• This record comes from PubMed

Synthesis of C-prenylated analogues of stilbenoid methyl ethers and their cyclic dihydrobenzopyranyl derivatives as potential anti-inflammatory agents

. 2022 Mar 08 ; 12 (13) : 8188-8192. [epub] 20220315

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

An efficient and versatile synthesis of the naturally occurring C-prenylated stilbenoid methyl ethers and their synthetic analogues is presented. The synthesis represents a six step convergent process including an optimised C-prenylation method. Furthermore, during the demethylation process, six new dihydro-benzopyranyl derivatives were obtained and isolated.

See more in PubMed

Rivière C. Pawlus A. D. Mérillon J.-M. Nat. Prod. Rep. 2012;29:1317–1333. doi: 10.1039/C2NP20049J. PubMed DOI

Langcake P. Cornford C. A. Pryce R. J. Phytochemistry. 1979;18:1025–1027. doi: 10.1016/S0031-9422(00)91470-5. DOI

Langcake P. Pryce R. J. Physiol. Plant Pathol. 1976;9:77–86. doi: 10.1016/0048-4059(76)90077-1. DOI

Martínez V., Mitjans M. and Vinardell M. P., in Polyphenols in Human Health and Disease, ed. R. R. Watson, V. R. Preedy and S. Zibadi, Academic Press, San Diego, 2014, pp. 275–288

Akinwumi B. C. Bordun K.-A. M. Anderson H. D. Int. J. Mol. Sci. 2018;19:792. doi: 10.3390/ijms19030792. PubMed DOI PMC

Dvorakova M. Landa P. Pharmacol. Res. 2017;124:126–145. doi: 10.1016/j.phrs.2017.08.002. PubMed DOI

Simmons D. L. Botting R. M. Hla T. Pharmacol. Rev. 2004;56:387–437. doi: 10.1124/pr.56.3.3. PubMed DOI

Murias M. Handler N. Erker T. Pleban K. Ecker G. Saiko P. Szekeres T. Jäger W. Bioorg. Med. Chem. 2004;12:5571–5578. doi: 10.1016/j.bmc.2004.08.008. PubMed DOI

Subbaramaiah K. Chung W. J. Michaluart P. Telang N. Tanabe T. Inoue H. Jang M. Pezzuto J. M. Dannenberg A. J. J. Biol. Chem. 1998;273:21875–21882. doi: 10.1074/jbc.273.34.21875. PubMed DOI

Yang T. Fang L. Rimando A. M. Sobolev V. Mockaitis K. Medina-Bolivar F. Plant Physiol. 2016;171:2483–2498. doi: 10.1104/pp.16.00610. PubMed DOI PMC

Brezani V. Smejkal K. Hosek J. Tomasova V. Curr. Med. Chem. 2018;25:1094–1159. doi: 10.2174/0929867324666170810161157. PubMed DOI

Lelakova V. Hosek J. Bobal P. Pizova H. Gazdova M. Malanik M. Jakubczyk K. Vesely O. Landa P. Temml V. Daniela S. Prachyawarakorn V. Ren G. Zpurny F. Oravec M. Smejkal K. J. Nat. Prod. 2019;82:1839–1848. doi: 10.1021/acs.jnatprod.9b00081. PubMed DOI

Filho R. B. Gottiieb O. R. Mourão A. P. Da Rocha A. I. Oliveira F. S. Phytochemistry. 1975;14:1454–1456. doi: 10.1016/S0031-9422(00)98664-3. DOI

Lima N. M. Andrade J. I. A. Lima K. C. S. dos Santos F. N. Barison A. Salomé K. S. Matsuura T. Nunez C. V. Nat. Prod. Res. 2013;27:425–432. doi: 10.1080/14786419.2012.733387. PubMed DOI

Horner L. Hoffmann H. Wippel H. G. Klahre G. Chem. Ber. 1959;92:2499–2505. doi: 10.1002/cber.19590921017. DOI

Wadsworth W. S. Emmons W. D. J. Am. Chem. Soc. 1961;83:1733–1738. doi: 10.1021/ja01468a042. DOI

Lelakova V. Smejkal K. Jakubczik K. Vesely O. Landa P. Vaclavik J. Bobal P. Pizova H. Temml V. Steinacher T. Daniela S. Granica S. Hanakova Z. Hosek J. Food Chem. 2019;285:431–440. doi: 10.1016/j.foodchem.2019.01.128. PubMed DOI

Madhushaw R. J. Lo C.-Y. Hwang C.-W. Su M.-D. Shen H.-C. Pal S. Shaikh I. R. Liu R.-S. J. Am. Chem. Soc. 2004;126:15560–15565. doi: 10.1021/ja045516n. PubMed DOI

Tucker C. E. Majid T. N. Knochel P. J. Am. Chem. Soc. 1992;114:3983–3985. doi: 10.1021/ja00036a060. DOI

Anson C. E. Creaser C. S. Malkov A. V. Mojovic L. Stephenson G. R. J. Organomet. Chem. 2003;668:101–122. doi: 10.1016/S0022-328X(02)02146-0. DOI

Maiti A. Cuendet M. Croy V. L. Endringer D. C. Pezzuto J. M. Cushman M. J. Med. Chem. 2007;50:2799–2806. doi: 10.1021/jm070109i. PubMed DOI

Davis M. C. Groshens T. J. Tetrahedron Lett. 2012;53:3521–3523. doi: 10.1016/j.tetlet.2012.04.132. DOI

Arbuzov A. E. J. Russ. Phys. Chem. Soc. 1906;38:687.

Michaelis A. Kaehne R. Ber. Dtsch. Chem. Ges. 1898;31:1048–1055. doi: 10.1002/cber.189803101190. DOI

Shahane S. Louafi F. Moreau J. Hurvois J.-P. Renaud J.-L. van de Weghe P. Roisnel T. Eur. J. Org. Chem. 2008:4622–4631. doi: 10.1002/ejoc.200800512. DOI

Parihar S. Kumar A. Chaturvedi A. K. Sachan N. K. Luqman S. Changkija B. Manohar M. Prakash O. Chanda D. Khan F. Chanotiya C. S. Shanker K. Dwivedi A. Konwar R. Negi A. S. J. Steroid Biochem. 2013;137:332–344. doi: 10.1016/j.jsbmb.2013.02.009. PubMed DOI

Smidrkal J. Harmatha J. Budesinsky M. Vokac K. Zidek Z. Kmonickova E. Merkl R. Filip V. Collect. Czech. Chem. C. 2010;75:175–186. doi: 10.1135/cccc2009531. DOI

Wilhelm H. Wessjohann L. A. Tetrahedron. 2006;62:6961–6966. doi: 10.1016/j.tet.2006.04.060. DOI

Kitamura T. Imagawa T. Kawanisi M. Tetrahedron. 1978;34:3451–3457. doi: 10.1016/0040-4020(78)80232-4. DOI

Liu J.-K. Gu W. Cheng X.-R. Cheng J.-P. Zhou W.-X. Nie A.-H. Chin. Chem. Lett. 2015;26:1327–1330. doi: 10.1016/j.cclet.2015.07.020. DOI

Shao L. Hewitt M. Jerussi T. P. Wu F. Malcolm S. Grover P. Fang K. Koch P. Senanayake C. Bhongle N. Ribe S. Bakale R. Currie M. Bioorg. Med. Chem. Lett. 2008;18:1674–1680. doi: 10.1016/j.bmcl.2008.01.051. PubMed DOI

Zuo L. Yao S. Wang W. Duan W. Tetrahedron Lett. 2008;49:4054–4056. doi: 10.1016/j.tetlet.2008.04.070. DOI

Grealis J. P. Müller-Bunz H. Ortin Y. Casey M. McGlinchey M. J. Eur. J. Org. Chem. 2013;2013:332–347. doi: 10.1002/ejoc.201201063. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...