Jet stream position explains regional anomalies in European beech forest productivity and tree growth
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, Non-U.S. Gov't
PubMed
35440102
PubMed Central
PMC9018849
DOI
10.1038/s41467-022-29615-8
PII: 10.1038/s41467-022-29615-8
Knihovny.cz E-resources
- MeSH
- Fagus * MeSH
- Climate Change MeSH
- Forests MeSH
- Air Movements MeSH
- Carbon MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Carbon MeSH
The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions.
Biological and Environmental Sciences University of Stirling Stirling Scotland FK9 4LA UK
Center for Mountain Economy CE MONT Vatra Dornei Romania
Chair of Forest Growth and Woody Biomass Production TU Dresden Dresden Germany
Dep Agricultural Forest and Food Sciences University of Turin Turin Italy
Department of Earth and Environmental Sciences University of Pavia Pavia Italy
Department of Forest Yield and Silviculture Slovenian Forestry Institute Ljubljana Slovenia
Department of Forestry University of Applied Sciences Weihenstephan Triesdorf Freising Germany
Dpto de Sistemas y Recursos Naturales Universidad Politécnica de Madrid Madrid Spain
Dpto Física de la Tierra y Astrofísica Universidad Complutense de Madrid Madrid Spain
Dpto Sistemas Físicos Químicos y Naturales Universidad Pablo de Olavide Sevilla Spain
Environmental Meteorology University of Freiburg Freiburg Germany
Faculty of Forestry Sciences Agricultural University of Tirana 1029 Kodër Kamëz Tirana Albania
Faculty of Forestry University of Agriculture in Krakow Krakow Poland
Faculty of Forestry University of Belgrade Belgrade Serbia
Faculty of Letters University of Bucharest Bucharest Romania
Forest Growth and Dendroecology University of Freiburg Freiburg Germany
Forest is life Gembloux Agro Bio Tech University of Liege Gembloux Belgium
Forest Research Institute and Southern Swedish Forest Research Centre Lomma Sweden
Institute for Advanced Study Technical University of Munich 85748 Garching Germany
Institute of Biodiversity and Ecosystem Research Bulgarian Academy of Sciences Sofia Bulgaria
Institute of Biology University of Hohenheim Stuttgart Germany
Institute of Botany and Landscape Ecology Greifswald University Greifswald Germany
Laboratory of Tree Ring Research University of Arizona Tucson AZ 85721 USA
Land Surface Atmosphere Interactions Technical University of Munich Freising Germany
National Institute for Research and Development in Forestry Marin Drăcea Voluntari Romania
Nature Rings Environmental Research and Education Mainz Germany
Pyrenean Institute of Ecology Zaragoza 50059 Spain
School of Natural Resources and the Environment University of Arizona Tucson AZ 85719 USA
Swiss Federal Institute for Forest Snow and Landscape Research WSL 8903 Birmensdorf Switzerland
Transilvania University of Brasov Brasov Romania
TUM School of Life Sciences Ecoclimatology Technical University of Munich Freising Germany
University of Applied Forest Sciences Schadenweilerhof Rottenburg am Neckar Germany
See more in PubMed
Woollings T, Hannachi A, Hoskins B. Variability of the North Atlantic eddy-driven jet stream. Q J. R. Meteorol. Soc. 2010;136:856–868. doi: 10.1002/qj.625. DOI
Coumou D, Capua DI, Vavrus G, Wang LS, Wang S. The influence of Arctic amplification on mid-latitude summer circulation. Nat. Commun. 2018;9:2959. doi: 10.1038/s41467-018-05256-8. PubMed DOI PMC
Belmecheri S, Babst F, Hudson AR, Betancourt J, Trouet V. Northern Hemisphere jet stream position indices as diagnostic tools for climate and ecosystem dynamics. Earth Interact. 2017;21:1–23. doi: 10.1175/EI-D-16-0023.1. DOI
Trouet V, Babst F, Meko M. Recent enhanced high-summer North Atlantic Jet variability emerges from three-century context. Nat. Commun. 2018;9:180. doi: 10.1038/s41467-017-02699-3. PubMed DOI PMC
Lehmann J, Coumou D. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Sci. Rep. 2015;5:17491. doi: 10.1038/srep17491. PubMed DOI PMC
Mahlstein I, Martius O, Chevalier C, Ginsbourger D. Changes in the odds of extreme events in the Atlantic basin depending on the position of the extratropical jet. Geophys. Res. Lett. 2012;39:1–6.
Röthlisberger M, Pfahl S, Martius O. Regional-scale jet waviness modulates the occurrence of midlatitude weather extremes. Geophys. Res. Lett. 2016;43:10,910–989,997. doi: 10.1002/2016GL070944. DOI
Brunner L, Schaller N, Anstey J, Sillmann J, Steiner AK. Dependence of present and future European temperature extremes on the location of atmospheric blocking. Geophys. Res. Lett. 2018;45:6311–6320. PubMed PMC
Dong B, Sutton RT, Woollings T, Hodges K. Variability of the North Atlantic summer storm track: mechanisms and impacts on European climate. Environ. Res. Lett. 2013;8:34037. doi: 10.1088/1748-9326/8/3/034037. DOI
Mann ME, et al. Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Sci. Rep. 2017;7:45242. doi: 10.1038/srep45242. PubMed DOI PMC
Coumou D, Rahmstorf S. A decade of weather extremes. Nat. Clim. Change. 2012;2:491–496. doi: 10.1038/nclimate1452. DOI
Schumacher DL, et al. Amplification of mega-heatwaves through heat torrents fuelled by upwind drought. Nat. Geosci. 2019;12:712–717. doi: 10.1038/s41561-019-0431-6. DOI
Zscheischler J, et al. Future climate risk from compound events. Nat. Clim. Change. 2018;8:469–477. doi: 10.1038/s41558-018-0156-3. DOI
Lobell DB, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980. Science. 2011;333:616–620. doi: 10.1126/science.1204531. PubMed DOI
Buras A, Rammig A, Zang CS. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences. 2020;17:1655–1672. doi: 10.5194/bg-17-1655-2020. DOI
Reichstein M, et al. Climate extremes and the carbon cycle. Nature. 2013;500:287–295. doi: 10.1038/nature12350. PubMed DOI
Frank D, et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 2015;21:2861–2880. doi: 10.1111/gcb.12916. PubMed DOI PMC
Sillmann J, et al. Understanding, modeling and predicting weather and climate extremes: challenges and opportunities. Weather Clim. Extrem. 2017;18:65–74. doi: 10.1016/j.wace.2017.10.003. DOI
Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R. The hot summer of 2010: redrawing the temperature record map of Europe. Science. 2011;332:220–224. doi: 10.1126/science.1201224. PubMed DOI
Ciais P, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature. 2005;437:529–533. doi: 10.1038/nature03972. PubMed DOI
Bastos A, Gouveia CM, Trigo RM, Running SW. Analysing the spatio-temporal impacts of the 2003 and 2010 extreme heatwaves on plant productivity in Europe. Biogeosciences. 2014;11:3421–3435. doi: 10.5194/bg-11-3421-2014. DOI
Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C. Soil moisture–atmosphere interactions during the 2003 european summer heat wave. J. Clim. 2007;20:5081–5099. doi: 10.1175/JCLI4288.1. DOI
Perkins-Kirkpatrick SE, Lewis SC. Increasing trends in regional heatwaves. Nat. Commun. 2020;11:3357. doi: 10.1038/s41467-020-16970-7. PubMed DOI PMC
Pan Y, et al. A large and persistent carbon sink in the world’s forests. Science. 2011;333:988–993. doi: 10.1126/science.1201609. PubMed DOI
Friedlingstein P, et al. Global carbon budget 2020. Earth Syst. Sci. Data. 2020;12:3269–3340. doi: 10.5194/essd-12-3269-2020. DOI
Kalnay E, et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996;77:437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2. DOI
Rammig A, et al. Coincidences of climate extremes and anomalous vegetation responses: comparing tree ring patterns to simulated productivity. Biogeosciences. 2015;12:373–385. doi: 10.5194/bg-12-373-2015. DOI
Spinoni J, Naumann G, Vogt JV, Barbosa P. The biggest drought events in Europe from 1950 to 2012. J. Hydrol. Reg. Stud. 2015;3:509–524. doi: 10.1016/j.ejrh.2015.01.001. PubMed DOI PMC
Madonna E, Li C, Grams CM, Woollings T. The link between eddy-driven jet variability and weather regimes in the North Atlantic-European sector. Q J. R. Meteorol. Soc. 2017;143:2960–2972. doi: 10.1002/qj.3155. DOI
Grams CM, Beerli R, Pfenninger S, Staffell I, Wernli H. Balancing Europe’s wind-power output through spatial deployment informed by weather regimes. Nat. Clim. Change. 2017;7:557–562. doi: 10.1038/nclimate3338. PubMed DOI PMC
Seftigen K, Frank DC, Björklund J, Babst F, Poulter B. The climatic drivers of normalized difference vegetation index and tree-ring-based estimates of forest productivity are spatially coherent but temporally decoupled in Northern Hemispheric forests. Glob. Ecol. Biogeogr. 2018;27:1352–1365. doi: 10.1111/geb.12802. DOI
Babst F, et al. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. N. Phytol. 2014;201:1289–1303. doi: 10.1111/nph.12589. PubMed DOI
Zweifel R, Sterck F. A conceptual tree model explaining legacy effects on stem growth. Front. Glob. Change. 2018;1:9. doi: 10.3389/ffgc.2018.00009. DOI
Fatichi S, Pappas C, Zscheischler J, Leuzinger S. Modelling carbon sources and sinks in terrestrial vegetation. N. Phytol. 2019;221:652–668. doi: 10.1111/nph.15451. PubMed DOI
Wu X, et al. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Glob. Chang. Biol. 2018;24:504–516. doi: 10.1111/gcb.13920. PubMed DOI
Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013;4:133–142. doi: 10.1111/j.2041-210x.2012.00261.x. DOI
Davini P, Cagnazzo C. On the misinterpretation of the North Atlantic Oscillation in CMIP5 models. Clim. Dyn. 2014;43:1497–1511. doi: 10.1007/s00382-013-1970-y. DOI
Pfahl, S. & Wernli, H. Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophys. Res. Lett.39 (2012).
Drouard M, Woollings T. Contrasting mechanisms of summer blocking over western Eurasia. Geophys. Res. Lett. 2018;45:12,040–12,048. doi: 10.1029/2018GL079894. DOI
Bastos A, et al. European land CO2 sink influenced by NAO and East-Atlantic pattern coupling. Nat. Commun. 2016;7:10315. doi: 10.1038/ncomms10315. PubMed DOI PMC
Ascoli D, et al. Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction. Nat. Commun. 2017;8:1–9. doi: 10.1038/s41467-017-02348-9. PubMed DOI PMC
Sousa PM, et al. Responses of European precipitation distributions and regimes to different blocking locations. Clim. Dyn. 2017;48:1141–1160. doi: 10.1007/s00382-016-3132-5. DOI
Hacket-Pain AJ, Cavin L, Friend AD, Jump AS. Consistent limitation of growth by high temperature and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate. Eur. J. Res. 2016;135:897–909. doi: 10.1007/s10342-016-0982-7. DOI
Cavin L, Jump AS. Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Glob. Chang. Biol. 2017;23:362–379. doi: 10.1111/gcb.13366. PubMed DOI
Leuschner C. Drought response of European beech (Fagus sylvatica L.): A review. Perspect. Plant Ecol. Evol. Syst. 2020;47:125576. doi: 10.1016/j.ppees.2020.125576. DOI
Muffler L, et al. Lowest drought sensitivity and decreasing growth synchrony towards the dry distribution margin of European beech. J. Biogeogr. 2020;47:1910–1921. doi: 10.1111/jbi.13884. DOI
Wang F, et al. Seedlings from marginal and core populations of European beech (Fagus sylvatica L.) respond differently to imposed drought and shade. Trees. 2021;35:53–67. doi: 10.1007/s00468-020-02011-9. DOI
Hall RJ, Jones JM, Hanna E, Scaife AA, Erdélyi R. Drivers and potential predictability of summertime North Atlantic polar front jet variability. Clim. Dyn. 2017;48:3869–3887. doi: 10.1007/s00382-016-3307-0. DOI
Screen JA, Simmonds I. Amplified mid-latitude planetary waves favour particular regional weather extremes. Nat. Clim. Change. 2014;4:704–709. doi: 10.1038/nclimate2271. DOI
Kornhuber K, et al. Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern. Environ. Res. Lett. 2019;14:54002. doi: 10.1088/1748-9326/ab13bf. DOI
Shepherd TG. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 2014;7:703–708. doi: 10.1038/ngeo2253. DOI
Peings Y, Cattiaux J, Vavrus SJ, Magnusdottir G. Projected squeezing of the wintertime North-Atlantic jet. Environ. Res. Lett. 2018;13:74016. doi: 10.1088/1748-9326/aacc79. DOI
Matsueda M, Endo H. The robustness of future changes in Northern Hemisphere blocking: a large ensemble projection with multiple sea surface temperature patterns. Geophys. Res. Lett. 2017;44:5158–5166. doi: 10.1002/2017GL073336. DOI
Kwon YO, Camacho A, Martinez C, Seo H. North Atlantic winter eddy-driven jet and atmospheric blocking variability in the Community Earth System Model version 1 Large Ensemble simulations. Clim. Dyn. 2018;51:3275–3289. doi: 10.1007/s00382-018-4078-6. DOI
Cohen J, et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Change. 2020;10:20–29. doi: 10.1038/s41558-019-0662-y. DOI
de Vries H, Woollings T, Anstey J, Haarsma RJ, Hazeleger W. Atmospheric blocking and its relation to jet changes in a future climate. Clim. Dyn. 2013;41:2643–2654. doi: 10.1007/s00382-013-1699-7. DOI
Woollings T, et al. Blocking and its response to climate change. Curr. Clim. Chang. Rep. 2018;4:287–300. doi: 10.1007/s40641-018-0108-z. PubMed DOI PMC
Anderegg WRL, et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science. 2015;349:528–532. doi: 10.1126/science.aab1833. PubMed DOI
Sousa-Silva R, et al. Tree diversity mitigates defoliation after a drought-induced tipping point. Glob. Chang. Biol. 2018;24:4304–4315. doi: 10.1111/gcb.14326. PubMed DOI
Magri D. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica) J. Biogeogr. 2008;35:450–463. doi: 10.1111/j.1365-2699.2007.01803.x. DOI
Cailleret M, et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Chang. Biol. 2017;23:1675–1690. doi: 10.1111/gcb.13535. PubMed DOI
Dorado-Liñán I, et al. Geographical adaptation prevails over species-specific determinism in trees’ vulnerability to climate change at Mediterranean rear-edge forests. Glob. Chan. Biol. 2019;25:1296–1314. doi: 10.1111/gcb.14544. PubMed DOI
DeSoto L, et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 2020;11:545. doi: 10.1038/s41467-020-14300-5. PubMed DOI PMC
Hacket-Pain AJ, Friend AD, Lageard JGA, Thomas PA. The influence of masting phenomenon on growth–climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol. 2015;35:319–330. doi: 10.1093/treephys/tpv007. PubMed DOI
Bréda N, Huc R, Granier A, Dreyer E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. Sci. 2006;63:625–644. doi: 10.1051/forest:2006042. DOI
Hacket-Pain AJ, et al. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol. Lett. 2018;21:1833–1844. doi: 10.1111/ele.13158. PubMed DOI PMC
Popkin G. How much can forests fight climate change? Nature. 2019;565:280–282. doi: 10.1038/d41586-019-00122-z. PubMed DOI
Davini P, D’Andrea F. Northern Hemisphere atmospheric blocking representation in global climate models: twenty years of improvements? J. Clim. 2016;29:8823–8840. doi: 10.1175/JCLI-D-16-0242.1. DOI
Barton NP, Ellis AW. Variability in wintertime position and strength of the North Pacific jet stream as represented by re-analysis data. Int. J. Climatol. 2009;29:851–862. doi: 10.1002/joc.1750. DOI
Doblas-Reyes FJ, Casado MJ, Pastor MA. Sensitivity of the Northern Hemisphere blocking frequency to the detection index. J. Geophys. Res. Atmos. 2002;107:D2. doi: 10.1029/2000JD000290. DOI
Cook ER, Peters K. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 1981;41:45–53.
Sitch S, et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences. 2015;12:653–679. doi: 10.5194/bg-12-653-2015. DOI
Team, R. Core (2020). R A Lang. Environ. Stat. Comput. R Found. Stat. Comput. Vienna, Austria. URL https://www.R-project.org (2020).
Bunn AG. A dendrochronology program library in R (dplR) Dendrochronologia. 2008;26:115–124. doi: 10.1016/j.dendro.2008.01.002. DOI
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, (2015).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw.82, 1–26 (2017).
Barton, K. Mu-MIn: Multi-model inference. R Package Version 0.12.2/r18, (2009) http://R-Forge.R-project.org/projects/mumin/
Jet stream controls on European climate and agriculture since 1300 CE
Responses of stem growth and canopy greenness of temperate conifers to dry spells
figshare
10.6084/m9.figshare.c.5660008