Impact of Car Traffic on Metal Accumulation in Soils and Plants Growing Close to a Motorway (Eastern Slovakia)
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000845
EU-Project "NutRisk Centre"
project VEGA no. 2/0009/21
Scientific Grant Agency of the Ministry of Education of Slovak Republic and Slovak Academy of Sciences
project VEGA no. 2/0050/21
Scientific Grant Agency of the Ministry of Education of Slovak Republic and Slovak Academy of Sciences
PubMed
35448444
PubMed Central
PMC9030527
DOI
10.3390/toxics10040183
PII: toxics10040183
Knihovny.cz E-resources
- Keywords
- heavy metals, soil contamination factors, soil-plant transfer coefficients, traffic-related pollution,
- Publication type
- Journal Article MeSH
The paper evaluates the impact of car transport on the distribution and accumulation of Zn, Cu, Pb and Cd in soils, as well as in the vegetation near a newly built R4 motorway Košice-Milhosť (Slovakia). Samples were taken from surface humus layer (litter) and 0−5, 10−20 and 20−30 cm mineral layers of Cambisol and Luvisol, as well as from assimilatory organs of Fraxinus excelsior, Quercus cerris, Quercus rubra, Negundo aceroides and Anthriscus sylvestris growing in the segments of geobiocoenosis Querci-Fageta Typica. The concentrations of total Zn and Cu were determined using SensAA AAS and the total concentrations of Cd and Pb using an instrument iCE 3000 Series AAS-F. Contamination factor (CF) values showed that surface humus layer of both soil units is moderately contaminated with Zn (1 ≤ CF ˂ 3), low contaminated with Cu (CF ˂ 1) and considerably contaminated with Pb and Cd (3 ≤ CF ˂ 6). Contamination of the surface humus layer of Luvisol with Pb is very high (CF > 6), while in the case of mineral layers with Zn and Cu it is low (CF ˂ 1). The mineral layers of Luvisol are moderately contaminated with Pb and Cd (1 ≤ CF ˂ 3) and Cambisol layers with Zn, Cu, Pb and Cd. For the group of 5 tested plants, higher values of toxic elements in the leaves were observed on Luvisol compared to Cambisol. However, only Cu conconcentrations in Luvisol significantly correlated with Cu concentrations in plants (r > 0.4 or r < 0.6). The same can be said for Zn concentrations in Cambisol (r > 0.8). The best indicator of the environment polluted by car traffic appears to be A. sylvestris. Transfer coefficients (TC ˃ 1) revealed that this species concentrated the most Zn and Cu on Luvisol and close to 1 are also the TC values found for Cu in F. excelsior and Q. cerris leaves taken on Luvisol. Lead is accumulated most efficiently in N. aceroides leaves and Cd in A. sylvestris leaves regardless of soil unit. Compared to background values, the total concentrations of trace elements in soils and plants were significantly higher and point to the pollution of forest ecosystems already in the initial stage of motorway operation.
See more in PubMed
Hasnaoui S.E., Fahr M., Keller C., Levard C., Angeletti B., Chaurand P., Triqui Z.E.A., Guedira A., Rhazi L., Colin F., et al. Screening of Native Plants Growing on a Pb/Zn Mining Area in Eastern Morocco: Perspectives for Phytoremediation. Plants. 2020;9:1458. doi: 10.3390/plants9111458. PubMed DOI PMC
Fröhlichová A., Száková J., Najmanová J., Tlustoš P. An assessment of the risk of element contamination of urban and industrial areas using Taraxacum sect. Ruderalia as a bioindicator. Environ. Monit. Assess. 2018;190:150. doi: 10.1007/s10661-018-6547-0. PubMed DOI
Nabulo G., Oryem-Origa H., Diamond M. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Environ. Res. 2006;101:42–52. doi: 10.1016/j.envres.2005.12.016. PubMed DOI
Chen X., Xia X., Zhao Y., Zhang P. Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. J. Hazard. Mater. 2010;181:640–646. doi: 10.1016/j.jhazmat.2010.05.060. PubMed DOI
Bignal K.L., Ashmore M.R., Headley A.D., Stewart K., Weigert K. Ecological impacts of air pollution from road transport on local vegetation. Appl. Geochem. 2007;22:1265–1271. doi: 10.1016/j.apgeochem.2007.03.017. DOI
Jankowski K., Ciepiela G.A., Jankowska J., Szulc W., Kolczarek R., Sosnowski J., Wiśniewska-Kadżajan B., Malinowska E., Radzka E., Czeluściński W., et al. Content of lead and cadmium in aboveground plant organs of grasses growing on the areas adjacent to route of big traffic. Environ. Sci. Pollut. Res. 2015;22:978–987. doi: 10.1007/s11356-014-3634-9. PubMed DOI PMC
Ahmad S.S., Erum S. Integrated assessment of heavy metals pollution along motorway M-2. Soil Environ. 2010;29:110–116.
Radziemska M., Fronczyk J. Level and Contamination Assessment of Soil along an Expressway in an Ecologically Valuable Area in Central Poland. Int. J. Environ. Res. Public Health. 2015;12:13372–13387. doi: 10.3390/ijerph121013372. PubMed DOI PMC
Shi G., Chen Z., Xu S., Zhang J., Wang L., Bi C., Teng J. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ. Pollut. 2008;156:251–260. doi: 10.1016/j.envpol.2008.02.027. PubMed DOI
Lu X., Wang L., Lei K., Huang J., Zhai Y. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. J. Hazard. Mater. 2009;161:1058–1062. doi: 10.1016/j.jhazmat.2008.04.052. PubMed DOI
Rodriguez-Flores M., Rodriguez-Castellon E. Lead and cadmium levels in soil and plants near highways and their correlation with traffic density. Environ. Pollut. 1982;4:281–290. doi: 10.1016/0143-148X(82)90014-3. DOI
Mazur Z., Radziemska M., Maczuga O., Makuch A. Heavy metal concentrations in soil and moss surroundings railroad. Fresen. Environ. Bull. 2013;22:955–961.
Cortufo M.F., De Santo A.V., Alfani A., Bartoli G., De Cristofaro A. Effects of urban heavy metal pollution on organic matter decomposition in Quercus ilex L. Woods. Environ. Pollut. 1995;89:81–87.
Kváčová M., Ash C., Borůvka L., Pavlů L., Nikodem A., Němeček K., Tejnecký V., Drábek O. Contents of Potentially Toxic Elements in Forest Soils of the Jizera Mountains Region. Environ. Model. Assess. 2015;20:183–195. doi: 10.1007/s10666-014-9425-3. DOI
Feng W., Guo Z., Xiao X., Peng C., Shi L., Ran H., Xu W. Atmospheric Deposition as a Source of Cadmium and Lead to Soil-Rice System and Associated Risk Assessment. Ecotoxicol. Environ. Saf. 2019;180:160–167. doi: 10.1016/j.ecoenv.2019.04.090. PubMed DOI
Ouyang X., Ma J., Zhang R., Li P., Gao M., Sun C., Weng L., Chen Y., Yan S., Li Y. Uptake of atmospherically deposited cadmium by leaves of vegetables: Subcellular localization by NanoSIMS and potential risks. J. Hazard. Mater. 2022;431:128624. doi: 10.1016/j.jhazmat.2022.128624. PubMed DOI
Rolka E., Żołnowski A.C., Kozłowska K.A. Assessment of the content of trace elements in soils and roadside vegetation in the vicinity of some gasoline stations in Olsztyn (Poland) J. Elem. 2020;25:549–563.
Rolka E., Żołnowski A.C., Sadowska M.M. Assessment of heavy metal content in soils adjacent to the DK16-route in Olsztyn (North-Eastern Poland) Pol. J. Environ. Stud. 2020;29:4303–4311. doi: 10.15244/pjoes/118384. DOI
Lin C.C., Chen S.J., Huang K.L., Hwang W.I., Chang-Chien G.P., Lin W.Y. Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environ. Sci. Technol. 2005;39:8113–8122. doi: 10.1021/es048182a. PubMed DOI
Adachi K., Tainosho Y. Characterization of heavy metal particles embedded in tire dust. Environ. Int. 2004;30:1009–1017. doi: 10.1016/j.envint.2004.04.004. PubMed DOI
Banerjee A.D.K. Heavy Metal Levels and Solid Phase Speciation in Street Dusts of Delhi, India. Environ. Pollut. 2003;123:95–105. doi: 10.1016/S0269-7491(02)00337-8. PubMed DOI
Kummer U., Pacyna J., Pacyna E., Friedrich R. Assessment of heavy metal releases from the use phase of road transport in Europe. Atmos. Environ. 2009;43:640–647. doi: 10.1016/j.atmosenv.2008.10.007. DOI
362/2010 Coll Decree of the Ministry of Agriculture, Environment and Regional Development of the Slovak Republic, Which Lays Down Requirements for Fuel Quality and Keeping Operational Records on Fuels. [(accessed on 29 March 2021)]. Available online: https://www.slov-lex.sk/pravne-predpisy/SK/ZZ/2010/362/vyhlasene_znenie.html.
Toselli M., Schiatti P., Ara D., Bertacchini A., Quartieri M. The accumulation of copper in soils of the Italian region Emilia-Romagna. Plant Soil Environ. 2009;55:74–79. doi: 10.17221/317-PSE. DOI
Żołnowski A., Busse M., Zając P. Response of maize (Zea mays L.) to soil contamination with copper depending on applied contamination neutralizing substances. J. Elem. 2013;18:507–520. doi: 10.5601/jelem.2013.18.3.14. DOI
Szczodrowska A., Kulbat K., Smolińska B., Leszczyńska J. Accumulation of metal ions in selected plants from Brassicaceae and Lamiaceae families. Biotechnol. Food. Sci. 2016;80:29–42.
Ma J., Chen Y., Weng L., Peng H., Liao Z., Li Y. Source Identification of Heavy Metals in Surface Paddy Soils Using Accumulated Elemental Ratios Coupled with MLR. Int. J. Environ. Res. Public Health. 2021;18:2295. doi: 10.3390/ijerph18052295. PubMed DOI PMC
Liang Z., Ding Q., Wei D., Li J., Chen S., Ma Y. Major controlling factors and predictions for cadmium transfer from the soil into spinach plants. Ecotoxicol. Environ. Saf. 2013;93:180–185. doi: 10.1016/j.ecoenv.2013.04.003. PubMed DOI
Haiyan W., Stuanes A.O. Heavy metal pollution in air-water-soil-plant system of Zhuzhou city, Hunan province, China. Water Air Soil Pollut. 2003;147:79–107. doi: 10.1023/A:1024522111341. DOI
Vaverková M., Adamcová D. Heavy Metals Uptake by Select Plant Species in the Landfill Area of Štěpánovice, Czech Republic. Pol. J. Environ. Stud. 2014;23:2265–2269. doi: 10.15244/pjoes/26106. DOI
Kabata-Pendias A. Trace Elements in Soils and Plants. 4th ed. CRC Press; Boca Raton, FL, USA: 2011.
Sperdouli I., Adamakis I.-D.S., Dobrikova A., Apostolova E., Han´c A., Moustakas M. Excess Zinc Supply Reduces Cadmium Uptake and Mitigates Cadmium Toxicity Effects on Chloroplast Structure, Oxidative Stress, and Photosystem II Photochemical Efficiency in Salvia sclarea Plants. Toxics. 2022;10:36. doi: 10.3390/toxics10010036. PubMed DOI PMC
Fu S., We C., Xia Y., Li L., Wu D. Heavy metals uptake and transport by native wild plants: Implications for phytoremediation and restoration. Environ. Earth Sci. 2019;78:103. doi: 10.1007/s12665-019-8103-9. DOI
Malinowska E., Jankowski K., Wiśniewska-Kadżajan B., Sosnowski J., Kolczarek R., Jankowska J., Ciepiela G.A. Content of Zinc and Copper in Selected Plants Growing Along a Motorway. Bull. Environ. Contam. Toxicol. 2015;95:638–643. doi: 10.1007/s00128-015-1648-8. PubMed DOI PMC
Mihál I., Marušák R., Barna M. Dynamics of Fagus sylvatica L. Necrotization under Different Pollutant Load Conditions. Pol. J. Environ. Stud. 2019;28:2755–2763. doi: 10.15244/pjoes/92209. DOI
Fazekašová D., Boguská Z., Fazekaš J., Škvareninová J., Chovancová J. Contamination of vegetation growing on soils and substrates in the unhygienic region of Central Spiš (Slovakia) polluted by heavy metals. J. Environ. Biol. 2016;37:1335–1340. PubMed
Sezgin N., Ozcan H.K., Demir G., Nemlioglu S., Bayat C. Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway. Environ. Int. 2004;29:979–985. doi: 10.1016/S0160-4120(03)00075-8. PubMed DOI
Tabande L., Taheri M. Evaluation of Exposure to Heavy Metals Cu, Zn, Cd and Pb in Vegetables Grown in the Olericultures of Zanjan Province’s Fields. Iran. J. Health Environ. 2016;9:41–56.
Uhrinová K., Flórián K., Matherny M. Statistical Evaluation and the Nature of the Deposited Dust of the Residential Agglomerations of the City Košice. Chem. Pap. 2005;59:230–234.
Dzubaj A., Bačkor M., Tomko J., Peli E., Tuba Z. Tolerance of the lichen Xanthoria parietina (L.) Th. Fr. to metal stress. Ecotoxicol. Environ. Saf. 2008;70:319–326. doi: 10.1016/j.ecoenv.2007.04.002. PubMed DOI
Zlatník A. Přehled skupin typů geobiocenů původne lesních a křovinných v ČSSR. Zprávy Geogr. Ust. ČSAV. 1976;13:55–64. (In Czech)
IUSS Working Group WRB . World Reference Base for Soil Re-Sources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. FAO; Rome, Italy: 2015. World Soil Resources Reports no. 106.
Čurlík J., Šefčík P. Geochemical Atlas of the Slovak Republic, Part V: Soils. State Geological Institute of Dionýz Štúr; Bratislava, Slovakia: 2012. [(accessed on 10 May 2021)]. Available online: http://apl.geology.sk/atlaspody.
Hakanson L. An ecological risk index for aquatic pollution control. A Sedimentological approach. Water Res. 1980;14:975–1001. doi: 10.1016/0043-1354(80)90143-8. DOI
Javed T., Ahmad N., Mashiatullah A. Heavy metals contamination and ecological risk assessment in surface sediments of Namal Lake. Pakistan. Pol. J. Environ. Stud. 2018;27:675–688. doi: 10.15244/pjoes/75815. DOI
Rastmanesh F., Moore F., Kopaei M.K., Keshavarzi B., Behrouz M. Heavy metal enrichment of soil in Sarcheshmeh copper complex, Kerman, Iran. Environ. Earth Sci. 2011;62:329–336. doi: 10.1007/s12665-010-0526-2. DOI
Oliva S.R., Espinosa A.J.F. Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchem, J. 2007;86:131–139. doi: 10.1016/j.microc.2007.01.003. DOI
Baker A.J.M. Accumulators and excluders: Strategies in the response of plants to heavy metals. J. Plant Nutr. 1981;3:643–654. doi: 10.1080/01904168109362867. DOI
Markert B. Instrumental Multielement Analysis in Plant Materials—A Modern Method in Environmental Chemistry and Tropical Systems Research. CETEM/CNPq; Rio de Janeiro, Brazil: 1995. (Série 8)
Lindsay W.L. Chemical Equilibria in Soils. John Wiley and Sons Ltd.; New York, NY, USA: 1979.
Mertens J., Smolders E. Zinc. In: Alloway B., editor. Heavy Metals in Soils. Springer; Dordrecht, The Netherlands: 2013. pp. 465–493.
Cleven R.F.M.J., Janus J.A., Annema J.A., Slooff W. Integrated Criteria Document Zinc. National Institute of Public Health and Environmental Protection; Bilthoven, The Netherlands: 1993. Report no. 710401028.
Kabata-Pendias A., Mukherjee A.B. Trace Elements from Soil to Human. Springer; Berlin, Germany: 2007.
Violante A., Cozzolino V., Perelomov L., Caporale A.G., Pigna M. Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil Sci. Plant. Nutr. 2010;10:268–292. doi: 10.4067/S0718-95162010000100005. DOI
Żołnowski A.C., Wyszkowski M., Rolka E., Sawicka M. Mineral materials as a neutralizing agent used on soil contaminated with copper. Materials. 2021;14:6830. doi: 10.3390/ma14226830. PubMed DOI PMC
Rodriguez-Blanco M.L., Taboada-Castro M.M., Taboada-Castro M.T. Evaluation of Cu and Zn Content in Soils and their Interaction with Some Physicochemical Soil Properties. IOP Conf. Ser. Earth Environ. Sci. 2019;221:012048. doi: 10.1088/1755-1315/221/1/012048. DOI
Bohn H.L., McNeal B.L., O’Connor G.A. Soil Chemistry. John Wiley and Sons; New York, NY, USA: 1985.
Naidu R., Smith E., Owens G., Bhattacharya P. Managing Arsenic in the Environment: From Soil to Human Health. CSIRO Publishing; Clayton, Australia: 2006.
Oorts K. Copper. In: Alloway B., editor. Heavy Metals in Soils. Springer; Dordrecht, The Netherlands: 2013. pp. 367–394.
Ballabio C., Panagos P., Lugato E., Huang J.H., Orgiazzi A., Jones A., Fernández-Ugalde O., Borrelli P., Montanarella L. Copper distribution in European topsoils: An assessment based on LUCAS soil survey. Sci. Total Environ. 2018;636:282–298. doi: 10.1016/j.scitotenv.2018.04.268. PubMed DOI
Grigalavičienė I., Rutkovienė V., Marozas V. The Accumulation of Heavy Metals Pb, Cu and Cd at Roadside Forest Soil. Pol. J. Environ. Stud. 2005;14:109–115.
Kluge B., Wessolek G. Heavy metal pattern and solute concentration in soils along the oldest highway of the world—The AVUS Autobahn. Environ. Monit. Assess. 2012;184:6469–6481. doi: 10.1007/s10661-011-2433-8. PubMed DOI
Wieczorek J., Wieczorek Z., Bieniaszewski T. Cadmium and lead content in cereal grains and soil from cropland adjacent to roadways. Pol. J. Environ. Stud. 2005;14:535–540.
Elnazer A.A., Salman S.A., Seleem E.M., El Ella E.M.A. Assessment of some heavy metals pollution and bioavailability in roadside soil of Alexandria-Marsa Matruh Highway, Egypt. Int. J. Ecol. 2015;4:1–7. doi: 10.1155/2015/689420. DOI
Golia E.E., Papadimou S.G., Cavalaris C., Tsiropoulos N.G. Level of Contamination Assessment of Potentially Toxic Elements in the Urban Soils of Volos City (Central Greece) Sustainability. 2021;13:2029. doi: 10.3390/su13042029. DOI
Souffit G.D., Mohamadou L.L., Guembou Shouop C.J., Beyala Ateba J.F. Saïdou-. Assessment of trace elements pollution and their potential health risks in the cobalt-nickel bearing areas of Lomié, East Cameroon. Environ. Monit. Assess. 2022;194:127. doi: 10.1007/s10661-022-09776-1. PubMed DOI
Bowen H.J.M. Environmental Chemistry of the Elements. Academic Press; London, UK: 1979.
Maňkovská B. Geochemical Atlas of the Slovakia, Part II: Forest Biomass. Geological Service of the Slovak Republic; Bratislava, Slovakia: 1996. [(accessed on 18 May 2021)]. Available online: https://www.geology.sk/geoinfoportal/mapovy-portal/atlasy/geochemicky-atlas-slovenska/
Eisler R. Zinc hazards to plants and animals with emphasis on fishery and wildlife resources. In: Cheremisinoff P.N., editor. Ecological Issues and Environmental Impact Assessment. Gulf Publishing Company; Houston, TX, USA: 1977. pp. 443–537.
Marschner H. Mineral Nutrition of Higher Plants. 2nd ed. Academic Press; London, UK: 1995.
Kloke A., Sauerbeck D.R., Vetter H. The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains. In: Nriagu J.O., editor. Changing Metal Cycles and Human Health: Report of the Dahlem Workshop on Changing Metal Cycles and Human Health. Springer; Berlin, Germany: 1984. pp. 113–141.
Macnicol R.D., Beckett P.H.T. Critical tissue concentrations of potentially toxic elements. Plant Soil. 1985;85:107–129. doi: 10.1007/BF02197805. DOI
Baker D.E., Senef J.P. Copper. In: Alloway B.J., editor. Heavy Metals in Soils. Blackie Academic and Professional; London, UK: 1995. pp. 179–205.
Brooks R.R. Serpentine and Its Vegetation: A Multi-Disciplinary Approach. Dioscorides Press; Portland, OR, USA: 1987.
Dalenberg J.W., van Driel W. Contribution of atmospheric deposition to heavy-metal concentrations in field crops. Neth. J. Agric. Sci. 1990;38:369–379. doi: 10.18174/njas.v38i3A.16594. DOI
Nadgórska-Socha A., Ptasiński B., Kita A. Heavy metal bioaccumulation and antioxidative responses in Cardaminopsis arenosa and Plantago lanceolata leaves from metalliferous and non-metalliferous sites: A field study. Ecotoxicology. 2013;22:1422–1434. doi: 10.1007/s10646-013-1129-y. PubMed DOI PMC
Davies B.E., White H.M. Trace elements in vegetables grown on soils contaminated by base metal mining. J. Plant. Nutr. 1981;3:387–396. doi: 10.1080/01904168109362846. DOI
Kuklová M., Hniličková H., Hnilička F., Pivková I., Kukla J. Toxic elements and energy accumulation in topsoil and plants of spruce ecosystems. Plant Soil Environ. 2017;63:402–408.