/annurev.neuro.051508.135603 PubMed DOI
Guidotti A, Pesold C, Costa E. New neurochemical markers for psychosis: a working hypothesis of their operation. Neurochem Res. 2000;25:1207–1218. doi:10.1023/A:1007635927069 PubMed DOI
Basar E. Brain oscillations in neuropsychiatric disease. Dialogues Clin Neurosci. 2013;15:291–300. PubMed PMC