Jet stream controls on European climate and agriculture since 1300 CE

. 2024 Oct ; 634 (8034) : 600-608. [epub] 20240925

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, historické články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39322676
Odkazy

PubMed 39322676
PubMed Central PMC11485261
DOI 10.1038/s41586-024-07985-x
PII: 10.1038/s41586-024-07985-x
Knihovny.cz E-zdroje

The jet stream is an important dynamic driver of climate variability in the Northern Hemisphere mid-latitudes1-3. Modern variability in the position of summer jet stream latitude in the North Atlantic-European sector (EU JSL) promotes dipole patterns in air pressure, temperature, precipitation and drought between northwestern and southeastern Europe. EU JSL variability and its impacts on regional climatic extremes and societal events are poorly understood, particularly before anthropogenic warming. Based on three temperature-sensitive European tree-ring records, we develop a reconstruction of interannual summer EU JSL variability over the period 1300-2004 CE (R2 = 38.5%) and compare it to independent historical documented climatic and societal records, such as grape harvest, grain prices, plagues and human mortality. Here we show contrasting summer climate extremes associated with EU JSL variability back to 1300 CE as well as biophysical, economic and human demographic impacts, including wildfires and epidemics. In light of projections for altered jet stream behaviour and intensified climate extremes, our findings underscore the importance of considering EU JSL variability when evaluating amplified future climate risk.

Belgian Climate Centre Uccle Belgium

Bolin Centre for Climate Research Stockholm University Stockholm Sweden

Chair of Forest Growth and Dendroecology Institute of Forest Sciences University of Freiburg Freiburg Germany

Dendrology Department University of Forestry Sofia Bulgaria

Departamento de Sistemas y Recursos Naturales Universidad Politécnica de Madrid Madrid Spain

Department of Botany University of Innsbruck Innsbruck Austria

Department of Geography Faculty of Science Masaryk University Brno Czech Republic

Department of Geography Johannes Gutenberg University Mainz Germany

Department of Geography University of Cambridge Cambridge UK

Department of History Stockholm University Stockholm Sweden

Forest Is Life TERRA Teaching and Research Centre Gembloux Agro Bio Tech University of Liège Gembloux Belgium

Geschäftsbereich Klima und Umwelt Deutscher Wetterdienst Offenbach Germany

Global Change Research Institute Czech Academy of Sciences Brno Czech Republic

Laboratory of Tree Ring Research University of Arizona Tucson AZ USA

Nature Rings Environmental Research and Education Mainz Germany

Panel on Planetary Thinking Justus Liebig University Gießen Germany

Regional Climate Group Department of Earth Sciences University of Gothenburg Gothenburg Sweden

School of Earth and Environmental Sciences University of St Andrews Fife UK

Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity College of Urban and Environmental Sciences Northwest University Xi'an China

State Key Laboratory of Cryospheric Sciences Northwest Institute of Eco Environment and Resources Chinese Academy of Sciences Lanzhou China

Stockholm Tree Ring Laboratory Department of Physical Geography Stockholm University Stockholm Sweden

Swedish Collegium for Advanced Study Linneanum Uppsala Sweden

Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland

Trinity Centre for Environmental Humanities and Department of History Trinity College Dublin Dublin Ireland

Zobrazit více v PubMed

Stendel, M., Francis, J., White, R., Williams, P. D. & Woollings, T. in Climate Change 3rd edn (ed. Letcher, T. M.) 327–357 (Elsevier, 2021).

Woollings, T., Drouard, M., O’Reilly, C. H., Sexton, D. M. H. & McSweeney, C. Trends in the atmospheric jet streams are emerging in observations and could be linked to tropical warming. Commun. Earth Environ.4, 125 (2023).

Galfi, V. M. & Messori, G. Persistent anomalies of the North Atlantic jet stream and associated surface extremes over Europe. Environ. Res. Lett.18, 024017 (2023).

Wahl, E. R., Zorita, E., Trouet, V. & Taylor, A. H. Jet stream dynamics, hydroclimate, and fire in California from 1600 ce to present. Proc. Natl Acad. Sci. USA116, 5393–5398 (2019). PubMed PMC

Robinson, A., Lehmann, J., Barriopedro, D., Rahmstorf, S. & Coumou, D. Increasing heat and rainfall extremes now far outside the historical climate. NPJ Clim. Atmos. Sci.4, 45 (2021).

Faranda, D., Messori, G., Jezequel, A., Vrac, M. & Yiou, P. Atmospheric circulation compounds anthropogenic warming and impacts of climate extremes in Europe. Proc. Natl Acad. Sci. USA120, e2214525120 (2023). PubMed PMC

Shaw, T. A. & Miyawaki, O. Fast upper-level jet stream winds get faster under climate change. Nat. Clim. Change14, 61–67 (2024).

Coumou, D., Petoukhov, V., Rahmstorf, S., Petri, S. & Schellnhuber, H. J. Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proc. Natl Acad. Sci. USA111, 12331–12336 (2014). PubMed PMC

AghaKouchak, A. et al. Climate extremes and compound hazards in a warming world. Annu. Rev. Earth Planet. Sci.48, 519–548 (2020).

European Environment Agency. The First European Climate Risk Assessment (EUCRA) Executive Summary (European Environment Agency, 2024).

Balch, J. K. et al. Social‐environmental extremes: rethinking extraordinary events as outcomes of interacting biophysical and social systems. Earth’s Future8, e2019EF001319 (2020).

Beillouin, D., Schauberger, B., Bastos, A., Ciais, P. & Makowski, D. Impact of extreme weather conditions on European crop production in 2018. Philos. Trans. R. Soc. B. Biol. Sci.375, 20190510 (2020). PubMed PMC

Zampieri, M., Ceglar, A., Dentener, F. & Toreti, A. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett.12, 064008 (2017).

Zhao, C. et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl Acad. Sci. USA114, 9326–9331 (2017). PubMed PMC

Sah, R. P. et al. Impact of water deficit stress in maize: phenology and yield components. Sci. Rep.10, 2944 (2020). PubMed PMC

Helman, D. & Bonfil, D. J. Six decades of warming and drought in the world’s top wheat-producing countries offset the benefits of rising CO2 to yield. Sci. Rep.12, 7921 (2022). PubMed PMC

Kornhuber, K. et al. Risks of synchronized low yields are underestimated in climate and crop model projections. Nat. Commun.14, 3528 (2023). PubMed PMC

Mahlstein, I., Martius, O., Chevalier, C. & Ginsbourger, D. Changes in the odds of extreme events in the Atlantic basin depending on the position of the extratropical jet. Geophys. Res. Lett.39, L22805 (2012).

Belmecheri, S., Babst, F., Hudson, A. R., Betancourt, J. & Trouet, V. Northern Hemisphere jet stream position indices as diagnostic tools for climate and ecosystem dynamics. Earth Interact.21, 1–23 (2017).

Dorado-Liñán, I. et al. Jet stream position explains regional anomalies in European beech forest productivity and tree growth. Nat. Commun.13, 2015 (2022). PubMed PMC

Jain, P. & Flannigan, M. The relationship between the polar jet stream and extreme wildfire events in North America. J. Clim.34, 6247–6265 (2021).

Lehmann, J. & Coumou, D. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Sci Rep.5, 17491 (2015). PubMed PMC

Trouet, V., Babst, F. & Meko, M. Recent enhanced high-summer North Atlantic Jet variability emerges from three-century context. Nat. Commun.9, 180 (2018). PubMed PMC

Brunner, L., Schaller, N., Anstey, J., Sillmann, J. & Steiner, A. K. Dependence of present and future European temperature extremes on the location of atmospheric blocking. Geophys. Res. Lett.45, 6311–6320 (2018). PubMed PMC

Weiland, R. S., van der Wiel, K., Selten, F. & Coumou, D. Intransitive atmosphere dynamics leading to persistent hot-dry or cold-wet European summers. J. Clim.34, 1–48 (2021).

Gagen, M. H. et al. North Atlantic summer storm tracks over Europe dominated by internal variability over the past millennium. Nat. Geosci.9, 630–635 (2016).

Ljungqvist, F. C., Seim, A. & Huhtamaa, H. Climate and society in European history. WIREs Clim. Change12, e691 (2021).

Campbell, B. M. & Ludlow, F. Climate, disease and society in late-medieval Ireland. Proc. R. Ir. Acad. Archaeol. Culture Hist. Lit.120C, 159–252 (2020).

Camenisch, C. et al. The 1430s: a cold period of extraordinary internal climate variability during the early Sporer Minimum with social and economic impacts in north-western and central Europe. Clim. Past12, 2107–2126 (2016).

Webber, H. et al. Diverging importance of drought stress for maize and winter wheat in Europe. Nat. Commun.9, 4249 (2018). PubMed PMC

Rydval, M. et al. Reconstructing 800 years of summer temperatures in Scotland from tree rings. Clim. Dyn.49, 2951–2974 (2017).

Büntgen, U., Frank, D. C., Nievergelt, D. & Esper, J. Summer temperature variations in the European Alps, A.D. 755–2004. J. Clim.19, 5606–5623 (2006).

Wanner, H., Pfister, C. & Neukom, R. The variable European Little Ice Age. Quat. Sci. Rev.287, 107531 (2022).

Luterbacher, J. & Pfister, C. The year without a summer. Nat. Geosci.8, 246–248 (2015).

Luterbacher, J. et al. Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim. Dyn.18, 545–561 (2002).

Casty, C., Raible, C. C., Stocker, T. F., Wanner, H. & Luterbacher, J. A European pattern climatology 1766–2000. Clim. Dyn.29, 791–805 (2007).

Cook, E. R. et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv.1, e1500561 (2015). PubMed PMC

Ljungqvist, F. C. et al. Climatic signatures in early modern European grain harvest yields. Clim. Past19, 2463–2491 (2023).

Esper, J. et al. Environmental drivers of historical grain price variations in Europe. Clim. Res.72, 39–52 (2017).

Ljungqvist, F. C. et al. The significance of climate variability on early modern European grain prices. Cliometrica16, 29–77 (2022).

Pfister, C. & Wanner, H. Climate and Society in Europe: The Last Thousand Years (Haupt, 2021).

Rharrabti, Y., Villegas, D., Royo, C., Martos-Núñez, V. & García del Moral, L. F. Durum wheat quality in Mediterranean environments: II. Influence of climatic variables and relationships between quality parameters. Field Crops Res.80, 133–140 (2003).

Yang, C., Fraga, H., van Ieperen, W. & Santos, J. A. Assessing the impacts of recent-past climatic constraints on potential wheat yield and adaptation options under Mediterranean climate in southern Portugal. Agric. Syst.182, 102844 (2020).

Campbell, B. M. The Great Transition: Climate, Disease and Society in the Late-Medieval World (Cambridge Univ. Press, 2016).

Büntgen, U., Ginzler, C., Esper, J., Tegel, W. & McMichael, A. J. Digitizing historical plague. Clin. Infect. Dis.55, 1586–1588 (2012). PubMed PMC

Degroot, D. et al. Towards a rigorous understanding of societal responses to climate change. Nature591, 539–550 (2021). PubMed

Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. M. & García-Herrera, R. The hot summer of 2010: redrawing the temperature record map of Europe. Science332, 220–224 (2011). PubMed

Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science368, 314–318 (2020). PubMed

Sun, X. et al. Enhanced jet stream waviness induced by suppressed tropical Pacific convection during boreal summer. Nat. Commun.13, 1288 (2022). PubMed PMC

Van Oldenborgh, G. J. et al. Attributing and projecting heatwaves is hard: we can do better. Earths Future10, e2021EF002271 (2022).

van Engelen, A. F. V., Buisman, J. & Ijnsen, F. in History and Climate: Memories of the Future? (eds Jones, P. D. et al.) 101–124 (Springer, 2001).

Camuffo, D. et al. 500-Year temperature reconstruction in the Mediterranean Basin by means of documentary data and instrumental observations. Clim. Change101, 169–199 (2010).

Cole, G. A. & Marsh, T. J. in Climate Variability and Change: Hydrological Impacts (eds Demuth, S. et al.) Vol. 308, 483–489 (2006).

Pavese, M. P., Banzon, V., Colacino, M., Gregori, G. P. & Pasqua, M. in Climate Since AD 1500 (eds Bradley, R. S. & Jones, P. D.) 155–170 (Routledge, 1992).

Kiss, A., Wilson, R. & Bariska, I. An experimental 392-year documentary-based multi-proxy (vine and grain) reconstruction of May-July temperatures for Koszeg, West-Hungary. Int. J. Biometeorol.55, 595–611 (2011). PubMed

Manley, G. Central England temperatures: monthly means 1659 to 1973. Q. J. R. Meteorol. Soc.100, 389–405 (1974).

Parker, D. & Horton, B. Uncertainties in central England temperature 1878-2003 and some improvements to the maximum and minimum series. Int. J. Climatol.25, 1173–1188 (2005).

Böhm, R. et al. The early instrumental warm-bias: a solution for long central European temperature series 1760–2007. Clim. Change101, 41–67 (2010).

Murphy, C. et al. A 305-year continuous monthly rainfall series for the island of Ireland (1711–2016). Clim. Past14, 413–440 (2018).

Alexander, L. V. & Jones, P. D. Updated precipitation series for the U.K. and discussion of recent extremes. Atmos. Sci. Lett.1, 142–150 (2001).

Rácz, L. Carpathian Basin – the winner of the Little Ice Age climate changes: long-term time-series analysis of grain, grape and hay harvests between 1500 and 1850. Econ. Ecohist.16, 81–96 (2020).

Clark, G. in Research in Economic History Vol. 22, 41–123 (Emerald, 2004).

Barton, N. P. & Ellis, A. W. Variability in wintertime position and strength of the North Pacific jet stream as represented by re-analysis data: winter North Pacific jet stream variability. Int. J. Climatol.29, 851–862 (2009).

Woollings, T., Hannachi, A. & Hoskins, B. Variability of the North Atlantic eddy-driven jet stream. Q. J. R. Meteorol. Soc.136, 856–868 (2010).

Harnik, N., Galanti, E., Martius, O. & Adam, O. The anomalous merging of the African and North Atlantic jet streams during the Northern Hemisphere winter of 2010. J. Clim.27, 7319–7334 (2014).

Lachmy, O. & Harnik, N. Wave and jet maintenance in different flow regimes. J. Atmos. Sci.73, 2465–2484 (2016).

Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteor. Soc.77, 437–472 (1996).

Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data7, 109 (2020). PubMed PMC

Trouet, V. & Van Oldenborgh, G. J. KNMI Climate Explorer: a web-based research tool for high-resolution paleoclimatology. Tree-Ring Res.69, 3–13 (2013).

Engeland, K., Hisdal, H. & Frigessi, A. Practical extreme value modelling of hydrological floods and droughts: a case study. Extremes7, 5–30 (2005).

Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc B57, 289–300 (1995).

Wilks, D. S. “The Stippling Shows Statistically Significant Grid Points”: how research results are routinely overstated and overinterpreted, and what to do about it. Bull. Am. Meteor. Soc.97, 2263–2273 (2016).

Iizumi, T. & Sakai, T. The global dataset of historical yields for major crops 1981–2016. Sci. Data7, 97 (2020). PubMed PMC

Esper, J., Düthorn, E., Krusic, P. J., Timonen, M. & Büntgen, U. Northern European summer temperature variations over the Common Era from integrated tree-ring density records: Northern European common era summer temperatures. J. Quat. Sci.29, 487–494 (2014).

Wigley, T. M. L., Briffa, K. R. & Jones, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol.23, 201–213 (1984).

Rydval, M., Druckenbrod, D., Anchukaitis, K. J. & Wilson, R. Detection and removal of disturbance trends in tree-ring series for dendroclimatology. Can. J. Forest Res.46, 387–401 (2016).

Melvin, T. M. & Briffa, K. R. A “signal-free” approach to dendroclimatic standardisation. Dendrochronologia26, 71–86 (2008).

Briffa, K. R. & Melvin, T. M. in Dendroclimatology: Progress and Prospects (eds Hughes, M. K.) 113–145 (Springer, 2011).

Trouet, V., Panayotov, M. P., Ivanova, A. & Frank, D. A pan-European summer teleconnection mode recorded by a new temperature reconstruction from the northeastern Mediterranean (AD 1768–2008). Holocene22, 887–898 (2012).

Esper, J. et al. Eastern Mediterranean summer temperatures since 730 CE from Mt. Smolikas tree-ring densities. Clim. Dyn.54, 1367–1382 (2020).

Klippel, L. et al. A 1200+ year reconstruction of temperature extremes for the northeastern Mediterranean region. Int. J. Climatol.39, 2336–2350 (2019).

Klesse, S., Ziehmer, M., Rousakis, G., Trouet, V. & Frank, D. Synoptic drivers of 400 years of summer temperature and precipitation variability on Mt. Olympus, Greece. Clim. Dyn.45, 807–824 (2015).

Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull.43, 69–78 (1983).

Trouet, V. A tree-ring based late summer temperature reconstruction (ad 1675–1980) for the Northeastern Mediterranean. Radiocarbon56, S69–S78 (2014).

Helama, S., Melvin, T. M. & Briffa, K. R. Regional curve standardization: state of the art. Holocene27, 172–177 (2017).

Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology: Applications in the Environmental Sciences (Kluwer Academic, 1990).

Cook, E. R. & Peters, K. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene7, 361–370 (1997).

Bunn, A. G. Statistical and visual crossdating in R using the dplR library. Dendrochronologia28, 251–258 (2010).

Deser, C., Terray, L. & Phillips, A. S. Forced and internal components of winter air temperature trends over North America during the past 50 Years: mechanisms and implications. J. Clim.29, 2237–2258 (2016).

Gagen, M. et al. Exorcising the ‘segment length curse’: summer temperature reconstruction since AD 1640 using non-detrended stable carbon isotope ratios from pine trees in northern Finland. Holocene17, 435–446 (2007).

Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteor. Soc.79, 61–78 (1998).

Christopoulou, A., Fulé, P. Z., Andriopoulos, P., Sarris, D. & Arianoutsou, M. Dendrochronology-based fire history of Pinus nigra forests in Mount Taygetos, Southern Greece. For. Ecol. Manage.293, 132–139 (2013).

Vasileva, P. & Panayotov, M. Dating fire events in Pinus heldreichii forests by analysis of tree ring cores. Dendrochronologia38, 98–102 (2016).

Şahan, E. A. et al. Fire history of Pinus nigra in Western Anatolia: a first dendrochronological study. Dendrochronologia69, 125874 (2021).

Rey, D. & Neuhäuser, M. in International Encyclopedia of Statistical Science (ed. Lovric, M.) (Springer, 2011).

Xu, G., Broadman, E., Dorado-Liñán, I., & Trouet, V. Jet stream controls on European climate and agriculture since 1300 ce, Zenodo, V1, 10.5281/zenodo.13120683 (2024). PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Jet stream controls on European climate and agriculture since 1300 CE

. 2024 Oct ; 634 (8034) : 600-608. [epub] 20240925

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...