A global analysis of aerial displays in passerines revealed an effect of habitat, mating system and migratory traits
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35440206
PubMed Central
PMC9019522
DOI
10.1098/rspb.2022.0370
Knihovny.cz E-zdroje
- Klíčová slova
- gestural displays, motor performance, phylogenetic comparative analysis, sensory drive hypothesis, signalling traits, visual ornaments,
- MeSH
- Bayesova věta MeSH
- ekosystém MeSH
- fenotyp MeSH
- Passeriformes * MeSH
- rozmnožování MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Aerial displaying is a flamboyant part of the sexual behaviour of several volant animal groups, including birds. Nevertheless, little attention has been focused on identifying correlates of large-scale diversity in this trait. In this study, we scored the presence and absence of aerial displays in males of 1732 species of passerine birds (Passeriformes) and employed Bayesian phylogenetically informed mixed models to test for associations between aerial displays and a set of life-history and environmental predictors. Our multi-variate models revealed that species with males that perform aerial displays inhabited open rather than closed (forested) habitats. These species also exhibited higher levels of polygyny, had more elongated wings, migrated over longer distances and bred at higher latitudes. When we included species where the sexual function of displays has not been explicitly described but is likely to occur, we found that aerial displaying was also associated with smaller body size and increased male plumage coloration. Our results suggest that both sexual selection and natural selection have been important sources of selection on aerial displays in passerines.
Department of Zoology Faculty of Science Charles University Viničná 7 Prague 12844 Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Květná 8 Brno 603 65 Czech Republic
Zobrazit více v PubMed
Andersson M. 1982. Sexual selection, natural selection and quality advertisement. Biol. J. Linn. Soc. 17, 375-393. (10.1111/j.1095-8312.1982.tb02028.x) DOI
Price T. 1998. Sexual selection and natural selection in bird speciation. Phil. Trans. R. Soc. Lond. B 353, 251-260. (10.1098/rstb.1998.0207) DOI
Stuart-Fox DM, Ord TJ. 2004. Sexual selection, natural selection and the evolution of dimorphic coloration and ornamentation in agamid lizards. Proc. R. Soc. B 271, 2249-2255. (10.1098/rspb.2004.2802) PubMed DOI PMC
Bell RC, Zamudio KR. 2012. Sexual dichromatism in frogs: natural selection, sexual selection and unexpected diversity. Proc. R. Soc. B 279, 4687-4693. (10.1098/rspb.2012.1609) PubMed DOI PMC
Emlen DJ, Hunt J, Simmons LW. 2005. Evolution of sexual dimorphism and male dimorphism in the expression of beetle horns: phylogenetic evidence for modularity, evolutionary lability, and constraint. Am. Nat. 166, 42-68. (10.1086/444599) PubMed DOI
Morina DL, Demarais S, Strickland BK, Larson JE. 2018. While males fight, females choose: male phenotypic quality informs female mate choice in mammals. Anim. Behav. 138, 69-74. (10.1016/J.ANBEHAV.2018.02.004) DOI
Basolo AL. 1990. Female preference predates the evolution of the sword in swordtail fish. Science 250, 808-810. (10.1126/science.250.4982.808) PubMed DOI
Andersson M. 1982. Female choice selects for extreme tail length in a widowbird. Nature 299, 818-820. (10.1038/299818a0) DOI
Tigreros N, Mowery MA, Lewis SM. 2014. Male mate choice favors more colorful females in the gift-giving cabbage butterfly. Behav. Ecol. Sociobiol. 68, 1539-1547. (10.1007/s00265-014-1764-1) DOI
Maan ME, Seehausen O, Söderberg L, Johnson L, Ripmeester EAP, Mrosso HDJ, Taylor MI, Van Dooren TJM, Van Alphen JJM.. 2004. Intraspecific sexual selection on a speciation trait, male coloration, in the Lake Victoria cichlid Pundamilia nyererei. Proc. R. Soc. B 271, 2445-2452. (10.1098/rspb.2004.2911) PubMed DOI PMC
Dale J, Dey CJ, Delhey K, Kempenaers B, Valcu M. 2015. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367-370. (10.1038/nature15509) PubMed DOI
Darwin C. 1871. The descent of man and selection in relation to sex. London, UK: Murray.
Menezes JCT, Santos ESA. 2020. Habitat structure drives the evolution of aerial displays in birds. J. Anim. Ecol. 89, 482-493. (10.1111/1365-2656.13132) PubMed DOI
Hedenström A, Møller AP. 1992. Morphological adaptations to song flight in passerine birds: a comparative study. Proc. R. Soc. Lond. B 247, 183-187. (10.1098/rspb.1992.0026) DOI
Székely T, Reynolds JD, Figuerola J. 2000. Sexual size dimorphism in shorebirds, gulls, and alcids: the influence of sexual and natural selection. Evolution 54, 1404-1413. (10.1111/j.0014-3820.2000.tb00572.x) PubMed DOI
Lundberg K, Gerell R. 1986. Territorial advertisement and mate attraction in the bat Pipistrellus pipistrellus. Ethology 71, 115-124. (10.1111/j.1439-0310.1986.tb00577.x) DOI
McCracken GF, Wilkinson GS. 2000. Bat mating systems. In Reproductive biology of bats (eds Crichton EG, Krutzsch PH), pp. 321-362. London, UK: Academic Press.
Crompton B, Thomason JC, McLachlan A. 2003. Mating in a viscous universe: the race is to the agile, not to the swift. Proc. R. Soc. Lond. B 270, 1991-1995. (10.1098/rspb.2003.2477) PubMed DOI PMC
Alcock J. 1987. Leks and hilltopping in insects. J. Nat. Hist. 21, 319-328. (10.1080/00222938700771041) DOI
Rayner JMV. 1988. Form and function in avian flight. In Current ornithology (ed. Johnston RF), pp. 1-66. Boston, MA: Springer.
Norberg UM. 2002. Structure, form, and function of flight in engineering and the living world. J. Morphol. 252, 52-81. (10.1002/jmor.10013) PubMed DOI
Lima SL, Dill LM. 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68, 619-640. (10.1139/z90-092) DOI
Endler JA. 1992. Signals, signal conditions, and the direction of evolution. Am. Nat. 139, S125-S153. (10.1086/285308) DOI
Cummings ME, Endler JA. 2018. 25 Years of sensory drive: the evidence and its watery bias. Curr. Zool. 64, 471-484. (10.1093/cz/zoy043) PubMed DOI PMC
Ord TJ, Blumstein DT, Evans CS. 2002. Ecology and signal evolution in lizards. Biol. J. Linn. Soc. 77, 127-148. (10.1046/j.1095-8312.2002.00100.x) DOI
Ord TJ, Martins EP. 2006. Tracing the origins of signal diversity in anole lizards: phylogenetic approaches to inferring the evolution of complex behaviour. Anim. Behav. 71, 1411-1429. (10.1016/j.anbehav.2005.12.003) DOI
Leal M, Fleishman LJ. 2004. Differences in visual signal design and detectability between allopatric populations of anolis lizards. Am. Nat. 163, 26-39. (10.1086/379794) PubMed DOI
Endler JA. 1990. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41, 315-352. (10.1111/j.1095-8312.1990.tb00839.x) DOI
Uy JAC, Endler JA. 2004. Modification of the visual background increases the conspicuousness of golden-collared manakin displays. Behav. Ecol. 15, 1003-1010. (10.1093/beheco/arh106) DOI
Endler JA, Thery M. 1996. Interacting effects of lek placement, display behavior, ambient light, and color patterns in three neotropical forest-dwelling birds. Am. Nat. 148, 421-452. (10.1086/285934) DOI
Ord TJ, Peters RA, Clucas B, Stamps JA. 2007. Lizards speed up visual displays in noisy motion habitats. Proc. R. Soc. B 274, 1057-1062. (10.1098/rspb.2006.0263) PubMed DOI PMC
Székely T, Freckleton RP, Reynolds JD. 2004. Sexual selection explains Rensch's rule of size dimorphism in shorebirds. Proc. Natl Acad. Sci. USA 101, 12 224-12 227. (10.1073/pnas.0404503101) PubMed DOI PMC
Andersson M, Norberg RÅ. 1981. Evolution of reversed sexual size dimorphism and role partitioning among predatory birds, with a size scaling of flight performance. Biol. J. Linn. Soc. 15, 105-130. (10.1111/j.1095-8312.1981.tb00752.x) DOI
Krüger O. 2005. The evolution of reversed sexual size dimorphism in hawks, falcons and owls: a comparative study. Evol. Ecol. 19, 467-486. (10.1007/s10682-005-0293-9) DOI
Norberg UM. 1996. Energetics of flight. In Avian energetics and nutritional ecology (ed. Carey C), pp. 199-249: Chapman and Hall.
Thomas SP, Suthers RA. 1972. The physiology and energetics of bat flight. J. Exp. Biol. 57, 317-335. (10.1242/jeb.57.2.317) DOI
Norberg UM. 1990. Vertebrate flight: mechanisms, physiology, morphology, ecology and evolution. Berlin, Germany: Springer.
Norberg UM. 2006. Flight and scaling of flyers in nature. In Flow phenomena in nature volume 1: a challenge to engineering design (ed. Liebe R), pp. 120-154. WIT Transactions on State of the Art in Science and Engineering. Ashurst, UK: WIT Press.
Figuerola J. 1999. A comparative study on the evolution of reversed size dimorphism in monogamous waders. Biol. J. Linn. Soc. 67, 1-18. (10.1111/J.1095-8312.1999.TB01926.X) DOI
Voelker G. 2001. Morphological correlates of migratory distance and flight display in the avian genus Anthus. Biol. J. Linn. Soc. 73, 425-435. (10.1111/j.1095-8312.2001.tb01371.x) DOI
Sheard C, Neate-Clegg MHC, Alioravainen N, Jones SEI, Vincent C, Macgregor HEA, Bregman TP, Claramunt S, Tobias JA. 2020. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Comm. 11, 2463. (10.1038/s41467-020-16313-6) PubMed DOI PMC
Bókony V, Liker A, Székely T, Kis J. 2003. Melanin-based plumage coloration and flight displays in plovers and allies. Proc. R. Soc. Lond. B 270, 2491-2497. (10.1098/rspb.2003.2506) PubMed DOI PMC
Ligon RA, Diaz CD, Morano JL, Troscianko J, Stevens M, Moskeland A, Laman TG, Scholes E. 2018. Evolution of correlated complexity in the radically different courtship signals of birds-of-paradise. PLoS Biol. 16, e2006962. (10.1371/journal.pbio.2006962) PubMed DOI PMC
Iwasa Y, Pomiankowski A. 1994. The evolution of mate preferences for multiple sexual ornaments. Evolution 48, 853-867. (10.1111/j.1558-5646.1994.tb01367.x) PubMed DOI
Moller AP, Pomiankowski A. 1993. Why have birds got multiple sexual ornaments? Behav. Ecol. Sociobiol. 32, 167-176. (10.1007/BF00173774) DOI
Loyau A, Saint Jalme M, Cagniant C, Sorci G. 2005. Multiple sexual advertisements honestly reflect health status in peacocks (Pavo cristatus). Behav. Ecol. Sociobiol. 58, 552-557. (10.1007/s00265-005-0958-y) DOI
Griggio M, Valera F, Casas-Crivillé A, Hoi H, Barbosa A. 2011. White tail markings are an indicator of quality and affect mate preference in rock sparrows. Behav. Ecol. Sociobiol. 65, 655-664. (10.1007/s00265-010-1067-0) DOI
Barber I, Folstad I. 2000. Schooling, dusk flight and dance: social organisations as amplifiers of individual quality? Oikos 89, 191-194. (10.1034/J.1600-0706.2000.890121.X) DOI
Galván I. 2008. The importance of white on black: unmelanized plumage proportion predicts display complexity in birds. Behav. Ecol. Sociobiol. 63, 303-311. (10.1007/s00265-008-0662-9) DOI
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. 2012. The global diversity of birds in space and time. Nature 491, 444-448. (10.1038/nature11631) PubMed DOI
Billerman SM, Keeney BK, Rodewald PG, Schulenberg TS. 2021. Birds of the world. Cornell laboratory of ornithology. Ithaca, NY. See https://birdsoftheworld.org/bow/home
Mikula P, Toszogyova A, Albrecht T. 2022. Data from: A global analysis of aerial displays in passerines revealed an effect of habitat, mating system and migratory traits. Dryad Digital Repository. (10.5061/dryad.3j9kd51kh) PubMed DOI PMC
Araya-Salas M, Smith-Vidaurre G. 2017. warbleR: An r package to streamline analysis of animal acoustic signals. Methods Ecol. Evol. 8, 184-191. (10.1111/2041-210X.12624) DOI
Catchpole CK, Slater PJB. 2008. Bird song: biological themes and variations. Cambridge, UK: Cambridge University Press.
IUCN. 2021. The IUCN Red List of Threatened Species. Version 2020-3. See https://www.iucnredlist.org
Tobias JA, Sheard C, Seddon N, Meade A, Cotton AJ, Nakagawa S. 2016. Territoriality, social bonds, and the evolution of communal signaling in birds. Front. Ecol. Evol. 4, 74. (10.3389/fevo.2016.00074) DOI
Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W.. 2014. EltonTraits 1.0: species-level foraging attributes of the world's birds and mammals. Ecology 95, 2027. (10.1890/13-1917.1) DOI
Dunning JB. 2008. CRC handbook of avian body masses. Boca Raton, FL: CRC Press.
Myhrvold NP, Baldridge E, Chan B, Sivam D, Freeman DL, Ernest SKM. 2015. An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles. Ecology 96, 3109. (10.1890/15-0846R.1) DOI
Lislevand T, Figuerola J, Székely T. 2007. Avian body sizes in relation to fecundity, mating system, display behavior, and resource sharing. Ecology 88, 1605. (10.1890/06-2054) DOI
McQueen A, Kempenaers B, Dale J, Valcu M, Emery ZT, Dey CJ, Peters A, Delhey K. 2019. Evolutionary drivers of seasonal plumage colours: colour change by moult correlates with sexual selection, predation risk and seasonality across passerines. Ecol. Lett. 22, 1838-1849. (10.1111/ele.13375) PubMed DOI
Pigot AL, Jetz W, Sheard C, Tobias JA. 2018. The macroecological dynamics of species coexistence in birds. Nat. Ecol. Evol. 2, 1112-1119. (10.1038/s41559-018-0572-9) PubMed DOI
BirdLife International and Handbook of the Birds of the World. 2020. Bird species distribution maps of the world. See http://datazone.birdlife.org/species/requestdis.
Schliep KP. 2011. phangorn: Phylogenetic analysis in R. Bioinformatics 27, 592-593. (10.1093/bioinformatics/btq706) PubMed DOI PMC
R Development Core Team. 2021. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See https://www.r-project.org/.
Orme D, Freckleton R, Thomas G, Petzoldt T. 2012. The caper package: comparative analysis of phylogenetics and evolution in R. See http://caper.r-forge.r-project.org.
Paradis E. 2011. Analysis of phylogenetics and evolution with R. Berlin, Germany: Springer.
Bürkner PC. 2017. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1-28. (10.18637/jss.v080.i01) DOI
Dale J, Dunn PO, Figuerola J, Lislevand T, Székely T, Whittingham LA. 2007. Sexual selection explains Rensch's rule of allometry for sexual size dimorphism. Proc. R. Soc. B 274, 2971-2979. (10.1098/rspb.2007.1043) PubMed DOI PMC
Vehtari A, Gelman A, Simpson D, Carpenter B, Bürkner PC. 2021. Rank-normalization, folding, and localization: an improved R for assessing convergence of MCMC. Bayesian Anal. 16, 667-718. (10.1214/20-BA1221) DOI
Kelley LA, Endler JA. 2012. Illusions promote mating success in great bowerbirds. Science 335, 335-338. (10.1126/science.1212443) PubMed DOI
Muniz DG, Machado G. 2018. Mate sampling influences the intensity of sexual selection and the evolution of costly sexual ornaments. J. Theor. Biol. 447, 74-83. (10.1016/j.jtbi.2018.03.026) PubMed DOI
Gibson RM, Bachman GC. 1992. The costs of female choice in a lekking bird. Behav. Ecol. 3, 300-309. (10.1093/beheco/3.4.300) DOI
Jehl JR, Murray BG. 1986. The evolution of normal and reverse sexual size dimorphism in shorebirds and other birds. Curr. Ornithol. 3, 1-86. (10.1007/978-1-4615-6784-4_1) DOI
Raihani G, Székely T, Serrano-Meneses MA, Pitra C, Goriup P. 2006. The influence of sexual selection and male agility on sexual size dimorphism in bustards (Otididae). Anim. Behav. 71, 833-838. (10.1016/j.anbehav.2005.06.013) DOI
Liker A, Bókony V, Pipoly I, Lemaître JF, Gaillard JM, Székely T, Freckleton RP. 2021. Evolution of large males is associated with female-skewed adult sex ratios in amniotes. Evolution 75, 1636-1649. (10.1111/EVO.14273) PubMed DOI
Byers J, Hebets E, Podos J. 2010. Female mate choice based upon male motor performance. Anim. Behav. 79, 771-778. (10.1016/j.anbehav.2010.01.009) DOI
Husak JF, Fox SF. 2008. Sexual selection on locomotor performance. Evol. Ecol. Res. 10, 213-228.
Najar N, Benedict L. 2019. The relationship between latitude, migration and the evolution of bird song complexity. Ibis 161, 1-12. (10.1111/IBI.12648) DOI
Andersson S, Andersson M. 1994. Tail ornamentation, size dimorphism and wing length in the genus Euplectes (Ploceinae). Auk 111, 80-86. (10.2307/4088507) DOI
Balmford A, Jones IL, Thomas ALR. 1994. How to compensate for costly sexually selected tails: the origin of sexually dimorphic wings in long-tailed birds. Evolution 48, 1062-1070. (10.1111/j.1558-5646.1994.tb05293.x PubMed DOI
Hakkarainen H, Huhta E, Lahti K, Lundvall P, Mappes T, Tolonen P, Wiehn J. 1996. A test of male mating and hunting success in the kestrel: the advantages of smallness? Behav. Ecol. Sociobiol. 39, 375-380. (10.1007/s002650050303) DOI
Andersson M, Simmons LW. 2006. Sexual selection and mate choice. TREE 21, 296-302. (10.1016/j.tree.2006.03.015) PubMed DOI
Kokko H, Brooks R, Jennions MD, Morley J. 2003. The evolution of mate choice and mating biases. Proc. R. Soc. Lond. B 270, 653-664. (10.1098/rspb.2002.2235) PubMed DOI PMC
Buchhorn M, Lesiv M, Tsendbazar NE, Herold M, Bertels L, Smets B. 2020. Copernicus global land cover layers—collection 2. Remote Sens. 12, 1044. (10.3390/rs12061044) DOI
Hogan BG, Stoddard MC. 2018. Synchronization of speed, sound and iridescent color in a hummingbird aerial courtship dive. Nat. Comm. 9, 1-8. (10.1038/s41467-018-07562-7) PubMed DOI PMC
Macedo RH, Manica L, Dias RI. 2012. Conspicuous sexual signals in a socially monogamous passerine: the case of neotropical blue-black grassquits. J. Ornithol. 153, 15-22. (10.1007/s10336-012-0815-5) DOI
Brumm H, Naguib M. 2009. Environmental acoustics and the evolution of bird song. Adv. Study Behav. 40, 1-33. (10.1016/S0065-3454(09)40001-9) DOI
Dryad
10.5061/dryad.3j9kd51kh