Changes in water use and wastewater generation influenced by the COVID-19 pandemic: A case study of China

. 2022 Jul 15 ; 314 () : 115024. [epub] 20220407

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35447447
Odkazy

PubMed 35447447
PubMed Central PMC8986492
DOI 10.1016/j.jenvman.2022.115024
PII: S0301-4797(22)00597-7
Knihovny.cz E-zdroje

This paper examines and projects the water use and wastewater generation during and after the SARS-CoV-2 (COVID-19) in China, and discussed the water use/wastewater generation pattern changes among different sectors. Existing studies on the impact of pandemic spread-prevention measures on water consumption and wastewater treatment during the pandemic are reviewed. The water use and wastewater discharge in China through the COVID-19 period are then projected and analyzed using Multivariate Linear Regression. The projection is carried out for years 2019-2023 and covers an (estimated) full process of pre-pandemic, pandemic outbreak, and recovery phase and provides essential information for determining the complete phase impact of the COVID-19. Two scenarios, i.e. the recovery scenario and the business as usual scenario, are set to investigate the water use and wastewater generation characteristics after the pandemic. The results imply that in both scenarios, the water use in China shows a V-shaped trend from 2019 to 2023 and reached a low point in 2020 of 5,813✕108 m3. The wastewater discharge shows an increasing trend throughout the COVID period in both scenarios. The results are also compared with the water consumption and wastewater generation during the SARS-CoV-1 period. The implication for policymakers is the possible increase of water use and wastewater discharge in the post COVID period and the necessity to ensure the water supply and control of water pollution and wastewater discharge.

Zobrazit více v PubMed

Anand U., Li X., Sunita K., Lokhandwala S., Gautam P., Suresh S., Sarma H., Vellingiri B., Dey A., Bontempi E., Jiang G. SARS-CoV-2 and other pathogens in municipal wastewater, landfill leachate, and solid waste: a review about virus surveillance, infectivity, and inactivation. Environ. Res. 2022;203:111839. PubMed PMC

Antwi S.H., Getty D., Linnane S., Rolston A. Science of the Total Environment; 2021. COVID-19 Water Sector Responses in Europe: A Scoping Review of Preliminary Governmental Interventions; p. 762. PubMed PMC

Arora S., Nag A., Sethi J., Rajvanshi J., Saxena S., Shrivastava S.K., Gupta A.B. Sewage surveillance for the presence of SARS-CoV-2 genome as a useful wastewater based epidemiology (WBE) tracking tool in India. Water Sci. Technol. 2020;82:2823–2836. PubMed

Asadi-Ghalhari M., Aali R. COVID-19: reopening public spaces and secondary health risk potential via stagnant water in indoor pipe networks. Indoor Built Environ. 2020;29:1184–1185.

Balboa S., Mauricio-Iglesias M., Rodriguez S., Martínez-Lamas L., Vasallo F.J., Regueiro B., Lema J.M. The fate of SARS-COV-2 in WWTPS points out the sludge line as a suitable spot for detection of COVID-19. Sci. Total Environ. 2021;772:145268. PubMed PMC

Berglund Z.E., Thelemaque N., Spearing L., Faust K.M., Kaminsky J., Sela L., et al. Water and wastewater systems and utilities: challenges and opportunities during the COVID-19 pandemic. J. Water Resour. Plann. Manag. 2021;147(5)

Carraturo F., Del Giudice C., Morelli M., Cerullo V., Libralato G., Galdiero E., Guida M. Persistence of SARS-CoV-2 in the environment and COVID-19 transmission risk from environmental matrices and surfaces. Environ. Pollut. 2020;265:115010. PubMed PMC

Chin A.W.H., Chu J.T.S., Perera M.R.A., Hui K.P.Y., Yen H.-L., Chan M.C.W., Peiris M., Poon L.L.M. Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe. 2020;1:e10. PubMed PMC

Chirani M.R., Kowsari E., Teymourian T., Ramakrishna S. Environmental impact of increased soap consumption during COVID-19 pandemic: biodegradable soap production and sustainable packaging. Sci. Total Environ. 2021;796:149013. PubMed PMC

Gormley M., Aspray T.J., Kelly D.A. COVID-19: mitigating transmission via wastewater plumbing systems. Lancet Global Health. 2020;8:e643. PubMed PMC

Guerrero-Latorre L., Ballesteros I., Villacrés-Granda I., Granda M.G., Freire-Paspuel B., Ríos-Touma B. SARS-CoV-2 in river water: implications in low sanitation countries. Sci. Total Environ. 2020;743:140832. PubMed PMC

Haramoto E., Malla B., Thakali O., Kitajima M. First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Sci. Total Environ. 2020;737:140405. PubMed PMC

Hasanah L., Hakim W.L., Aminudin A., Sahari S.K., Mulyanti B. A design and performance analysis of a telemetry system for remote monitoring of turbidity of water during the covid-19 pandemic. Indones. J. Sci. Technol. 2020;5:299–307.

Hora P.I., Pati S.G., McNamara P.J., Arnold W.A. Increased use of quaternary ammonium compounds during the SARS-CoV-2 pandemic and beyond: consideration of environmental implications. Environ. Sci. Technol. Lett. 2020;7:622–631. PubMed

Industrial Information Net . 2021. Analysis of China's Freight and Passenger Transport in the First Half of. <https://www.chyxx.com/industry/202108/969864.html> accessed 30.7.2021.

Irfan M., Ahmad M., Fareed Z., Iqbal N., Sharif A., Wu H. On the indirect environmental outcomes of COVID-19: short-term revival with futuristic long-term implications. Int. J. Environ. Health Res. 2021 PubMed

Kariwa H., Fujii N., Takashima I. Inactivation of SARS coronavirus by means of povidone-iodine, physical conditions and chemical reagents. Dermatology. 2006;212:119–123. PubMed PMC

Kasloff S.B., Leung A., Strong J.E., Funk D., Cutts T. Stability of SARS-CoV-2 on critical personal protective equipment. Sci. Rep. 2021;11:984. PubMed PMC

Kazak J.K., Szewrański S., Pilawka T., Tokarczyk-Dorociak K., Janiak K., Świąder M. Changes in water demand patterns in a european city due to restrictions caused by the covid-19 pandemic. Desalination Water Treat. 2021:222.

Kumar V., Alshazly H., Idris S.A., Bourouis S. Evaluating the impact of COVID-19 on society, environment, economy, and education. Sustainability. 2021;13(24):13642.

Li D., Engel R.A., Ma X., Porse E., Kaplan J.D., Margulis S.A., Lettenmaier D.P. Stay-at-Home orders during the COVID-19 pandemic reduced urban water use. Environ. Sci. Technol. Lett. 2021;8:431–436. PubMed

Li Z., Song G., Bi Y., Gao W., He A., Lu Y., Wang Y., Jiang G. Occurrence and distribution of disinfection byproducts in domestic wastewater effluent, tap water, and surface water during the SARS-CoV-2 pandemic in China. Environ. Sci. Technol. 2021;55:4103–4114. PubMed

Liu G., Qu J., Rose J., Medema G. 2021. Roadmap for Managing SARS-CoV-2 and Other Viruses in the Water Environment for Public Health. (Engineering) PubMed PMC

Liu D., Yang H., Thompson J.R., Li J., Loiselle S., Duan H. Science of the Total Environment; 2022. COVID-19 Lockdown Improved River Water Quality in China; p. 802. PubMed PMC

Maal-Bared R., Brisolara K., Munakata N., Bibby K., Gerba C., Sobsey M., et al. Implications of SARS-CoV-2 on current and future operation and management of wastewater systems. Water Environ. Res. 2021;93(4):502–515. PubMed

Menneer T., Qi Z., Taylor T., Paterson C., Tu G., Elliott L.R., et al. Changes in domestic energy and water usage during the UK covid-19 lockdown using high-resolution temporal data. Int. J. Environ. Res. Publ. Health. 2021;18(13) PubMed PMC

National Bureau of Statistics . 2019. Statistical Term Explanations – Resources and Environment. < http://www.stats.gov.cn/tjsj/zbjs/201912/t20191202_1713053.html> accessed 30.7.2021.

National Bureau of Statistics . 2021. Annual Data. <https://data.stats.gov.cn/easyquery.htm?cn=C01> accessed 30.6.2021.

National Bureau of Statistics . 2021. New Characteristics and Trends of China's Population Development. <http://www.stats.gov.cn/tjsj/sjjd/202105/t20210513_1817394.html> accessed 30.6.2021.

National Bureau of Statistics . 2021. Preliminary Accounting Results of Gross Domestic Product (GDP) for the Second Quarter and the First Half of 2021. <http://www.stats.gov.cn/tjsj/zxfb/202107/t20210716_1819540.html>.

National Bureau of Statistics . 2021. Chinese Statistical Yearbook 2001-2019. <http://www.stats.gov.cn/tjsj/ndsj/2019/indexch.htm> accessed 30.7.2021.

Nazir R., Ali J., Rasul I., Widemann E., Shafiq S. Eco-environmental aspects of covid-19 pandemic and potential control strategies. Int. J. Environ. Res. Publ. Health. 2021;18(7) PubMed PMC

Núñez-Delgado A. What do we know about the SARS-CoV-2 coronavirus in the environment? Sci. Total Environ. 2020;727:138647. PubMed PMC

Panda B., Chidambaram S., Malakar A. Survival of SARS-COV-2 in untreated and treated wastewater—a review. Environ. Resilien. Transform. Times COVID. 2021;19:89–94.

Patel M., Chaubey A.K., Pittman C.U., Mlsna T., Mohan D. Coronavirus (SARS-CoV-2) in the environment: occurrence, persistence, analysis in aquatic systems and possible management. Sci. Total Environ. 2021;765:142698. PubMed PMC

Peccia J., Zulli A., Brackney D.E., Grubaugh N.D., Kaplan E.H., Casanovas-Massana A., Ko A.I., Malik A.A., Wang D., Wang M., Warren J.L., Weinberger D.M., Omer S.B. 2020. SARS-CoV-2 RNA Concentrations in Primary Municipal Sewage Sludge as a Leading Indicator of COVID-19 Outbreak Dynamics. PubMed

Poch M., Garrido-Baserba M., Corominas L., Perelló-Moragues A., Monclús H., Cermerón-Romero M., Melitas N., Jiang S.C., Rosso D. When the fourth water and digital revolution encountered COVID-19. Sci. Total Environ. 2020;744 PubMed PMC

Pons M.-N., Louis P., Vignati D. Effect of lockdown on wastewater characteristics: a comparison of two large urban areas. Water Sci. Technol. 2020;82(12):2813–2822. PubMed

Sepehri A., Sarrafzadeh M.H. Activity enhancement of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge process: metabolite reduction and CO2 mitigation intensification process. Appl. Water Sci. 2019;9(5):1–12.

Shutler J., Zaraska K., Holding T., Machnik M., Uppuluri K., Ashton I., Migdał Ł., Dahiya R. 2020. Risk of SARS-CoV-2 Infection from Contaminated Water Systems. PubMed PMC

Sunkari E.D., Korboe H.M., Abu M., Kizildeniz T. Sources and routes of SARS-CoV-2 transmission in water systems in Africa: are there any sustainable remedies? Sci. Total Environ. 2021;753:142298. PubMed PMC

Tiwari S.B., Gahlot P., Tyagi V.K., Zhang L., Zhou Y., Kazmi A.A., Kumar M. Surveillance of wastewater for early epidemic prediction (SWEEP): environmental and health security perspectives in the post COVID-19 anthropocene. Environ. Res. 2021;195:110831. PubMed PMC

Tortajada C., Biswas A.K. COVID-19 heightens water problems around the world. Water Int. 2020;45:441–442.

USEPA . 2020. List N Tool: COVID-19 Disinfectants. <cfpub.epa.gov/wizards/disinfectants/>.

Walker T.R. Why are we still polluting the marine environment with personal protective equipment? Mar. Pollut. Bull. 2021;169 doi: 10.1016/j.marpolbul.2021.112528. PubMed DOI PMC

Wang X., Wang J., Shen J., Ji J.S., Pan L., Liu H., Zhao K., Li L., Ying B., Fan L., Zhang L., Wang L., Shi X. 2021. Facilities for Centralized Isolation and Quarantine for the Observation and Treatment of Patients with COVID-19. (Engineering) PubMed PMC

Wu Y., Guo C., Tang L., Hong Z., Zhou J., Dong X., Yin H., Xiao Q., Tang Y., Qu X., Kuang L., Fang X., Mishra N., Lu J., Shan H., Jiang G., Huang X. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lanc. Gastroenterol. Hepatol. 2020;5:434–435. PubMed PMC

Zhu Y., Oishi W., Maruo C., Saito M., Chen R., Kitajima M., Sano D. Early warning of COVID-19 via wastewater-based epidemiology: potential and bottlenecks. Sci. Total Environ. 2021;767:145124. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...