• This record comes from PubMed

A European-wide dataset to uncover adaptive traits of Listeria monocytogenes to diverse ecological niches

. 2022 Apr 28 ; 9 (1) : 190. [epub] 20220428

Language English Country Great Britain, England Media electronic

Document type Dataset, Journal Article

Grant support
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
773830 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)

Links

PubMed 35484273
PubMed Central PMC9050667
DOI 10.1038/s41597-022-01278-6
PII: 10.1038/s41597-022-01278-6
Knihovny.cz E-resources

Listeria monocytogenes (Lm) is a ubiquitous bacterium that causes listeriosis, a serious foodborne illness. In the nature-to-human transmission route, Lm can prosper in various ecological niches. Soil and decaying organic matter are its primary reservoirs. Certain clonal complexes (CCs) are over-represented in food production and represent a challenge to food safety. To gain new understanding of Lm adaptation mechanisms in food, the genetic background of strains found in animals and environment should be investigated in comparison to that of food strains. Twenty-one partners, including food, environment, veterinary and public health laboratories, constructed a dataset of 1484 genomes originating from Lm strains collected in 19 European countries. This dataset encompasses a large number of CCs occurring worldwide, covers many diverse habitats and is balanced between ecological compartments and geographic regions. The dataset presented here will contribute to improve our understanding of Lm ecology and should aid in the surveillance of Lm. This dataset provides a basis for the discovery of the genetic traits underlying Lm adaptation to different ecological niches.

AGES Austrian Agency for Health and Food Safety Spargelfeldstrasse 191 1220 Vienna Austria

Agroscope Food Microbial Systems Berne Liebefeld Bern Switzerland

Animal Health Department NEIKER Basque Institute for Agricultural Research and Development Basque Research and Technology Alliance Bizkaia Science and Technology Park 812 L 48160 Derio Spain

ANSES Antibiotics Biocides Residues and Resistance Unit 10 B rue Claude Bourgelat Javené CS 40608 35306 Fougères France

ANSES Laboratory for Food Safety Paris Est University 14 rue Pierre et Marie Curie 94701 Maisons Alfort France

ANSES Ploufragan Plouzané Niort Laboratory Viral Genetics and Bio Security Unit Université Européenne de Bretagne Ploufragan France

Chair of Food Safety Faculty of Veterinary Medicine Ludwig Maximilians University Munich Oberschleissheim Germany

Department of Applied Microbiology and Human Nutrition Physiology West Pomeranian University of Technology Szczecin Poland

Department of Biology Swedish Food Agency Uppsala Sweden

Department of Food Hygiene and Environmental Health Faculty of Veterinary Medicine University of Helsinki Agnes Sjöbergin katu 2 00790 Helsinki Finland

DTU Technical University of Denmark National Food Institute Lyngby Denmark

French Agency for Food Environmental and Occupational Health and Safety Laboratory for Food Safety Salmonella and Listeria Unit Paris Est University 14 rue Pierre et Marie Curie 94701 Maisons Alfort France

INRAE Agroecologie AgroSup Dijon INRA Univ Bourgogne Franche Comté 21000 Dijon France

INRAE UCA UMR MEDiS F 63122 Saint Genès Champanelle France

INRAE Unité de recherche OPAALE 35000 Rennes France

Institute of Food Safety and Food Hygiene Working Group Meat Hygiene Faculty of Veterinary Medicine Freie Universität Berlin Berlin Germany

Institute of Food Safety Animal Health and Environment BIOR Riga Latvia

Institute of Microbiology and Parasitology Veterinary Faculty University of Ljubljana Gerbičeva 60 1000 Ljubljana Slovenia

IZSAM Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G CaporaleVia Campo Boario 64100 Teramo Italy

Norwegian Veterinary Institute Food Safety and Animal Health Research Ullevålsvegen 68 0454 Oslo Norway

State veterinary and food institute DVM Department of Food Hygiene Veterinary and food institute Janoskova 1611 58 Dolny Kubin Slovakia

State Veterinary Institute Rantířovská 93 20 586 05 Jihlava Czech Republic

Veterinary and Food Laboratory F R Kreutzwaldi 30 51006 Tartu Estonia

Veterinary Research Institute Hudcova 70 621 00 Brno Czech Republic

Wageningen Food Safety Research Wageningen University and Research Wageningen the Netherlands

See more in PubMed

Piveteau P, Depret G, Pivato B, Garmyn D, Hartmann A. Changes in Gene Expression during Adaptation of Listeria monocytogenes to the Soil Environment. PLOS ONE. 2011;6:e24881. doi: 10.1371/journal.pone.0024881. PubMed DOI PMC

Vivant AL, Garmyn D, Piveteau P. Listeria monocytogenes, a down-to-earth pathogen. Front Cell Infect Microbiol. 2013;3:87. doi: 10.3389/fcimb.2013.00087. PubMed DOI PMC

Buncic S, et al. Microbial pathogen control in the beef chain: recent research advances. Meat Sci. 2014;97:288–97. doi: 10.1016/j.meatsci.2013.04.040. PubMed DOI

Hurtado A, Ocejo M, Oporto B. Salmonella spp. and Listeria monocytogenes shedding in domestic ruminants and characterization of potentially pathogenic strains. Vet Microbiol. 2017;210:71–76. doi: 10.1016/j.vetmic.2017.09.003. PubMed DOI

Yoshida T, Sugimoto T, Sato M, Hirai K. Incidence of Listeria monocytogenes in wild animals in Japan. J Vet Med Sci. 2000;62:673–5. doi: 10.1292/jvms.62.673. PubMed DOI

Weindl L, et al. Listeria monocytogenes in Different Specimens from Healthy Red Deer and Wild Boars. Foodborne Pathog Dis. 2016;13:391–7. doi: 10.1089/fpd.2015.2061. PubMed DOI

Parsons C, et al. Listeria monocytogenes at the human-wildlife interface: black bears (Ursus americanus) as potential vehicles for Listeria. Microb Biotechnol. 2020;13:706–721. doi: 10.1111/1751-7915.13509. PubMed DOI PMC

Lyautey E, et al. Distribution and characteristics of Listeria monocytogenes isolates from surface waters of the South Nation River watershed, Ontario, Canada. Appl Environ Microbiol. 2007;73:5401–10. doi: 10.1128/AEM.00354-07. PubMed DOI PMC

Hydeskov HB, et al. Listeria Monocytogenes Infection of Free-Living Western European Hedgehogs (Erinaceus Europaeus) J Zoo Wildl Med. 2019;50:183–189. doi: 10.1638/2018-0093. PubMed DOI

Hellstrom S, Kiviniemi K, Autio T, Korkeala H. Listeria monocytogenes is common in wild birds in Helsinki region and genotypes are frequently similar with those found along the food chain. J Appl Microbiol. 2008;104:883–8. doi: 10.1111/j.1365-2672.2007.03604.x. PubMed DOI

Gismervik K, et al. Invading slugs (Arion vulgaris) can be vectors for Listeria monocytogenes. J Appl Microbiol. 2015;118:809–16. doi: 10.1111/jam.12750. PubMed DOI PMC

Ragon M, et al. A new perspective on Listeria monocytogenes evolution. PLoS Pathog. 2008;4:e1000146. doi: 10.1371/journal.ppat.1000146. PubMed DOI PMC

Chenal-Francisque V, et al. Worldwide distribution of major clones of Listeria monocytogenes. Emerg Infect Dis. 2011;17:1110–2. doi: 10.3201/eid/1706.101778. PubMed DOI PMC

Haase JK, et al. The ubiquitous nature of Listeria monocytogenes clones: a large-scale Multilocus Sequence Typing study. Environ Microbiol. 2014;16:405–16. doi: 10.1111/1462-2920.12342. PubMed DOI

Painset, A. et al. LiSEQ - whole-genome sequencing of a cross-sectional survey of Listeria monocytogenes in ready-to-eat foods and human clinical cases in Europe. Microb Genom5(2019). PubMed PMC

Dreyer M, et al. Listeria monocytogenes sequence type 1 is predominant in ruminant rhombencephalitis. Sci Rep. 2016;6:36419. doi: 10.1038/srep36419. PubMed DOI PMC

Cantinelli T, et al. “Epidemic clones” of Listeria monocytogenes are widespread and ancient clonal groups. J Clin Microbiol. 2013;51:3770–9. doi: 10.1128/JCM.01874-13. PubMed DOI PMC

Felix B, et al. Population Genetic Structure of Listeria monocytogenes Strains Isolated From the Pig and Pork Production Chain in France. Front Microbiol. 2018;9:684. doi: 10.3389/fmicb.2018.00684. PubMed DOI PMC

Henri C, et al. Population Genetic Structure of Listeria monocytogenes Strains as Determined by Pulsed-Field Gel Electrophoresis and Multilocus Sequence Typing. Appl Environ Microbiol. 2016;82:5720–8. doi: 10.1128/AEM.00583-16. PubMed DOI PMC

Holch A, et al. Genome sequencing identifies two nearly unchanged strains of persistent Listeria monocytogenes isolated at two different fish processing plants sampled 6 years apart. Applied and environmental microbiology. 2013;79:2944–2951. doi: 10.1128/AEM.03715-12. PubMed DOI PMC

Rychli K, et al. Comparative genomics of human and non-human Listeria monocytogenes sequence type 121 strains. PLOS ONE. 2017;12:e0176857. doi: 10.1371/journal.pone.0176857. PubMed DOI PMC

Stoller A, Stevens MJA, Stephan R, Guldimann C. Characteristics of Listeria Monocytogenes Strains Persisting in a Meat Processing Facility over a 4-Year Period. Pathogens. 2019;8:32. doi: 10.3390/pathogens8010032. PubMed DOI PMC

Ortiz S, Lopez V, Martinez-Suarez JV. Control of Listeria monocytogenes contamination in an Iberian pork processing plant and selection of benzalkonium chloride-resistant strains. Food Microbiol. 2014;39:81–8. doi: 10.1016/j.fm.2013.11.007. PubMed DOI

Pasquali F, et al. Listeria monocytogenes Sequence Types 121 and 14 Repeatedly Isolated Within One Year of Sampling in a Rabbit Meat Processing Plant: Persistence and Ecophysiology. Frontiers in microbiology. 2018;9:596–596. doi: 10.3389/fmicb.2018.00596. PubMed DOI PMC

Papic B, Pate M, Felix B, Kusar D. Genetic diversity of Listeria monocytogenes strains in ruminant abortion and rhombencephalitis cases in comparison with the natural environment. BMC Microbiol. 2019;19:299. doi: 10.1186/s12866-019-1676-3. PubMed DOI PMC

Felix B. 2022. Complete dataset, epidemiological informations, genomic quality assessment data and raw reads accession number. figshare. DOI

Szymczak B, Szymczak M, Sawicki W, Dabrowski W. Anthropogenic impact on the presence of L. monocytogenes in soil, fruits, and vegetables. Folia Microbiol (Praha) 2014;59:23–9. doi: 10.1007/s12223-013-0260-8. PubMed DOI PMC

Dowe MJ, Jackson ED, Mori JG, Bell CR. Listeria monocytogenes Survival in Soil and Incidence in Agricultural Soils (dagger) J Food Prot. 1997;60:1201–1207. doi: 10.4315/0362-028X-60.10.1201. PubMed DOI

Linke K, et al. Reservoirs of listeria species in three environmental ecosystems. Appl Environ Microbiol. 2014;80:5583–92. doi: 10.1128/AEM.01018-14. PubMed DOI PMC

Weller D, Wiedmann M, Strawn LK. Spatial and Temporal Factors Associated with an Increased Prevalence of Listeria monocytogenes in Spinach Fields in New York State. Appl Environ Microbiol. 2015;81:6059–69. doi: 10.1128/AEM.01286-15. PubMed DOI PMC

Nielsen, E.M. et al. Closing gaps for performing a risk assessment on Listeria monocytogenes in ready‐to‐eat (RTE) foods: activity 3, the comparison of isolates from different compartments along the food chain, and from humans using whole genome sequencing (WGS) analysis. EFSA Supporting Publications14 (2017).

Vila Nova M, et al. Genetic and metabolic signatures of Salmonella enterica subsp. enterica associated with animal sources at the pangenomic scale. BMC Genomics. 2019;20:814. doi: 10.1186/s12864-019-6188-x. PubMed DOI PMC

Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9. doi: 10.1093/bioinformatics/btu153. PubMed DOI

Palma F, et al. Dynamics of mobile genetic elements of Listeria monocytogenes persisting in ready-to-eat seafood processing plants in France. BMC Genomics. 2020;21:130. doi: 10.1186/s12864-020-6544-x. PubMed DOI PMC

Radomski N, et al. A Simple and Robust Statistical Method to Define Genetic Relatedness of Samples Related to Outbreaks at the Genomic Scale - Application to Retrospective Salmonella Foodborne Outbreak Investigations. Frontiers in microbiology. 2019;10:2413–2413. doi: 10.3389/fmicb.2019.02413. PubMed DOI PMC

Felten A, et al. First gene-ontology enrichment analysis based on bacterial coregenome variants: insights into adaptations of Salmonella serovars to mammalian- and avian-hosts. BMC Microbiology. 2017;17:222. doi: 10.1186/s12866-017-1132-1. PubMed DOI PMC

Li W. 2018. figshare. DOI

Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet. 2014;15:121–32. doi: 10.1038/nrg3642. PubMed DOI

Pightling AW, Pettengill JB, Wang Y, Rand H, Strain E. Within-species contamination of bacterial whole-genome sequence data has a greater influence on clustering analyses than between-species contamination. Genome biology. 2019;20:286–286. doi: 10.1186/s13059-019-1914-x. PubMed DOI PMC

Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner https://www.osti.gov/servlets/purl/1241166 (2014).

Low AJ, Koziol AG, Manninger PA, Blais B, Carrillo CD. ConFindr: rapid detection of intraspecies and cross-species contamination in bacterial whole-genome sequence data. PeerJ. 2019;7:e6995. doi: 10.7717/peerj.6995. PubMed DOI PMC

Fritsch L, et al. Insights from genome-wide approaches to identify variants associated to phenotypes at pan-genome scale: Application to L. monocytogenes’ ability to grow in cold conditions. Int J Food Microbiol. 2019;291:181–188. doi: 10.1016/j.ijfoodmicro.2018.11.028. PubMed DOI

Felix B. 2022. NCBI Sequence Read Archive/European Nucleotide Archive. https://www.ebi.ac.uk/ena/browser/view/PRJEB38828ListAdapt complete high-quality WGS data

Felix B. 2022. ListAdapt complete Listeria monocytogenes de novo assemblies. figshare. DOI

Moura A, et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat Microbiol. 2016;2:16185. doi: 10.1038/nmicrobiol.2016.185. PubMed DOI PMC

Hyden P, et al. Whole genome sequence-based serogrouping of Listeria monocytogenes isolates. J Biotechnol. 2016;235:181–6. doi: 10.1016/j.jbiotec.2016.06.005. PubMed DOI

Hellstrom S, et al. Listeria monocytogenes contamination in pork can originate from farms. J Food Prot. 2010;73:641–8. doi: 10.4315/0362-028X-73.4.641. PubMed DOI

Husu JR. Epidemiological studies on the occurrence of Listeria monocytogenes in the feces of dairy cattle. Zentralbl Veterinarmed B. 1990;37:276–82. PubMed

Husu JR, Seppanen JT, Sivela SK, Rauramaa AL. Contamination of raw milk by Listeria monocytogenes on dairy farms. Zentralbl Veterinarmed B. 1990;37:268–75. PubMed

Ruusunen M, et al. Pathogenic bacteria in Finnish bulk tank milk. Foodborne Pathog Dis. 2013;10:99–106. doi: 10.1089/fpd.2012.1284. PubMed DOI

Esteban JI, Oporto B, Aduriz G, Juste RA, Hurtado A. Faecal shedding and strain diversity of Listeria monocytogenes in healthy ruminants and swine in Northern Spain. BMC Vet Res. 2009;5:2. doi: 10.1186/1746-6148-5-2. PubMed DOI PMC

Esteban JI, Oporto B, Aduriz G, Juste RA, Hurtado A. A survey of food-borne pathogens in free-range poultry farms. Int J Food Microbiol. 2008;123:177–82. doi: 10.1016/j.ijfoodmicro.2007.12.012. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...