• This record comes from PubMed

Impact of Car Traffic on Metal Accumulation in Soils and Plants Growing Close to a Motorway (Eastern Slovakia)

. 2022 Apr 07 ; 10 (4) : . [epub] 20220407

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
CZ.02.1.01/0.0/0.0/16_019/0000845 EU-Project "NutRisk Centre"
project VEGA no. 2/0009/21 Scientific Grant Agency of the Ministry of Education of Slovak Republic and Slovak Academy of Sciences
project VEGA no. 2/0050/21 Scientific Grant Agency of the Ministry of Education of Slovak Republic and Slovak Academy of Sciences

The paper evaluates the impact of car transport on the distribution and accumulation of Zn, Cu, Pb and Cd in soils, as well as in the vegetation near a newly built R4 motorway Košice-Milhosť (Slovakia). Samples were taken from surface humus layer (litter) and 0−5, 10−20 and 20−30 cm mineral layers of Cambisol and Luvisol, as well as from assimilatory organs of Fraxinus excelsior, Quercus cerris, Quercus rubra, Negundo aceroides and Anthriscus sylvestris growing in the segments of geobiocoenosis Querci-Fageta Typica. The concentrations of total Zn and Cu were determined using SensAA AAS and the total concentrations of Cd and Pb using an instrument iCE 3000 Series AAS-F. Contamination factor (CF) values showed that surface humus layer of both soil units is moderately contaminated with Zn (1 ≤ CF ˂ 3), low contaminated with Cu (CF ˂ 1) and considerably contaminated with Pb and Cd (3 ≤ CF ˂ 6). Contamination of the surface humus layer of Luvisol with Pb is very high (CF > 6), while in the case of mineral layers with Zn and Cu it is low (CF ˂ 1). The mineral layers of Luvisol are moderately contaminated with Pb and Cd (1 ≤ CF ˂ 3) and Cambisol layers with Zn, Cu, Pb and Cd. For the group of 5 tested plants, higher values of toxic elements in the leaves were observed on Luvisol compared to Cambisol. However, only Cu conconcentrations in Luvisol significantly correlated with Cu concentrations in plants (r > 0.4 or r < 0.6). The same can be said for Zn concentrations in Cambisol (r > 0.8). The best indicator of the environment polluted by car traffic appears to be A. sylvestris. Transfer coefficients (TC ˃ 1) revealed that this species concentrated the most Zn and Cu on Luvisol and close to 1 are also the TC values found for Cu in F. excelsior and Q. cerris leaves taken on Luvisol. Lead is accumulated most efficiently in N. aceroides leaves and Cd in A. sylvestris leaves regardless of soil unit. Compared to background values, the total concentrations of trace elements in soils and plants were significantly higher and point to the pollution of forest ecosystems already in the initial stage of motorway operation.

See more in PubMed

Hasnaoui S.E., Fahr M., Keller C., Levard C., Angeletti B., Chaurand P., Triqui Z.E.A., Guedira A., Rhazi L., Colin F., et al. Screening of Native Plants Growing on a Pb/Zn Mining Area in Eastern Morocco: Perspectives for Phytoremediation. Plants. 2020;9:1458. doi: 10.3390/plants9111458. PubMed DOI PMC

Fröhlichová A., Száková J., Najmanová J., Tlustoš P. An assessment of the risk of element contamination of urban and industrial areas using Taraxacum sect. Ruderalia as a bioindicator. Environ. Monit. Assess. 2018;190:150. doi: 10.1007/s10661-018-6547-0. PubMed DOI

Nabulo G., Oryem-Origa H., Diamond M. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Environ. Res. 2006;101:42–52. doi: 10.1016/j.envres.2005.12.016. PubMed DOI

Chen X., Xia X., Zhao Y., Zhang P. Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. J. Hazard. Mater. 2010;181:640–646. doi: 10.1016/j.jhazmat.2010.05.060. PubMed DOI

Bignal K.L., Ashmore M.R., Headley A.D., Stewart K., Weigert K. Ecological impacts of air pollution from road transport on local vegetation. Appl. Geochem. 2007;22:1265–1271. doi: 10.1016/j.apgeochem.2007.03.017. DOI

Jankowski K., Ciepiela G.A., Jankowska J., Szulc W., Kolczarek R., Sosnowski J., Wiśniewska-Kadżajan B., Malinowska E., Radzka E., Czeluściński W., et al. Content of lead and cadmium in aboveground plant organs of grasses growing on the areas adjacent to route of big traffic. Environ. Sci. Pollut. Res. 2015;22:978–987. doi: 10.1007/s11356-014-3634-9. PubMed DOI PMC

Ahmad S.S., Erum S. Integrated assessment of heavy metals pollution along motorway M-2. Soil Environ. 2010;29:110–116.

Radziemska M., Fronczyk J. Level and Contamination Assessment of Soil along an Expressway in an Ecologically Valuable Area in Central Poland. Int. J. Environ. Res. Public Health. 2015;12:13372–13387. doi: 10.3390/ijerph121013372. PubMed DOI PMC

Shi G., Chen Z., Xu S., Zhang J., Wang L., Bi C., Teng J. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ. Pollut. 2008;156:251–260. doi: 10.1016/j.envpol.2008.02.027. PubMed DOI

Lu X., Wang L., Lei K., Huang J., Zhai Y. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. J. Hazard. Mater. 2009;161:1058–1062. doi: 10.1016/j.jhazmat.2008.04.052. PubMed DOI

Rodriguez-Flores M., Rodriguez-Castellon E. Lead and cadmium levels in soil and plants near highways and their correlation with traffic density. Environ. Pollut. 1982;4:281–290. doi: 10.1016/0143-148X(82)90014-3. DOI

Mazur Z., Radziemska M., Maczuga O., Makuch A. Heavy metal concentrations in soil and moss surroundings railroad. Fresen. Environ. Bull. 2013;22:955–961.

Cortufo M.F., De Santo A.V., Alfani A., Bartoli G., De Cristofaro A. Effects of urban heavy metal pollution on organic matter decomposition in Quercus ilex L. Woods. Environ. Pollut. 1995;89:81–87.

Kváčová M., Ash C., Borůvka L., Pavlů L., Nikodem A., Němeček K., Tejnecký V., Drábek O. Contents of Potentially Toxic Elements in Forest Soils of the Jizera Mountains Region. Environ. Model. Assess. 2015;20:183–195. doi: 10.1007/s10666-014-9425-3. DOI

Feng W., Guo Z., Xiao X., Peng C., Shi L., Ran H., Xu W. Atmospheric Deposition as a Source of Cadmium and Lead to Soil-Rice System and Associated Risk Assessment. Ecotoxicol. Environ. Saf. 2019;180:160–167. doi: 10.1016/j.ecoenv.2019.04.090. PubMed DOI

Ouyang X., Ma J., Zhang R., Li P., Gao M., Sun C., Weng L., Chen Y., Yan S., Li Y. Uptake of atmospherically deposited cadmium by leaves of vegetables: Subcellular localization by NanoSIMS and potential risks. J. Hazard. Mater. 2022;431:128624. doi: 10.1016/j.jhazmat.2022.128624. PubMed DOI

Rolka E., Żołnowski A.C., Kozłowska K.A. Assessment of the content of trace elements in soils and roadside vegetation in the vicinity of some gasoline stations in Olsztyn (Poland) J. Elem. 2020;25:549–563.

Rolka E., Żołnowski A.C., Sadowska M.M. Assessment of heavy metal content in soils adjacent to the DK16-route in Olsztyn (North-Eastern Poland) Pol. J. Environ. Stud. 2020;29:4303–4311. doi: 10.15244/pjoes/118384. DOI

Lin C.C., Chen S.J., Huang K.L., Hwang W.I., Chang-Chien G.P., Lin W.Y. Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environ. Sci. Technol. 2005;39:8113–8122. doi: 10.1021/es048182a. PubMed DOI

Adachi K., Tainosho Y. Characterization of heavy metal particles embedded in tire dust. Environ. Int. 2004;30:1009–1017. doi: 10.1016/j.envint.2004.04.004. PubMed DOI

Banerjee A.D.K. Heavy Metal Levels and Solid Phase Speciation in Street Dusts of Delhi, India. Environ. Pollut. 2003;123:95–105. doi: 10.1016/S0269-7491(02)00337-8. PubMed DOI

Kummer U., Pacyna J., Pacyna E., Friedrich R. Assessment of heavy metal releases from the use phase of road transport in Europe. Atmos. Environ. 2009;43:640–647. doi: 10.1016/j.atmosenv.2008.10.007. DOI

362/2010 Coll Decree of the Ministry of Agriculture, Environment and Regional Development of the Slovak Republic, Which Lays Down Requirements for Fuel Quality and Keeping Operational Records on Fuels. [(accessed on 29 March 2021)]. Available online: https://www.slov-lex.sk/pravne-predpisy/SK/ZZ/2010/362/vyhlasene_znenie.html.

Toselli M., Schiatti P., Ara D., Bertacchini A., Quartieri M. The accumulation of copper in soils of the Italian region Emilia-Romagna. Plant Soil Environ. 2009;55:74–79. doi: 10.17221/317-PSE. DOI

Żołnowski A., Busse M., Zając P. Response of maize (Zea mays L.) to soil contamination with copper depending on applied contamination neutralizing substances. J. Elem. 2013;18:507–520. doi: 10.5601/jelem.2013.18.3.14. DOI

Szczodrowska A., Kulbat K., Smolińska B., Leszczyńska J. Accumulation of metal ions in selected plants from Brassicaceae and Lamiaceae families. Biotechnol. Food. Sci. 2016;80:29–42.

Ma J., Chen Y., Weng L., Peng H., Liao Z., Li Y. Source Identification of Heavy Metals in Surface Paddy Soils Using Accumulated Elemental Ratios Coupled with MLR. Int. J. Environ. Res. Public Health. 2021;18:2295. doi: 10.3390/ijerph18052295. PubMed DOI PMC

Liang Z., Ding Q., Wei D., Li J., Chen S., Ma Y. Major controlling factors and predictions for cadmium transfer from the soil into spinach plants. Ecotoxicol. Environ. Saf. 2013;93:180–185. doi: 10.1016/j.ecoenv.2013.04.003. PubMed DOI

Haiyan W., Stuanes A.O. Heavy metal pollution in air-water-soil-plant system of Zhuzhou city, Hunan province, China. Water Air Soil Pollut. 2003;147:79–107. doi: 10.1023/A:1024522111341. DOI

Vaverková M., Adamcová D. Heavy Metals Uptake by Select Plant Species in the Landfill Area of Štěpánovice, Czech Republic. Pol. J. Environ. Stud. 2014;23:2265–2269. doi: 10.15244/pjoes/26106. DOI

Kabata-Pendias A. Trace Elements in Soils and Plants. 4th ed. CRC Press; Boca Raton, FL, USA: 2011.

Sperdouli I., Adamakis I.-D.S., Dobrikova A., Apostolova E., Han´c A., Moustakas M. Excess Zinc Supply Reduces Cadmium Uptake and Mitigates Cadmium Toxicity Effects on Chloroplast Structure, Oxidative Stress, and Photosystem II Photochemical Efficiency in Salvia sclarea Plants. Toxics. 2022;10:36. doi: 10.3390/toxics10010036. PubMed DOI PMC

Fu S., We C., Xia Y., Li L., Wu D. Heavy metals uptake and transport by native wild plants: Implications for phytoremediation and restoration. Environ. Earth Sci. 2019;78:103. doi: 10.1007/s12665-019-8103-9. DOI

Malinowska E., Jankowski K., Wiśniewska-Kadżajan B., Sosnowski J., Kolczarek R., Jankowska J., Ciepiela G.A. Content of Zinc and Copper in Selected Plants Growing Along a Motorway. Bull. Environ. Contam. Toxicol. 2015;95:638–643. doi: 10.1007/s00128-015-1648-8. PubMed DOI PMC

Mihál I., Marušák R., Barna M. Dynamics of Fagus sylvatica L. Necrotization under Different Pollutant Load Conditions. Pol. J. Environ. Stud. 2019;28:2755–2763. doi: 10.15244/pjoes/92209. DOI

Fazekašová D., Boguská Z., Fazekaš J., Škvareninová J., Chovancová J. Contamination of vegetation growing on soils and substrates in the unhygienic region of Central Spiš (Slovakia) polluted by heavy metals. J. Environ. Biol. 2016;37:1335–1340. PubMed

Sezgin N., Ozcan H.K., Demir G., Nemlioglu S., Bayat C. Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway. Environ. Int. 2004;29:979–985. doi: 10.1016/S0160-4120(03)00075-8. PubMed DOI

Tabande L., Taheri M. Evaluation of Exposure to Heavy Metals Cu, Zn, Cd and Pb in Vegetables Grown in the Olericultures of Zanjan Province’s Fields. Iran. J. Health Environ. 2016;9:41–56.

Uhrinová K., Flórián K., Matherny M. Statistical Evaluation and the Nature of the Deposited Dust of the Residential Agglomerations of the City Košice. Chem. Pap. 2005;59:230–234.

Dzubaj A., Bačkor M., Tomko J., Peli E., Tuba Z. Tolerance of the lichen Xanthoria parietina (L.) Th. Fr. to metal stress. Ecotoxicol. Environ. Saf. 2008;70:319–326. doi: 10.1016/j.ecoenv.2007.04.002. PubMed DOI

Zlatník A. Přehled skupin typů geobiocenů původne lesních a křovinných v ČSSR. Zprávy Geogr. Ust. ČSAV. 1976;13:55–64. (In Czech)

IUSS Working Group WRB . World Reference Base for Soil Re-Sources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. FAO; Rome, Italy: 2015. World Soil Resources Reports no. 106.

Čurlík J., Šefčík P. Geochemical Atlas of the Slovak Republic, Part V: Soils. State Geological Institute of Dionýz Štúr; Bratislava, Slovakia: 2012. [(accessed on 10 May 2021)]. Available online: http://apl.geology.sk/atlaspody.

Hakanson L. An ecological risk index for aquatic pollution control. A Sedimentological approach. Water Res. 1980;14:975–1001. doi: 10.1016/0043-1354(80)90143-8. DOI

Javed T., Ahmad N., Mashiatullah A. Heavy metals contamination and ecological risk assessment in surface sediments of Namal Lake. Pakistan. Pol. J. Environ. Stud. 2018;27:675–688. doi: 10.15244/pjoes/75815. DOI

Rastmanesh F., Moore F., Kopaei M.K., Keshavarzi B., Behrouz M. Heavy metal enrichment of soil in Sarcheshmeh copper complex, Kerman, Iran. Environ. Earth Sci. 2011;62:329–336. doi: 10.1007/s12665-010-0526-2. DOI

Oliva S.R., Espinosa A.J.F. Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchem, J. 2007;86:131–139. doi: 10.1016/j.microc.2007.01.003. DOI

Baker A.J.M. Accumulators and excluders: Strategies in the response of plants to heavy metals. J. Plant Nutr. 1981;3:643–654. doi: 10.1080/01904168109362867. DOI

Markert B. Instrumental Multielement Analysis in Plant Materials—A Modern Method in Environmental Chemistry and Tropical Systems Research. CETEM/CNPq; Rio de Janeiro, Brazil: 1995. (Série 8)

Lindsay W.L. Chemical Equilibria in Soils. John Wiley and Sons Ltd.; New York, NY, USA: 1979.

Mertens J., Smolders E. Zinc. In: Alloway B., editor. Heavy Metals in Soils. Springer; Dordrecht, The Netherlands: 2013. pp. 465–493.

Cleven R.F.M.J., Janus J.A., Annema J.A., Slooff W. Integrated Criteria Document Zinc. National Institute of Public Health and Environmental Protection; Bilthoven, The Netherlands: 1993. Report no. 710401028.

Kabata-Pendias A., Mukherjee A.B. Trace Elements from Soil to Human. Springer; Berlin, Germany: 2007.

Violante A., Cozzolino V., Perelomov L., Caporale A.G., Pigna M. Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil Sci. Plant. Nutr. 2010;10:268–292. doi: 10.4067/S0718-95162010000100005. DOI

Żołnowski A.C., Wyszkowski M., Rolka E., Sawicka M. Mineral materials as a neutralizing agent used on soil contaminated with copper. Materials. 2021;14:6830. doi: 10.3390/ma14226830. PubMed DOI PMC

Rodriguez-Blanco M.L., Taboada-Castro M.M., Taboada-Castro M.T. Evaluation of Cu and Zn Content in Soils and their Interaction with Some Physicochemical Soil Properties. IOP Conf. Ser. Earth Environ. Sci. 2019;221:012048. doi: 10.1088/1755-1315/221/1/012048. DOI

Bohn H.L., McNeal B.L., O’Connor G.A. Soil Chemistry. John Wiley and Sons; New York, NY, USA: 1985.

Naidu R., Smith E., Owens G., Bhattacharya P. Managing Arsenic in the Environment: From Soil to Human Health. CSIRO Publishing; Clayton, Australia: 2006.

Oorts K. Copper. In: Alloway B., editor. Heavy Metals in Soils. Springer; Dordrecht, The Netherlands: 2013. pp. 367–394.

Ballabio C., Panagos P., Lugato E., Huang J.H., Orgiazzi A., Jones A., Fernández-Ugalde O., Borrelli P., Montanarella L. Copper distribution in European topsoils: An assessment based on LUCAS soil survey. Sci. Total Environ. 2018;636:282–298. doi: 10.1016/j.scitotenv.2018.04.268. PubMed DOI

Grigalavičienė I., Rutkovienė V., Marozas V. The Accumulation of Heavy Metals Pb, Cu and Cd at Roadside Forest Soil. Pol. J. Environ. Stud. 2005;14:109–115.

Kluge B., Wessolek G. Heavy metal pattern and solute concentration in soils along the oldest highway of the world—The AVUS Autobahn. Environ. Monit. Assess. 2012;184:6469–6481. doi: 10.1007/s10661-011-2433-8. PubMed DOI

Wieczorek J., Wieczorek Z., Bieniaszewski T. Cadmium and lead content in cereal grains and soil from cropland adjacent to roadways. Pol. J. Environ. Stud. 2005;14:535–540.

Elnazer A.A., Salman S.A., Seleem E.M., El Ella E.M.A. Assessment of some heavy metals pollution and bioavailability in roadside soil of Alexandria-Marsa Matruh Highway, Egypt. Int. J. Ecol. 2015;4:1–7. doi: 10.1155/2015/689420. DOI

Golia E.E., Papadimou S.G., Cavalaris C., Tsiropoulos N.G. Level of Contamination Assessment of Potentially Toxic Elements in the Urban Soils of Volos City (Central Greece) Sustainability. 2021;13:2029. doi: 10.3390/su13042029. DOI

Souffit G.D., Mohamadou L.L., Guembou Shouop C.J., Beyala Ateba J.F. Saïdou-. Assessment of trace elements pollution and their potential health risks in the cobalt-nickel bearing areas of Lomié, East Cameroon. Environ. Monit. Assess. 2022;194:127. doi: 10.1007/s10661-022-09776-1. PubMed DOI

Bowen H.J.M. Environmental Chemistry of the Elements. Academic Press; London, UK: 1979.

Maňkovská B. Geochemical Atlas of the Slovakia, Part II: Forest Biomass. Geological Service of the Slovak Republic; Bratislava, Slovakia: 1996. [(accessed on 18 May 2021)]. Available online: https://www.geology.sk/geoinfoportal/mapovy-portal/atlasy/geochemicky-atlas-slovenska/

Eisler R. Zinc hazards to plants and animals with emphasis on fishery and wildlife resources. In: Cheremisinoff P.N., editor. Ecological Issues and Environmental Impact Assessment. Gulf Publishing Company; Houston, TX, USA: 1977. pp. 443–537.

Marschner H. Mineral Nutrition of Higher Plants. 2nd ed. Academic Press; London, UK: 1995.

Kloke A., Sauerbeck D.R., Vetter H. The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains. In: Nriagu J.O., editor. Changing Metal Cycles and Human Health: Report of the Dahlem Workshop on Changing Metal Cycles and Human Health. Springer; Berlin, Germany: 1984. pp. 113–141.

Macnicol R.D., Beckett P.H.T. Critical tissue concentrations of potentially toxic elements. Plant Soil. 1985;85:107–129. doi: 10.1007/BF02197805. DOI

Baker D.E., Senef J.P. Copper. In: Alloway B.J., editor. Heavy Metals in Soils. Blackie Academic and Professional; London, UK: 1995. pp. 179–205.

Brooks R.R. Serpentine and Its Vegetation: A Multi-Disciplinary Approach. Dioscorides Press; Portland, OR, USA: 1987.

Dalenberg J.W., van Driel W. Contribution of atmospheric deposition to heavy-metal concentrations in field crops. Neth. J. Agric. Sci. 1990;38:369–379. doi: 10.18174/njas.v38i3A.16594. DOI

Nadgórska-Socha A., Ptasiński B., Kita A. Heavy metal bioaccumulation and antioxidative responses in Cardaminopsis arenosa and Plantago lanceolata leaves from metalliferous and non-metalliferous sites: A field study. Ecotoxicology. 2013;22:1422–1434. doi: 10.1007/s10646-013-1129-y. PubMed DOI PMC

Davies B.E., White H.M. Trace elements in vegetables grown on soils contaminated by base metal mining. J. Plant. Nutr. 1981;3:387–396. doi: 10.1080/01904168109362846. DOI

Kuklová M., Hniličková H., Hnilička F., Pivková I., Kukla J. Toxic elements and energy accumulation in topsoil and plants of spruce ecosystems. Plant Soil Environ. 2017;63:402–408.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...