Synthesis of C-prenylated analogues of stilbenoid methyl ethers and their cyclic dihydrobenzopyranyl derivatives as potential anti-inflammatory agents
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35424730
PubMed Central
PMC8982364
DOI
10.1039/d2ra00441k
PII: d2ra00441k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
An efficient and versatile synthesis of the naturally occurring C-prenylated stilbenoid methyl ethers and their synthetic analogues is presented. The synthesis represents a six step convergent process including an optimised C-prenylation method. Furthermore, during the demethylation process, six new dihydro-benzopyranyl derivatives were obtained and isolated.
Zobrazit více v PubMed
Rivière C. Pawlus A. D. Mérillon J.-M. Nat. Prod. Rep. 2012;29:1317–1333. doi: 10.1039/C2NP20049J. PubMed DOI
Langcake P. Cornford C. A. Pryce R. J. Phytochemistry. 1979;18:1025–1027. doi: 10.1016/S0031-9422(00)91470-5. DOI
Langcake P. Pryce R. J. Physiol. Plant Pathol. 1976;9:77–86. doi: 10.1016/0048-4059(76)90077-1. DOI
Martínez V., Mitjans M. and Vinardell M. P., in Polyphenols in Human Health and Disease, ed. R. R. Watson, V. R. Preedy and S. Zibadi, Academic Press, San Diego, 2014, pp. 275–288
Akinwumi B. C. Bordun K.-A. M. Anderson H. D. Int. J. Mol. Sci. 2018;19:792. doi: 10.3390/ijms19030792. PubMed DOI PMC
Dvorakova M. Landa P. Pharmacol. Res. 2017;124:126–145. doi: 10.1016/j.phrs.2017.08.002. PubMed DOI
Simmons D. L. Botting R. M. Hla T. Pharmacol. Rev. 2004;56:387–437. doi: 10.1124/pr.56.3.3. PubMed DOI
Murias M. Handler N. Erker T. Pleban K. Ecker G. Saiko P. Szekeres T. Jäger W. Bioorg. Med. Chem. 2004;12:5571–5578. doi: 10.1016/j.bmc.2004.08.008. PubMed DOI
Subbaramaiah K. Chung W. J. Michaluart P. Telang N. Tanabe T. Inoue H. Jang M. Pezzuto J. M. Dannenberg A. J. J. Biol. Chem. 1998;273:21875–21882. doi: 10.1074/jbc.273.34.21875. PubMed DOI
Yang T. Fang L. Rimando A. M. Sobolev V. Mockaitis K. Medina-Bolivar F. Plant Physiol. 2016;171:2483–2498. doi: 10.1104/pp.16.00610. PubMed DOI PMC
Brezani V. Smejkal K. Hosek J. Tomasova V. Curr. Med. Chem. 2018;25:1094–1159. doi: 10.2174/0929867324666170810161157. PubMed DOI
Lelakova V. Hosek J. Bobal P. Pizova H. Gazdova M. Malanik M. Jakubczyk K. Vesely O. Landa P. Temml V. Daniela S. Prachyawarakorn V. Ren G. Zpurny F. Oravec M. Smejkal K. J. Nat. Prod. 2019;82:1839–1848. doi: 10.1021/acs.jnatprod.9b00081. PubMed DOI
Filho R. B. Gottiieb O. R. Mourão A. P. Da Rocha A. I. Oliveira F. S. Phytochemistry. 1975;14:1454–1456. doi: 10.1016/S0031-9422(00)98664-3. DOI
Lima N. M. Andrade J. I. A. Lima K. C. S. dos Santos F. N. Barison A. Salomé K. S. Matsuura T. Nunez C. V. Nat. Prod. Res. 2013;27:425–432. doi: 10.1080/14786419.2012.733387. PubMed DOI
Horner L. Hoffmann H. Wippel H. G. Klahre G. Chem. Ber. 1959;92:2499–2505. doi: 10.1002/cber.19590921017. DOI
Wadsworth W. S. Emmons W. D. J. Am. Chem. Soc. 1961;83:1733–1738. doi: 10.1021/ja01468a042. DOI
Lelakova V. Smejkal K. Jakubczik K. Vesely O. Landa P. Vaclavik J. Bobal P. Pizova H. Temml V. Steinacher T. Daniela S. Granica S. Hanakova Z. Hosek J. Food Chem. 2019;285:431–440. doi: 10.1016/j.foodchem.2019.01.128. PubMed DOI
Madhushaw R. J. Lo C.-Y. Hwang C.-W. Su M.-D. Shen H.-C. Pal S. Shaikh I. R. Liu R.-S. J. Am. Chem. Soc. 2004;126:15560–15565. doi: 10.1021/ja045516n. PubMed DOI
Tucker C. E. Majid T. N. Knochel P. J. Am. Chem. Soc. 1992;114:3983–3985. doi: 10.1021/ja00036a060. DOI
Anson C. E. Creaser C. S. Malkov A. V. Mojovic L. Stephenson G. R. J. Organomet. Chem. 2003;668:101–122. doi: 10.1016/S0022-328X(02)02146-0. DOI
Maiti A. Cuendet M. Croy V. L. Endringer D. C. Pezzuto J. M. Cushman M. J. Med. Chem. 2007;50:2799–2806. doi: 10.1021/jm070109i. PubMed DOI
Davis M. C. Groshens T. J. Tetrahedron Lett. 2012;53:3521–3523. doi: 10.1016/j.tetlet.2012.04.132. DOI
Arbuzov A. E. J. Russ. Phys. Chem. Soc. 1906;38:687.
Michaelis A. Kaehne R. Ber. Dtsch. Chem. Ges. 1898;31:1048–1055. doi: 10.1002/cber.189803101190. DOI
Shahane S. Louafi F. Moreau J. Hurvois J.-P. Renaud J.-L. van de Weghe P. Roisnel T. Eur. J. Org. Chem. 2008:4622–4631. doi: 10.1002/ejoc.200800512. DOI
Parihar S. Kumar A. Chaturvedi A. K. Sachan N. K. Luqman S. Changkija B. Manohar M. Prakash O. Chanda D. Khan F. Chanotiya C. S. Shanker K. Dwivedi A. Konwar R. Negi A. S. J. Steroid Biochem. 2013;137:332–344. doi: 10.1016/j.jsbmb.2013.02.009. PubMed DOI
Smidrkal J. Harmatha J. Budesinsky M. Vokac K. Zidek Z. Kmonickova E. Merkl R. Filip V. Collect. Czech. Chem. C. 2010;75:175–186. doi: 10.1135/cccc2009531. DOI
Wilhelm H. Wessjohann L. A. Tetrahedron. 2006;62:6961–6966. doi: 10.1016/j.tet.2006.04.060. DOI
Kitamura T. Imagawa T. Kawanisi M. Tetrahedron. 1978;34:3451–3457. doi: 10.1016/0040-4020(78)80232-4. DOI
Liu J.-K. Gu W. Cheng X.-R. Cheng J.-P. Zhou W.-X. Nie A.-H. Chin. Chem. Lett. 2015;26:1327–1330. doi: 10.1016/j.cclet.2015.07.020. DOI
Shao L. Hewitt M. Jerussi T. P. Wu F. Malcolm S. Grover P. Fang K. Koch P. Senanayake C. Bhongle N. Ribe S. Bakale R. Currie M. Bioorg. Med. Chem. Lett. 2008;18:1674–1680. doi: 10.1016/j.bmcl.2008.01.051. PubMed DOI
Zuo L. Yao S. Wang W. Duan W. Tetrahedron Lett. 2008;49:4054–4056. doi: 10.1016/j.tetlet.2008.04.070. DOI
Grealis J. P. Müller-Bunz H. Ortin Y. Casey M. McGlinchey M. J. Eur. J. Org. Chem. 2013;2013:332–347. doi: 10.1002/ejoc.201201063. DOI