A European-wide dataset to uncover adaptive traits of Listeria monocytogenes to diverse ecological niches
Language English Country Great Britain, England Media electronic
Document type Dataset, Journal Article
Grant support
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
PubMed
35484273
PubMed Central
PMC9050667
DOI
10.1038/s41597-022-01278-6
PII: 10.1038/s41597-022-01278-6
Knihovny.cz E-resources
- MeSH
- Ecosystem MeSH
- Listeria monocytogenes * genetics MeSH
- Listeriosis * epidemiology microbiology MeSH
- Foodborne Diseases * microbiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Dataset MeSH
Listeria monocytogenes (Lm) is a ubiquitous bacterium that causes listeriosis, a serious foodborne illness. In the nature-to-human transmission route, Lm can prosper in various ecological niches. Soil and decaying organic matter are its primary reservoirs. Certain clonal complexes (CCs) are over-represented in food production and represent a challenge to food safety. To gain new understanding of Lm adaptation mechanisms in food, the genetic background of strains found in animals and environment should be investigated in comparison to that of food strains. Twenty-one partners, including food, environment, veterinary and public health laboratories, constructed a dataset of 1484 genomes originating from Lm strains collected in 19 European countries. This dataset encompasses a large number of CCs occurring worldwide, covers many diverse habitats and is balanced between ecological compartments and geographic regions. The dataset presented here will contribute to improve our understanding of Lm ecology and should aid in the surveillance of Lm. This dataset provides a basis for the discovery of the genetic traits underlying Lm adaptation to different ecological niches.
AGES Austrian Agency for Health and Food Safety Spargelfeldstrasse 191 1220 Vienna Austria
Agroscope Food Microbial Systems Berne Liebefeld Bern Switzerland
Department of Biology Swedish Food Agency Uppsala Sweden
DTU Technical University of Denmark National Food Institute Lyngby Denmark
INRAE Agroecologie AgroSup Dijon INRA Univ Bourgogne Franche Comté 21000 Dijon France
INRAE UCA UMR MEDiS F 63122 Saint Genès Champanelle France
INRAE Unité de recherche OPAALE 35000 Rennes France
Institute of Food Safety Animal Health and Environment BIOR Riga Latvia
State Veterinary Institute Rantířovská 93 20 586 05 Jihlava Czech Republic
Veterinary and Food Laboratory F R Kreutzwaldi 30 51006 Tartu Estonia
Veterinary Research Institute Hudcova 70 621 00 Brno Czech Republic
Wageningen Food Safety Research Wageningen University and Research Wageningen the Netherlands
See more in PubMed
Piveteau P, Depret G, Pivato B, Garmyn D, Hartmann A. Changes in Gene Expression during Adaptation of Listeria monocytogenes to the Soil Environment. PLOS ONE. 2011;6:e24881. doi: 10.1371/journal.pone.0024881. PubMed DOI PMC
Vivant AL, Garmyn D, Piveteau P. Listeria monocytogenes, a down-to-earth pathogen. Front Cell Infect Microbiol. 2013;3:87. doi: 10.3389/fcimb.2013.00087. PubMed DOI PMC
Buncic S, et al. Microbial pathogen control in the beef chain: recent research advances. Meat Sci. 2014;97:288–97. doi: 10.1016/j.meatsci.2013.04.040. PubMed DOI
Hurtado A, Ocejo M, Oporto B. Salmonella spp. and Listeria monocytogenes shedding in domestic ruminants and characterization of potentially pathogenic strains. Vet Microbiol. 2017;210:71–76. doi: 10.1016/j.vetmic.2017.09.003. PubMed DOI
Yoshida T, Sugimoto T, Sato M, Hirai K. Incidence of Listeria monocytogenes in wild animals in Japan. J Vet Med Sci. 2000;62:673–5. doi: 10.1292/jvms.62.673. PubMed DOI
Weindl L, et al. Listeria monocytogenes in Different Specimens from Healthy Red Deer and Wild Boars. Foodborne Pathog Dis. 2016;13:391–7. doi: 10.1089/fpd.2015.2061. PubMed DOI
Parsons C, et al. Listeria monocytogenes at the human-wildlife interface: black bears (Ursus americanus) as potential vehicles for Listeria. Microb Biotechnol. 2020;13:706–721. doi: 10.1111/1751-7915.13509. PubMed DOI PMC
Lyautey E, et al. Distribution and characteristics of Listeria monocytogenes isolates from surface waters of the South Nation River watershed, Ontario, Canada. Appl Environ Microbiol. 2007;73:5401–10. doi: 10.1128/AEM.00354-07. PubMed DOI PMC
Hydeskov HB, et al. Listeria Monocytogenes Infection of Free-Living Western European Hedgehogs (Erinaceus Europaeus) J Zoo Wildl Med. 2019;50:183–189. doi: 10.1638/2018-0093. PubMed DOI
Hellstrom S, Kiviniemi K, Autio T, Korkeala H. Listeria monocytogenes is common in wild birds in Helsinki region and genotypes are frequently similar with those found along the food chain. J Appl Microbiol. 2008;104:883–8. doi: 10.1111/j.1365-2672.2007.03604.x. PubMed DOI
Gismervik K, et al. Invading slugs (Arion vulgaris) can be vectors for Listeria monocytogenes. J Appl Microbiol. 2015;118:809–16. doi: 10.1111/jam.12750. PubMed DOI PMC
Ragon M, et al. A new perspective on Listeria monocytogenes evolution. PLoS Pathog. 2008;4:e1000146. doi: 10.1371/journal.ppat.1000146. PubMed DOI PMC
Chenal-Francisque V, et al. Worldwide distribution of major clones of Listeria monocytogenes. Emerg Infect Dis. 2011;17:1110–2. doi: 10.3201/eid/1706.101778. PubMed DOI PMC
Haase JK, et al. The ubiquitous nature of Listeria monocytogenes clones: a large-scale Multilocus Sequence Typing study. Environ Microbiol. 2014;16:405–16. doi: 10.1111/1462-2920.12342. PubMed DOI
Painset, A. et al. LiSEQ - whole-genome sequencing of a cross-sectional survey of Listeria monocytogenes in ready-to-eat foods and human clinical cases in Europe. Microb Genom5(2019). PubMed PMC
Dreyer M, et al. Listeria monocytogenes sequence type 1 is predominant in ruminant rhombencephalitis. Sci Rep. 2016;6:36419. doi: 10.1038/srep36419. PubMed DOI PMC
Cantinelli T, et al. “Epidemic clones” of Listeria monocytogenes are widespread and ancient clonal groups. J Clin Microbiol. 2013;51:3770–9. doi: 10.1128/JCM.01874-13. PubMed DOI PMC
Felix B, et al. Population Genetic Structure of Listeria monocytogenes Strains Isolated From the Pig and Pork Production Chain in France. Front Microbiol. 2018;9:684. doi: 10.3389/fmicb.2018.00684. PubMed DOI PMC
Henri C, et al. Population Genetic Structure of Listeria monocytogenes Strains as Determined by Pulsed-Field Gel Electrophoresis and Multilocus Sequence Typing. Appl Environ Microbiol. 2016;82:5720–8. doi: 10.1128/AEM.00583-16. PubMed DOI PMC
Holch A, et al. Genome sequencing identifies two nearly unchanged strains of persistent Listeria monocytogenes isolated at two different fish processing plants sampled 6 years apart. Applied and environmental microbiology. 2013;79:2944–2951. doi: 10.1128/AEM.03715-12. PubMed DOI PMC
Rychli K, et al. Comparative genomics of human and non-human Listeria monocytogenes sequence type 121 strains. PLOS ONE. 2017;12:e0176857. doi: 10.1371/journal.pone.0176857. PubMed DOI PMC
Stoller A, Stevens MJA, Stephan R, Guldimann C. Characteristics of Listeria Monocytogenes Strains Persisting in a Meat Processing Facility over a 4-Year Period. Pathogens. 2019;8:32. doi: 10.3390/pathogens8010032. PubMed DOI PMC
Ortiz S, Lopez V, Martinez-Suarez JV. Control of Listeria monocytogenes contamination in an Iberian pork processing plant and selection of benzalkonium chloride-resistant strains. Food Microbiol. 2014;39:81–8. doi: 10.1016/j.fm.2013.11.007. PubMed DOI
Pasquali F, et al. Listeria monocytogenes Sequence Types 121 and 14 Repeatedly Isolated Within One Year of Sampling in a Rabbit Meat Processing Plant: Persistence and Ecophysiology. Frontiers in microbiology. 2018;9:596–596. doi: 10.3389/fmicb.2018.00596. PubMed DOI PMC
Papic B, Pate M, Felix B, Kusar D. Genetic diversity of Listeria monocytogenes strains in ruminant abortion and rhombencephalitis cases in comparison with the natural environment. BMC Microbiol. 2019;19:299. doi: 10.1186/s12866-019-1676-3. PubMed DOI PMC
Felix B. 2022. Complete dataset, epidemiological informations, genomic quality assessment data and raw reads accession number. figshare. DOI
Szymczak B, Szymczak M, Sawicki W, Dabrowski W. Anthropogenic impact on the presence of L. monocytogenes in soil, fruits, and vegetables. Folia Microbiol (Praha) 2014;59:23–9. doi: 10.1007/s12223-013-0260-8. PubMed DOI PMC
Dowe MJ, Jackson ED, Mori JG, Bell CR. Listeria monocytogenes Survival in Soil and Incidence in Agricultural Soils (dagger) J Food Prot. 1997;60:1201–1207. doi: 10.4315/0362-028X-60.10.1201. PubMed DOI
Linke K, et al. Reservoirs of listeria species in three environmental ecosystems. Appl Environ Microbiol. 2014;80:5583–92. doi: 10.1128/AEM.01018-14. PubMed DOI PMC
Weller D, Wiedmann M, Strawn LK. Spatial and Temporal Factors Associated with an Increased Prevalence of Listeria monocytogenes in Spinach Fields in New York State. Appl Environ Microbiol. 2015;81:6059–69. doi: 10.1128/AEM.01286-15. PubMed DOI PMC
Nielsen, E.M. et al. Closing gaps for performing a risk assessment on Listeria monocytogenes in ready‐to‐eat (RTE) foods: activity 3, the comparison of isolates from different compartments along the food chain, and from humans using whole genome sequencing (WGS) analysis. EFSA Supporting Publications14 (2017).
Vila Nova M, et al. Genetic and metabolic signatures of Salmonella enterica subsp. enterica associated with animal sources at the pangenomic scale. BMC Genomics. 2019;20:814. doi: 10.1186/s12864-019-6188-x. PubMed DOI PMC
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9. doi: 10.1093/bioinformatics/btu153. PubMed DOI
Palma F, et al. Dynamics of mobile genetic elements of Listeria monocytogenes persisting in ready-to-eat seafood processing plants in France. BMC Genomics. 2020;21:130. doi: 10.1186/s12864-020-6544-x. PubMed DOI PMC
Radomski N, et al. A Simple and Robust Statistical Method to Define Genetic Relatedness of Samples Related to Outbreaks at the Genomic Scale - Application to Retrospective Salmonella Foodborne Outbreak Investigations. Frontiers in microbiology. 2019;10:2413–2413. doi: 10.3389/fmicb.2019.02413. PubMed DOI PMC
Felten A, et al. First gene-ontology enrichment analysis based on bacterial coregenome variants: insights into adaptations of Salmonella serovars to mammalian- and avian-hosts. BMC Microbiology. 2017;17:222. doi: 10.1186/s12866-017-1132-1. PubMed DOI PMC
Li W. 2018. figshare. DOI
Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet. 2014;15:121–32. doi: 10.1038/nrg3642. PubMed DOI
Pightling AW, Pettengill JB, Wang Y, Rand H, Strain E. Within-species contamination of bacterial whole-genome sequence data has a greater influence on clustering analyses than between-species contamination. Genome biology. 2019;20:286–286. doi: 10.1186/s13059-019-1914-x. PubMed DOI PMC
Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner https://www.osti.gov/servlets/purl/1241166 (2014).
Low AJ, Koziol AG, Manninger PA, Blais B, Carrillo CD. ConFindr: rapid detection of intraspecies and cross-species contamination in bacterial whole-genome sequence data. PeerJ. 2019;7:e6995. doi: 10.7717/peerj.6995. PubMed DOI PMC
Fritsch L, et al. Insights from genome-wide approaches to identify variants associated to phenotypes at pan-genome scale: Application to L. monocytogenes’ ability to grow in cold conditions. Int J Food Microbiol. 2019;291:181–188. doi: 10.1016/j.ijfoodmicro.2018.11.028. PubMed DOI
Felix B. 2022. NCBI Sequence Read Archive/European Nucleotide Archive. https://www.ebi.ac.uk/ena/browser/view/PRJEB38828ListAdapt complete high-quality WGS data
Felix B. 2022. ListAdapt complete Listeria monocytogenes de novo assemblies. figshare. DOI
Moura A, et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat Microbiol. 2016;2:16185. doi: 10.1038/nmicrobiol.2016.185. PubMed DOI PMC
Hyden P, et al. Whole genome sequence-based serogrouping of Listeria monocytogenes isolates. J Biotechnol. 2016;235:181–6. doi: 10.1016/j.jbiotec.2016.06.005. PubMed DOI
Hellstrom S, et al. Listeria monocytogenes contamination in pork can originate from farms. J Food Prot. 2010;73:641–8. doi: 10.4315/0362-028X-73.4.641. PubMed DOI
Husu JR. Epidemiological studies on the occurrence of Listeria monocytogenes in the feces of dairy cattle. Zentralbl Veterinarmed B. 1990;37:276–82. PubMed
Husu JR, Seppanen JT, Sivela SK, Rauramaa AL. Contamination of raw milk by Listeria monocytogenes on dairy farms. Zentralbl Veterinarmed B. 1990;37:268–75. PubMed
Ruusunen M, et al. Pathogenic bacteria in Finnish bulk tank milk. Foodborne Pathog Dis. 2013;10:99–106. doi: 10.1089/fpd.2012.1284. PubMed DOI
Esteban JI, Oporto B, Aduriz G, Juste RA, Hurtado A. Faecal shedding and strain diversity of Listeria monocytogenes in healthy ruminants and swine in Northern Spain. BMC Vet Res. 2009;5:2. doi: 10.1186/1746-6148-5-2. PubMed DOI PMC
Esteban JI, Oporto B, Aduriz G, Juste RA, Hurtado A. A survey of food-borne pathogens in free-range poultry farms. Int J Food Microbiol. 2008;123:177–82. doi: 10.1016/j.ijfoodmicro.2007.12.012. PubMed DOI