Sheep Post-Domestication Expansion in the Context of Mitochondrial and Y Chromosome Haplogroups and Haplotypes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
35456419
PubMed Central
PMC9025449
DOI
10.3390/genes13040613
PII: genes13040613
Knihovny.cz E-zdroje
- Klíčová slova
- Y chromosome haplotypes, domestication, matrilineal inheritance, mitochondrial haplogroups, patrilineal inheritance,
- MeSH
- chromozom Y genetika MeSH
- domestikace * MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- haplotypy genetika MeSH
- mitochondriální DNA genetika MeSH
- ovce genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- mitochondriální DNA MeSH
Mitochondrial DNA and nonrecombinant parts of Y-chromosome DNA are a great tool for looking at a species' past. They are inherited for generations almost unaffected because they do not participate in recombination; thus, the time of occurrence of each mutation can be estimated based on the average mutation rate. Thanks to this, male and female haplogroups guide confirming events in the distant past (potential centers of domestication, settlement of areas, trade connections) as well as in modern breeding (crossbreeding, confirmation of paternity). This research focuses mainly on the development of domestic sheep and its post-domestication expansion, which has occurred through human trade from one continent to another. So far, five mitochondrial and five Y-chromosome haplogroups and dozens of their haplotypes have been detected in domestic sheep through studies worldwide. Mitochondrial DNA variability is more or less correlated with distance from the domestication center, but variability on the recombinant region of the Y chromosome is not. According to available data, central China shows the highest variability of male haplogroups and haplotypes.
Zobrazit více v PubMed
Zeder M.A. Out of the Fertile Crescent: The Dispersal of Domestic Livestock through Europe and Africa. In: Boivin N., Petraglia M., Crassard R., editors. Human Dispersal and Species Movement. Cambridge University Press; Cambridge, UK: 2017. pp. 261–303.
Zeder M.A. Animal Domestication in the Zagros: A Review of Past and Current Research. Paléorient. 1999;25:11–25. doi: 10.3406/paleo.1999.4684. DOI
Baird D., Fairbairn A., Jenkins E., Martin L., Middleton C., Pearson J., Asouti E., Edwards Y., Kabukcu C., Mustafaoğlu G., et al. Agricultural Origins on the Anatolian Plateau. Proc. Natl. Acad. Sci. USA. 2018;115:E3077–E3086. doi: 10.1073/pnas.1800163115. PubMed DOI PMC
Luigi-Sierra M.G., Mármol-Sánchez E., Amills M. Comparing the Diversity of the Casein Genes in the Asian Mouflon and Domestic Sheep. Anim. Genet. 2020;51:470–475. doi: 10.1111/age.12937. PubMed DOI
Wright D. Article Commentary: The Genetic Architecture of Domestication in Animals. Bioinform. Biol. Insights. 2015;9((Suppl. S4)):11–20. doi: 10.4137/BBI.S28902. PubMed DOI PMC
Lv F.-H., Agha S., Kantanen J., Colli L., Stucki S., Kijas J.W., Joost S., Li M.-H., Ajmone Marsan P. Adaptations to Climate-Mediated Selective Pressures in Sheep. Mol. Biol. Evol. 2014;31:3324–3343. doi: 10.1093/molbev/msu264. PubMed DOI PMC
Salces-Ortiz J., González C., Martínez M., Mayoral T., Calvo J.H., Serrano M. Looking for Adaptive Footprints in the HSP90AA1 Ovine Gene. BMC Evol. Biol. 2015;15:7. doi: 10.1186/s12862-015-0280-x. PubMed DOI PMC
Kijas J.W., Lenstra J.A., Hayes B., Boitard S., Porto Neto L.R., San Cristobal M., Servin B., McCulloch R., Whan V., Gietzen K., et al. Genome-Wide Analysis of the World’s Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection. PLoS Biol. 2012;10:e1001258. doi: 10.1371/journal.pbio.1001258. PubMed DOI PMC
Ryder M.L. Sheep. In: Manson I.L., editor. Evolution of Domesticated Animals. Longman Group Limited; London, UK: New York, NY, USA: 1984. pp. 63–84.
Hiendleder S., Kaupe B., Wassmuth R., Janke A. Molecular Analysis of Wild and Domestic Sheep Questions Current Nomenclature and Provides Evidence for Domestication from Two Different Subspecies. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2002;269:893–904. doi: 10.1098/rspb.2002.1975. PubMed DOI PMC
Tapio M., Marzanov N., Ozerov M., Ćinkulov M., Gonzarenko G., Kiselyova T., Murawski M., Viinalass H., Kantanen J. Sheep Mitochondrial DNA Variation in European, Caucasian, and Central Asian Areas. Mol. Biol. Evol. 2006;23:1776–1783. doi: 10.1093/molbev/msl043. PubMed DOI
Mariotti M., Valentini A., Marsan P.A., Pariset L. Mitochondrial DNA of Seven Italian Sheep Breeds Shows Faint Signatures of Domestication and Suggests Recent Breed Formation. Mitochondrial DNA. 2013;24:577–583. doi: 10.3109/19401736.2013.770493. PubMed DOI
Rezaei H.R., Naderi S., Chintauan-Marquier I.C., Taberlet P., Virk A.T., Naghash H.R., Rioux D., Kaboli M., Pompanon F. Evolution and Taxonomy of the Wild Species of the Genus Ovis (Mammalia, Artiodactyla, Bovidae) Mol. Phylogenet. Evol. 2010;54:315–326. doi: 10.1016/j.ympev.2009.10.037. PubMed DOI
Chessa B., Pereira F., Arnaud F., Amorim A., Goyache F., Mainland I., Kao R.R., Pemberton J.M., Beraldi D., Stear M.J., et al. Revealing the History of Sheep Domestication Using Retrovirus Integrations. Science. 2009;324:532–536. doi: 10.1126/science.1170587. PubMed DOI PMC
Wang B., Chen L., Wang W. Genomic Insights into Ruminant Evolution: From Past to Future Prospects. Zool. Res. 2019;40:476–487. doi: 10.24272/j.issn.2095-8137.2019.061. PubMed DOI PMC
Kijas J.W., Townley D., Dalrymple B.P., Heaton M.P., Maddox J.F., McGrath A., Wilson P., Ingersoll R.G., McCulloch R., McWilliam S., et al. A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds. PLoS ONE. 2009;4:e4668. doi: 10.1371/journal.pone.0004668. PubMed DOI PMC
Rannamäe E., Lõugas L., Niemi M., Kantanen J., Maldre L., Kadõrova N., Saarma U. Maternal and Paternal Genetic Diversity of Ancient Sheep in Estonia from the Late Bronze Age to the Post-Medieval Period and Comparison with Other Regions in Eurasia. Anim. Genet. 2016;47:208–218. doi: 10.1111/age.12407. PubMed DOI
Zhao Y.-X., Yang J., Lv F.-H., Hu X.-J., Xie X.-L., Zhang M., Li W.-R., Liu M.-J., Wang Y.-T., Li J.-Q., et al. Genomic Reconstruction of the History of Native Sheep Reveals the Peopling Patterns of Nomads and the Expansion of Early Pastoralism in East Asia. Mol. Biol. Evol. 2017;34:2380–2395. doi: 10.1093/molbev/msx181. PubMed DOI PMC
Pardeshi V.C., Kadoo N.Y., Sainani M.N., Meadows J.R.S., Kijas J.W., Gupta V.S. Mitochondrial Haplotypes Reveal a Strong Genetic Structure for Three Indian Sheep Breeds. Anim. Genet. 2007;38:460–466. doi: 10.1111/j.1365-2052.2007.01636.x. PubMed DOI
Nigussie H., Mwacharo J.M., Osama S., Agaba M., Mekasha Y., Kebede K., Abegaz S., Pal S.K. Genetic Diversity and Matrilineal Genetic Origin of Fat-Rumped Sheep in Ethiopia. Trop. Anim. Health Prod. 2019;51:1393–1404. doi: 10.1007/s11250-019-01827-z. PubMed DOI PMC
Chen Z.-H., Zhang M., Lv F.-H., Ren X., Li W.-R., Liu M.-J., Nam K., Bruford M.W., Li M.-H. Contrasting Patterns of Genomic Diversity Reveal Accelerated Genetic Drift but Reduced Directional Selection on X-Chromosome in Wild and Domestic Sheep Species. Genome Biol. Evol. 2018;10:1282–1297. doi: 10.1093/gbe/evy085. PubMed DOI PMC
Chessa S., Giambra I.J., Brandt H., Caroli A.M., Gootwine E., Erhardt G. Genetic Diversity within Economically Important Loci in European, Middle Eastern, and African Sheep Breeds: An Insight into Their Development. Small Rumin. Res. 2017;155:72–80. doi: 10.1016/j.smallrumres.2017.08.021. DOI
Brown W.M., George M., Wilson A.C. Rapid Evolution of Animal Mitochondrial DNA. Proc. Natl. Acad. Sci. USA. 1979;76:1967–1971. doi: 10.1073/pnas.76.4.1967. PubMed DOI PMC
Rafia P., Tarang A. Sequence Variations of Mitochondrial DNA Displacement-Loop in Iranian Indig…: Elektronické Publikace Dostupné Na ČZU. Iran. J. Appl. Anim. Sci. 2016;6:363–368.
Mukhametzharova I., Islamov Y., Shauyenov S., Ibrayev D., Atavliyeva S., Tarlykov P. Genetic Characterization of Kazakh Native Sheep Breeds Using Mitochondrial DNA. Online J. Biol. Sci. 2018;18:341–348. doi: 10.3844/ojbsci.2018.341.348. DOI
Meadows J.R.S., Cemal I., Karaca O., Gootwine E., Kijas J.W. Five Ovine Mitochondrial Lineages Identified from Sheep Breeds of the near East. Genetics. 2007;175:1371–1379. doi: 10.1534/genetics.106.068353. PubMed DOI PMC
Yağci S., Baş S., Kiraz S. Study of Mitochondrial DNA (MtDNA) D-Loop Region Polymorphism in Şavak Akkaraman Sheep. Turk. J. Vet. Anim. Sci. 2020;44:323–330. doi: 10.3906/vet-1905-57. DOI
National Center for Biotechnology Information NCBI [(accessed on 26 June 2020)]; Available online: https://www.ncbi.nlm.nih.gov/ipg/ADI57605.1.
Demirci S., Koban Baştanlar E., Dağtaş N.D., Pişkin E., Engin A., Özer F., Yüncü E., Doğan Ş.A., Togan İ. Mitochondrial DNA Diversity of Modern, Ancient and Wild Sheep (Ovis gmelinii anatolica) from Turkey: New Insights on the Evolutionary History of Sheep. PLoS ONE. 2013;8:e81952. doi: 10.1371/journal.pone.0081952. PubMed DOI PMC
Dymova M.A., Zadorozhny A.V., Mishukova O.V., Khrapov E.A., Druzhkova A.S., Trifonov V.A., Kichigin I.G., Tishkin A.A., Grushin S.P., Filipenko M.L. Mitochondrial DNA Analysis of Ancient Sheep from Altai. Anim. Genet. 2017;48:615–618. doi: 10.1111/age.12569. PubMed DOI
Wood N.J., Phua S.H. Variation in the Control Region Sequence of the Sheep Mitochondrial Genome. Anim. Genet. 2009;27:25–33. doi: 10.1111/j.1365-2052.1996.tb01173.x. PubMed DOI
Sanna D., Barbato M., Hadjisterkotis E., Cossu P., Decandia L., Trova S., Pirastru M., Leoni G.G., Naitana S., Francalacci P., et al. The First Mitogenome of the Cyprus Mouflon (Ovis Gmelini Ophion): New Insights into the Phylogeny of the Genus Ovis. PLoS ONE. 2015;10:e0144257. doi: 10.1371/journal.pone.0144257. PubMed DOI PMC
Meadows J.R.S., Hiendleder S., Kijas J.W. Haplogroup Relationships between Domestic and Wild Sheep Resolved Using a Mitogenome Panel. Heredity. 2011;106:700–706. doi: 10.1038/hdy.2010.122. PubMed DOI PMC
Lv F.-H., Peng W.-F., Yang J., Zhao Y.-X., Li W.-R., Liu M.-J., Ma Y.-H., Zhao Q.-J., Yang G.-L., Wang F., et al. Mitogenomic Meta-Analysis Identifies Two Phases of Migration in the History of Eastern Eurasian Sheep. Mol. Biol. Evol. 2015;32:2515–2533. doi: 10.1093/molbev/msv139. PubMed DOI PMC
Deng J., Xie X.-L., Wang D.-F., Zhao C., Lv F.-H., Li X., Yang J., Yu J.-L., Shen M., Gao L., et al. Paternal Origins and Migratory Episodes of Domestic Sheep. Curr. Biol. 2020;30:4085–4095.e6. doi: 10.1016/j.cub.2020.07.077. PubMed DOI
Çakırlar C. The Evolution of Animal Husbandry in Neolithic Central-West Anatolia: The Zooarchaeological Record from Ulucak Höyük (c. 7040–5660 Cal. BC, Izmir, Turkey) Anatol. Stud. 2012;62:1–33. doi: 10.1017/S0066154612000014. DOI
Mereu P., Pirastru M., Barbato M., Satta V., Hadjisterkotis E., Manca L., Naitana S., Leoni G.G. Identification of an Ancestral Haplotype in the Mitochondrial Phylogeny of the Ovine Haplogroup B. PeerJ. 2019;7:e7895. doi: 10.7717/peerj.7895. PubMed DOI PMC
Dotsev A.V., Kunz E., Shakhin A.V., Petrov S.N., Kostyunina O.V., Okhlopkov I.M., Deniskova T.E., Barbato M., Bagirov V.A., Medvedev D.G., et al. The First Complete Mitochondrial Genomes of Snow Sheep (Ovis Nivicola) and Thinhorn Sheep (Ovis Dalli ) and Their Phylogenetic Implications for the Genus Ovis. Mitochondrial DNA Part B. 2019;4:1332–1333. doi: 10.1080/23802359.2018.1535849. DOI
Scheu A., Geörg C., Schulz A., Burger J., Benecke N. The Arrival of Domesticated Animals in South-Eastern Europe as Seen from Ancient DNA. In: Kaiser E., Burger J., Schier W., editors. Population Dynamics in Prehistory and Early History. Walter de Gruyter; Berlin, Germany: 2012. pp. 45–54. DOI
Molaee V., Bazzucchi M., De Mia G.M., Otarod V., Abdollahi D., Rosati S., Lühken G. Phylogenetic Analysis of Small Ruminant Lentiviruses in Germany and Iran Suggests Their Expansion with Domestic Sheep. Sci. Rep. 2020;10:2243. doi: 10.1038/s41598-020-58990-9. PubMed DOI PMC
Olivieri C., Ermini L., Rizzi E., Corti G., Luciani S., Marota I., De Bellis G., Rollo F. Phylogenetic Position of a Copper Age Sheep (Ovis aries) Mitochondrial DNA. PLoS ONE. 2012;7:e33792. doi: 10.1371/journal.pone.0033792. PubMed DOI PMC
Niemi M., Bläuer A., Iso-Touru T., Nyström V., Harjula J., Taavitsainen J.-P., Storå J., Lidén K., Kantanen J. Mitochondrial DNA and Y-Chromosomal Diversity in Ancient Populations of Domestic Sheep (Ovis aries) in Finland: Comparison with Contemporary Sheep Breeds. Genet. Sel. Evol. 2013;45:2. doi: 10.1186/1297-9686-45-2. PubMed DOI PMC
Gáspárdy A., Berger B., Zabavnik-Piano J., Kovács E., Annus K., Zenke P., Sáfár L., Maróti-Agóts Á. Comparison of MtDNA Control Region among Descendant Breeds of the Extinct Zaupel Sheep Revealed Haplogroup C and D in Central Europe. Vet. Med. Sci. 2021;7:2330–2338. doi: 10.1002/vms3.585. PubMed DOI PMC
Liu J., Ding X., Zeng Y., Yue Y., Guo X., Guo T., Chu M., Wang F., Han J., Feng R., et al. Genetic Diversity and Phylogenetic Evolution of Tibetan Sheep Based on MtDNA D-Loop Sequences. PLoS ONE. 2016;11:e0159308. doi: 10.1371/journal.pone.0159308. PubMed DOI PMC
Tapio I., Värv S., Bennewitz J., Maleviciute J., Fimland E., Grislis Z., Meuwissen T.H.E., Miceikiene I., Olsaker I., Viinalass H., et al. Prioritization for Conservation of Northern European Cattle Breeds Based on Analysis of Microsatellite Data. Conserv. Biol. 2006;20:1768–1779. doi: 10.1111/j.1523-1739.2006.00488.x. PubMed DOI
Singh S., Kumar S., Jr., Kolte A.P., Kumar S. Extensive Variation and Sub-Structuring in Lineage A MtDNA in Indian Sheep: Genetic Evidence for Domestication of Sheep in India. PLoS ONE. 2013;8:e77858. doi: 10.1371/journal.pone.0077858. PubMed DOI PMC
Muigai A.W.T., Hanotte O. The Origin of African Sheep: Archaeological and Genetic Perspectives. Afr. Archaeol. Rev. 2013;30:39–50. doi: 10.1007/s10437-013-9129-0. PubMed DOI PMC
Gornas N., Weimann C., El Hussien A., Erhardt G. Genetic Characterization of Local Sudanese Sheep Breeds Using DNA Markers. Small Rumin. Res. 2011;95:27–33. doi: 10.1016/j.smallrumres.2010.08.009. DOI
Resende A., Gonçalves J., Muigai A.W.T., Pereira F. Mitochondrial DNA Variation of Domestic Sheep (Ovis aries) in Kenya. Anim. Genet. 2016;47:377–381. doi: 10.1111/age.12412. PubMed DOI
Álvarez I., Capote J., Traoré A., Fonseca N., Pérez K., Cuervo M., Fernández I., Goyache F. Mitochondrial Analysis Sheds Light on the Origin of Hair Sheep. Anim. Genet. 2013;44:344–347. doi: 10.1111/j.1365-2052.2012.02398.x. PubMed DOI
Kim Y.S., Tseveen K., Batsukh B., Seong J., Kong H.S. Origin-Related Study of Genetic Diversity and Heteroplasmy of Mongolian Sheep (Ovis arie) Using Mitochondrial DNA. J. Anim. Reprod. Biotechnol. 2020;35:198–206. doi: 10.12750/JARB.35.2.198. DOI
Ganbold O., Lee S.-H., Seo D., Paek W.K., Manjula P., Munkhbayar M., Lee J.H. Genetic Diversity and the Origin of Mongolian Native Sheep. Livest. Sci. 2019;220:17–25. doi: 10.1016/j.livsci.2018.12.007. DOI
Xiao P., Niu L.L., Zhao Q.J., Chen X.Y., Wang L.J., Li L., Zhang H.P., Guo J.Z., Xu H.Y., Zhong T. New Insights into Mitogenomic Phylogeny and Copy Number in Eight Indigenous Sheep Populations Based on the ATP Synthase and Cytochrome c Oxidase Genes. Animal. 2018;12:1341–1349. doi: 10.1017/S175173111700297X. PubMed DOI
Ibrahim A., Budisatria I.G.S., Widayanti R., Artama W.T. The Genetic Profiles and Maternal Origin of Local Sheep Breeds on Java Island (Indonesia) Based on Complete Mitochondrial DNA D-Loop Sequences. Vet. World. 2020;13:2625–2634. doi: 10.14202/vetworld.2020.2625-2634. PubMed DOI PMC
Arora R., Yadav H.S., Mishra B.P. Mitochondrial DNA Diversity in Indian Sheep. Livest. Sci. 2013;153:50–55. doi: 10.1016/j.livsci.2013.02.006. DOI
Ćinkulov M., Popovski Z., Porcu K., Tanaskovska B., Hodžić A., Bytyqi H., Mehmeti H., Margeta V., Djedović R., Hoda A., et al. Genetic Diversity and Structure of the West Balkan Pramenka Sheep Types as Revealed by Microsatellite and Mitochondrial DNA Analysis. J. Anim. Breed. Genet. 2008;125:417–426. doi: 10.1111/j.1439-0388.2008.00742.x. PubMed DOI
Dudu A., Ghiţă E., Costache M., Georgescu S.E. Origin and Genetic Diversity of Romanian Racka Sheep Using Mitochondrial Markers. Small Rumin. Res. 2016;144:276–282. doi: 10.1016/j.smallrumres.2016.10.016. DOI
Ferencakovic M., Curik I., Pérez-Pardal L., Royo L.J., Cubric-Curik V., Fernández I., Álvarez I., Kostelic A., Sprem N., Krapinec K., et al. Mitochondrial DNA and Y-Chromosome Diversity in East Adriatic Sheep. Anim. Genet. 2013;44:184–192. doi: 10.1111/j.1365-2052.2012.02393.x. PubMed DOI
Ghernouti N., Bodinier M., Ranebi D., Maftah A., Petit D., Gaouar S.B.S. Control Region of MtDNA Identifies Three Migration Events of Sheep Breeds in Algeria. Small Rumin. Res. 2017;155:66–71. doi: 10.1016/j.smallrumres.2017.09.003. DOI
Gorkhali N.A., Han J.L., Ma Y.H. Mitochondrial DNA Variation in Indigenous Sheep (Ovis aries) Breeds of Nepal. Trop. Agric. Res. 2015;26:632. doi: 10.4038/tar.v26i4.8125. DOI
Guangxin E., Yong-Ju Z., Ri-Su N., Yue-Hui M., Jia-Hua Z., Li-Peng C., Xiao-Yu Q., Zhong-Quan Z., Ya-Wang S., Xin W., et al. Meta-Analysis Evidence of Maternal Lineages in Chinese Tibetan Sheep Using MtDNA D-Loop Panel. Mitochondrial DNA Part A. 2017;28:579–583. doi: 10.3109/24701394.2016.1143469. PubMed DOI
Guo J., Du L.-X., Ma Y.-H., Guan W.-J., Li H.-B., Zhao Q.-J., Li X., Rao S.-Q. A Novel Maternal Lineage Revealed in Sheep (Ovis aries) Anim. Genet. 2005;36:331–336. doi: 10.1111/j.1365-2052.2005.01310.x. PubMed DOI
Hamadalahmad A., Almeziad M., Javadmanesh A. Genetic Similarity Comparison between Some Iranian and Middle Eastern Sheep Breeds Using Mitochondrial Control Region Sequencing. DYSONA Life Sci. 2020;1:20–24. doi: 10.30493/dls.2020.105085. DOI
Hussain T., Babar M.E., Wajid A. Extra Nuclear DNA Control Region and Cytochome b Gene Based Phylogeny Kashmir: Implications Towards Conservation. JAPS J. Anim. Plant Sci. 2016;26:1890–1893.
Kandoussi A., Boujenane I., Auger C., Serranito B., Germot A., Piro M., Maftah A., Badaoui B., Petit D. The Origin of Sheep Settlement in Western Mediterranean. Sci. Rep. 2020;10:10225. doi: 10.1038/s41598-020-67246-5. PubMed DOI PMC
Kirikci K., Noce A., Cam M.A., Mercan L., Amills M. The Analysis of Mitochondrial Data Indicates the Existence of Population Substructure in Karayaka Sheep. Small Rumin. Res. 2018;162:25–29. doi: 10.1016/j.smallrumres.2018.02.007. DOI
Koseniuk A., Słota E. Mitochondrial Control Region Diversity in Polish Sheep Breeds. Arch. Anim. Breed. 2016;59:227–233. doi: 10.5194/aab-59-227-2016. DOI
Liu J., Lu Z., Yuan C., Wang F., Yang B. Phylogeography and Phylogenetic Evolution in Tibetan Sheep Based on MT-CYB Sequences. Animals. 2020;10:1177. doi: 10.3390/ani10071177. PubMed DOI PMC
Meadows J.R.S., Li K., Kantanen J., Tapio M., Sipos W., Pardeshi V., Gupta V., Calvo J.H., Whan V., Norris B., et al. Mitochondrial Sequence Reveals High Levels of Gene Flow Between Breeds of Domestic Sheep from Asia and Europe. J. Hered. 2005;96:494–501. doi: 10.1093/jhered/esi100. PubMed DOI
Mustafa S.I., Schwarzacher T., Heslop-Harrison J.S. Complete Mitogenomes from Kurdistani Sheep: Abundant Centromeric Nuclear Copies Representing Diverse Ancestors. Mitochondrial DNA Part A. 2018;29:1180–1193. doi: 10.1080/24701394.2018.1431226. PubMed DOI
Oner Y., Calvo J.H., Elmaci C. Investigation of the Genetic Diversity among Native Turkish Sheep Breeds Using MtDNA Polymorphisms. Trop. Anim. Health Prod. 2013;45:947–951. doi: 10.1007/s11250-012-0313-z. PubMed DOI
Othman O.E., Pariset L., Balabel E.A., Marioti M. Genetic Characterization of Egyptian and Italian Sheep Breeds Using Mitochondrial DNA. J. Genet. Eng. Biotechnol. 2015;13:79–86. doi: 10.1016/j.jgeb.2014.12.005. PubMed DOI PMC
Pariset L., Mariotti M., Gargani M., Joost S., Negrini R., Perez T., Bruford M., Ajmone Marsan P., Valentini A. Genetic Diversity of Sheep Breeds from Albania, Greece, and Italy Assessed by Mitochondrial DNA and Nuclear Polymorphisms (SNPs) Sci. World J. 2011;11:1641–1659. doi: 10.1100/2011/186342. PubMed DOI PMC
Sharma R., Ahlawat S., Sharma H., Sharma P., Panchal P., Arora R., Tantia M.S. Microsatellite and Mitochondrial DNA Analyses Unveil the Genetic Structure of Native Sheep Breeds from Three Major Agro-Ecological Regions of India. Sci. Rep. 2020;10:20422. doi: 10.1038/s41598-020-77480-6. PubMed DOI PMC
Sulaiman Y., Wu C., Zhao C. Phylogeny of 19 Indigenous Sheep Populations in Northwestern China Inferred from Mitochondrial DNA Control Region. Asian J. Anim. Vet. Adv. 2011;6:71–79. doi: 10.3923/ajava.2011.71.79. DOI
Yüncü E., Demirci S., Koban Baştanlar E., Doğan Ş.A., Taşdemir U., Togan İ. Comparative Study of Three Simple Molecular Approaches in Search of MtDNA Haplogroup Identification of Domestic Sheep. Small Rumin. Res. 2013;114:64–71. doi: 10.1016/j.smallrumres.2013.05.014. DOI
Cai D., Tang Z., Yu H., Han L., Ren X., Zhao X., Zhu H., Zhou H. Early History of Chinese Domestic Sheep Indicated by Ancient DNA Analysis of Bronze Age Individuals. J. Archaeol. Sci. 2011;38:896–902. doi: 10.1016/j.jas.2010.11.019. DOI
Chen S.-Y., Duan Z.-Y., Sha T., Xiangyu J., Wu S.-F., Zhang Y.-P. Origin, Genetic Diversity, and Population Structure of Chinese Domestic Sheep. Gene. 2006;376:216–223. doi: 10.1016/j.gene.2006.03.009. PubMed DOI
Udo H.M.J., Budisatria I.G.S. Fat-Tailed Sheep in Indonesia; an Essential Resource for Smallholders. Trop. Anim. Health Prod. 2011;43:1411–1418. doi: 10.1007/s11250-011-9872-7. PubMed DOI PMC
Horsburgh K.A., Rhines A. Genetic Characterization of an Archaeological Sheep Assemblage from South Africa’s Western Cape. J. Archaeol. Sci. 2010;37:2906–2910. doi: 10.1016/j.jas.2010.06.035. DOI
Alonso R.A., Ulloa-Arvizu R., Gayosso-Vázquez A. Mitochondrial DNA Sequence Analysis of the Mexican Creole Sheep (Ovis aries) Reveals a Narrow Iberian Maternal Origin. Mitochondrial DNA Part A. 2017;28:793–800. doi: 10.1080/24701394.2016.1192613. PubMed DOI
Delgado J.V., Perezgrovas R., Camacho M.E., Fresno M., Barba C. The Wool-Less Canary Sheep and Their Relationship with the Present Breeds in America. Anim. Genet. Resour. Inf. 2000;28:27–34. doi: 10.1017/S1014233900001334. DOI
Spangler G.L., Rosen B.D., Ilori M.B., Hanotte O., Kim E.-S., Sonstegard T.S., Burke J.M., Morgan J.L.M., Notter D.R., Van Tassell C.P. Whole Genome Structural Analysis of Caribbean Hair Sheep Reveals Quantitative Link to West African Ancestry. PLoS ONE. 2017;12:e0179021. doi: 10.1371/journal.pone.0179021. PubMed DOI PMC
Muigai A.W.T., Hirbo J., Sharkey S., Rege J.E.O., Blackburn H., Hanotte O. Genetic diversity and relationships of hair sheep breeds of the Americas: First results; Proceedings of the 7th World Congress on Genetics Applied to Livestock Production; Montpellier, France. 19–23 August 2002; pp. 1–4.
Campos E., Cuéllar J., Salvador O., García-Trejo E.A., Pereira F. The Genetic Diversity and Phylogeography of Mexican Domestic Sheep. Small Rumin. Res. 2020;187:106109. doi: 10.1016/j.smallrumres.2020.106109. DOI
Parsons D., Nicholson C.F. Assessing Policy Options for Agricultural Livestock Development: A Case Study of Mexico’s Sheep Sector. Cogent Food Agric. 2017;3:1313360. doi: 10.1080/23311932.2017.1313360. DOI
Macias-Cruz U., Álvarez-Valenzuela F.D., Correa-Calderón A., Molina-Ramírez L., González-Reyna A., Soto-Navarro S., Avendaño-Reyes L. Pelibuey Ewe Productivity and Subsequent Pre-Weaning Lamb Performance Using Hair-Sheep Breeds Under a Confinement System. J. Appl. Anim. Res. 2009;36:255–260. doi: 10.1080/09712119.2009.9707071. DOI
Revelo H.A., López-Alvarez D., Landi V., Rizzo L., Alvarez L.A. Mitochondrial DNA Variations in Colombian Creole Sheep Confirm an Iberian Origin and Shed Light on the Dynamics of Introduction Events of African Genotypes. Animals. 2020;10:1594. doi: 10.3390/ani10091594. PubMed DOI PMC
Bravo S., Larama G., Quiñones J., Paz E., Rodero E., Sepúlveda N. Genetic Diversity and Phylogenetic Relationship among Araucana Creole Sheep and Spanish Sheep Breeds. Small Rumin. Res. 2019;172:23–30. doi: 10.1016/j.smallrumres.2019.01.007. DOI
Hu X.-J., Yang J., Xie X.-L., Lv F.-H., Cao Y.-H., Li W.-R., Liu M.-J., Wang Y.-T., Li J.-Q., Liu Y.-G., et al. The Genome Landscape of Tibetan Sheep Reveals Adaptive Introgression from Argali and the History of Early Human Settlements on the Qinghai–Tibetan Plateau. Mol. Biol. Evol. 2019;36:283–303. doi: 10.1093/molbev/msy208. PubMed DOI PMC
Barbato M., Hailer F., Orozco-terWengel P., Kijas J., Mereu P., Cabras P., Mazza R., Pirastru M., Bruford M.W. Genomic Signatures of Adaptive Introgression from European Mouflon into Domestic Sheep. Sci. Rep. 2017;7:7623. doi: 10.1038/s41598-017-07382-7. PubMed DOI PMC
Meadows J.R.S., Hanotte O., Drögemüller C., Calvo J., Godfrey R., Coltman D., Maddox J.F., Marzanov N., Kantanen J., Kijas J.W. Globally Dispersed Y Chromosomal Haplotypes in Wild and Domestic Sheep. Anim. Genet. 2006;37:444–453. doi: 10.1111/j.1365-2052.2006.01496.x. PubMed DOI
Meadows J.R.S., Kijas J.W. Re-Sequencing Regions of the Ovine Y Chromosome in Domestic and Wild Sheep Reveals Novel Paternal Haplotypes. Anim. Genet. 2009;40:119–123. doi: 10.1111/j.1365-2052.2008.01799.x. PubMed DOI
Parmaksiz A., Oymak A., Yüncü E., Demirci S., Koban Baştanlar E., Özkan Ünal E., Togan İ., Özer F. Türkiye’den 12 Yerli, Karagül, Karacabey Merinosu ve Anadolu Yaban Koyununda (Ovis gmelinii anatolica) Y-Kromozom Polimorfizmleri. Kafkas Univ. Vet. Fak. Derg. 2018;24:821–828. doi: 10.9775/kvfd.2018.19962. DOI
Zhang M., Peng W.-F., Yang G.-L., Lv F.-H., Liu M.-J., Li W.-R., Liu Y.-G., Li J.-Q., Wang F., Shen Z.-Q., et al. Y Chromosome Haplotype Diversity of Domestic Sheep (Ovis aries) in Northern Eurasia. Anim. Genet. 2014;45:903–907. doi: 10.1111/age.12214. PubMed DOI
Wang Y., Xu L., Yan W., Li S., Wang J., Liu X., Hu J., Luo Y. Y Chromosomal Haplotype Characteristics of Domestic Sheep (Ovis aries) in China. Gene. 2015;565:242–245. doi: 10.1016/j.gene.2015.04.015. PubMed DOI
Li J.Z., Absher D.M., Tang H., Southwick A.M., Casto A.M., Ramachandran S., Cann H.M., Barsh G.S., Feldman M., Cavalli-Sforza L.L., et al. Worldwide Human Relationships Inferred from Genome-Wide Patterns of Variation. Science. 2008;319:1100–1104. doi: 10.1126/science.1153717. PubMed DOI
Becker C., Benecke N., Grabundžija A., Küchelmann H.-C., Pollock S., Schier W., Schoch C., Schrakamp I., Schütt B., Schumacher M. The Textile Revolution. Research into the Origin and Spread of Wool Production between the Near East and Central Europe. eTopoi J. Anc. Stud. 2016;6:102–151.
Sabatini S., Bergerbrant S., Brandt L.Ø., Margaryan A., Allentoft M.E. Approaching Sheep Herds Origins and the Emergence of the Wool Economy in Continental Europe during the Bronze Age. Archaeol. Anthropol. Sci. 2019;11:4909–4925. doi: 10.1007/s12520-019-00856-x. DOI
Kyselý R. The Size of Domestic Cattle, Sheep, Goats and Pigs in the Czech Neolithic and Eneolithic Periods: Temporal Variations and Their Causes. Archaeofauna. 2016;25:33–78.
Bokonyi S. The Development and History of Domestic Animals in Hungary: The Neolithic Through the Middle Ages. Am. Anthropol. 1971;73:640–674. doi: 10.1525/aa.1971.73.3.02a00080. DOI
Landi V., Lasagna E., Ceccobelli S., Martinez A., Santos-Silva F., Vega-Pla J.L., Panella F., Allain D., Palhiere I., Murawski M., et al. An Historical and Biogeographical Assessment of European Merino Sheep Breeds by Microsatellite Markers. Small Rumin. Res. 2019;177:76–81. doi: 10.1016/j.smallrumres.2019.06.018. DOI