Corrosion resistance and surface microstructure of Mg3 N2 /SS thin films by plasma focus instrument

. 2022 Aug ; 85 (8) : 2880-2893. [epub] 20220429

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35488428

Utilizing a plasma focus (PF) instrument, magnesium nitride (Mg3 N2 ) thin films were synthesized on stainless steel substrates. Twenty five optimum focus shots at 8 cm distance from the anode tip were used to deposit the films at different angular positions regarded to the anode axis. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) analyses were performed to assess the surface morphology and structural characteristics of Mg3 N2 films. Based on AFM images, these films were studied to understand the effect of angular position variation on their surfaces through morphological and fractal parameters. By increasing the angle, we verify that the grain size decreased from 130(0) nm to 75(5) nm and also the mean quadratic surface roughness of the films reduced in its average values from (28.97 ± 3.24) nm to (23.10 ± 1.34) nm. Power spectrum density analysis indicated that films become more self-affine at larger angles. Furthermore, the corrosion behavior of the films was investigated through a potentiodynamic polarization test in H2 SO4 solution. It was found that the ion energy and flux, varying with the angular positions from the anode tip, directly affected the nanostructured roughness and surface morphology of the samples. The electrochemical studies of films show that the uncoated sample presented the lowest corrosion resistance. The highest corrosion resistance was obtained for the sample deposited with 25 optimum shots and at 0° angular position reaching a reduction in the corrosion current density of almost 800 times compared to the pure stainless steel-304 substrate. HIGHLIGHTS: Mg3 N2 /SS films have been deposited at different angles by plasma focus (PF) instruments. The effect of angular position on the surface microtexture, morphological parameters, and corrosion features of the films was studied. The RBS measurement and X-ray diffraction are utilized to identify the crystalline phases and thickness of films.

Zobrazit více v PubMed

Alijani, M., Koozegar Kaleji, B., & Rezaee, S. (2017). Highly visible-light active with co/Sn co-doping of TiO2 nanoparticles for degradation of methylene blue. Journal of Materials Science: Materials in Electronics, 28(20), 15345-15353. https://doi.org/10.1007/s10854-017-7420-6

Ansari, F., Granda, L. A., Joffe, R., Berglund, L. A., & Vilaseca, F. (2017). Experimental evaluation of anisotropy in injection molded polypropylene/wood fiber biocomposites. Composites Part A: Applied Science and Manufacturing, 96, 147-154. https://doi.org/10.1016/j.compositesa.2017.02.003

Arman, A., Ţălu, Ş., Luna, C., Ahmadpourian, A., Naseri, M., & Molamohammadi, M. (2015). Micromorphology characterization of copper thin films by AFM and fractal analysis. Journal of Materials Science: Materials in Electronics, 26, 9630-9639. https://doi.org/10.1007/s10854-015-3628-5

Barcelay, Y. R., Moreira, J. A. G., de Jesus Monteiro, A., Almeida, W. R., Brito, R. S., Matos, H. D. d., & Filho, F. (2020). Nanoscale stereometric evaluation of BiZn0.5Ti0.5O3 thin films grown by RF magnetron sputtering. Materials Letters, 279, 128477. https://doi.org/10.1016/j.matlet.2020.128477

Bertalot, L., Herold, H., Jager, U., Mozer, A., Oppenlander, T., Sadowski, M., & Schmidt, H. (1980). Mass and energy analysis and space-resolved measurements of ions from plasma focus devices. Physics Letters A, 79(5-6), 389-392. https://doi.org/10.1016/0375-9601(80)90272-8

Blateyron, F. (2013). The areal field parameters. In R. Leach (Ed.), Characterisation of areal surface texture. (1st ed., Vol. 1, pp. 1-349). Berlin Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-642-36458-7_2

Blawert, C., Hort, N., & Kainer, K. U. (2004). Automotive applications of magnesium and its alloys. Transactions of the Indian Institute of Metals, 57(4), 397-408.

Carbone, A. (2007). Algorithm to estimate the Hurst exponent of high-dimensional fractals. Physical Review E, 76, 056703.

Das, A., Chawla, V., Matos, R. S., Da Fonseca Filho, H. D., Yadav, R. P., Ţălu, Ş., & Kumar, S. (2021). Surface microtexture and wettability analysis of quasi two-dimensional (Ti, Al)N thin films using fractal geometry. Surface and Coatings Technology, 421, 127420. https://doi.org/10.1016/j.surfcoat.2021.127420

Devi, N. B., Roy, S., & Srivastava, M. P. (2008). Deposition of aluminium nanoparticles using dense plasma focus device. Journal of Physics: Conference Series, 208, 1-5. https://doi.org/10.1088/1742-6596/208/1/012103

Dieringa, H., & Kainer, K. U. (2007). Magnesium - der Zukunftswerkstoff für die Automobilindustrie? Materialwissenschaft und Werkstofftechnik, 38(2), 91-96. https://doi.org/10.1002/mawe.200600114

Elenkova, D., Zaharieva, J., Getsova, M., Manolov, I., Milanova, M., Stach, S., & Ţălu, Ş. (2015). Morphology and optical properties of SiO2-based composite thin films with immobilized terbium(III) complex with a biscoumarin derivative. International Journal of Polymer Analysis and Characterization, 20(1), 42-56. https://doi.org/10.1080/1023666X.2014.955400

Fang, C. M., de Groot, R. A., Bruls, R. J., Hintzen, H. T., & de With, G. (1999). Ab initio band structure calculations of Mg3N2 and MgSiN2. Journal of Physics. Condensed Matter, 11, 4833-4842. https://doi.org/10.1088/0953-8984/11/25/304

Ghali, E., Dietzel, W., & Kainer, K. U. (2004). General and localized corrosion of magnesium alloys: A critical review. Journal of Materials Engineering and Performance, 13(1), 7-23. https://doi.org/10.1361/10599490417533

Godard, H., Jepson, W., Bothwell, H., & Kane, R. (1967). The corrosion of light metals. Wiley The corrosion monograph series.

Grayeli-Korpi, A. R., Luna, C., Arman, A., & Ţălu, Ş. (2017). Influence of the oxygen partial pressure on the growth and optical properties of RF-sputtered anatase TiO2 thin films. Results in Physics, 7(p), 3349-3352. https://doi.org/10.1016/j.rinp.2017.08.018

Grayeli-Korpi, A. R., Ţălu, Ş., Bramowicz, M., Arman, A., Kulesza, S., Pszczolkowski, B., Jurečka, S., Mardani, M., Luna, C., Balashabadi, P., Rezaee, S., & Gopikishan, S. (2019). Minkowski functional characterization and fractal analysis of surfaces of titanium nitride films. Materials Research Express, 6(8) article 086463, 1-14. https://doi.org/10.1088/2053-1591/ab26be

Guadalupe Moreno Armenta, M., & Reyes-Serrato, A. (2001). Direct wide band gap material: A Hartree-Fock study of α-Be3N2. Computational Materials Science, 21(1), 95-100. https://doi.org/10.1016/S0927-0256(00)00220-2

Guadalupe Moreno Armenta, M., Reyes-Serrato, A., & Borja, M. A. (2000). Ab initio determination of the electronic structure of beryllium-, aluminum-, and magnesium-nitrides: A comparative study. Physical Review B, 62, 4890-4898. https://doi.org/10.1103/PhysRevB.62.4890

Habibi, M., Javadi, S., & Ghoranneviss, M. (2014). Investigation on the structural properties and corrosion inhibition of W coatings on stainless steel AISI 304 using PF device. Surface and Coating Technology, 254, 112-120. https://doi.org/10.1016/j.surfcoat.2014.05.070

Hoche, D., Blawert, C., Cavellier, M., Busardo, D., & Gloriant, T. (2011). Magnesium nitride phase formation by means of ion beam implantation technique. Applied Surface Science, 257(13), 5626-5633. https://doi.org/10.1016/j.apsusc.2011.01.061

Hosseinnejad, M. T., Ghoranneviss, M., Etaati, G. R., Shirazi, M., & Ghorannevis, Z. (2011). Deposition of tungsten nitride thin films by plasma focus device at different axial and angular positions. Applied Surface Science, 257(17), 7653-7658. https://doi.org/10.1016/j.apsusc.2011.03.155

Hu, J., Bando, Y., Zhan, J., Zhi, C., & Golberg, D. (2006). Carbon nanotubes as nanoreactors for fabrication of single-crystalline Mg3N2 nanowires. Nano Letters, 6(6), 1136-1140. https://doi.org/10.1021/nl060245v

Hussain, T., Ahmad, R., Khan, I. A., Siddiqui, J., Khalid, N., Bhatti, A. S., & Naseem, S. (2009). Deposition of titanium nitride on Si(1 0 0) wafers using plasma focus. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 267(5), 768-772. https://doi.org/10.1016/j.nimb.2009.01.008

ISO 25178-2: The International Organization for Standardization; 2012, Geometrical product specifications (GPS) - surface texture: Areal - Part 2: Terms, definitions and surface texture parameters. Available from: http://www.iso.org (last accessed April 18th, 2022).

Jacobs, T. D. B., Junge, T., & Pastewka, L. (2017). Quantitative characterization of surface topography using spectral analysis. Surface Topography: Metrology and Properties, 5, 013001. https://doi.org/10.1088/2051-672X/aa51f8

Jafari, A., Alam, M. H., Dastan, D., Ziakhodadadian, S., Shi, Z., Garmestani, H., Weidenbach, A. S., & Ţălu, Ş. (2019). Statistical, morphological, and corrosion behavior of PECVD derived cobalt oxide thin films. Journal of Materials Science: Materials in Electronics, 30(24), 21185-21198. https://doi.org/10.1007/s10854-019-02492-6

Jain, I. P., Jain, P., & Jain, A. (2010). Novel hydrogen storage materials: A review of lightweight complex hydrides. Journal of Alloys and Compounds, 503(2), 303-339. https://doi.org/10.1016/j.jallcom.2010.04.250

Javadi, S., Ghoranneviss, M., Hojabri, A., Habibi, M., & Hosseinnejad, M. T. (2012). Deposition of chromium thin films on stainless steel-304 substrates using a low energy plasma focus device. Journal of Fusion Energy, 31, 242-248. https://doi.org/10.1007/s10894-011-9461-9

John, P., Rotella, H., Deparis, C., Monge, G., Georgi, F., Vennéguès, P., Leroux, M., & Zuniga-Perez, J. (2020). Crystalline magnesium nitride (Mg3N2): From epitaxial growth to fundamental physical properties. Physical Review Materials, 4, 054601. https://doi.org/10.1103/PhysRevMaterials.4.054601

Khan, I. A., Rawat, R. S., Ahmad, R., & Shahid, M. A. K. (2013). Post-annealing effect on the structural and mechanical properties of multiphase zirconia films deposited by a plasma focus device. Chinese Physics B, 22(12), 127306-127311. https://doi.org/10.1088/1674-1056/22/12/127306

Lences, Z., Hirao, K., Yamauchi, Y., & Kanzaki, S. (2003). Reaction synthesis of magnesium silicon nitride powder. Journal of the American Ceramic Society, 86(7), 1088-1093. https://doi.org/10.1111/j.1151-2916.2003.tb03429.x

Lorenz, H., & Orgzall, I. (1995). Formation of cubic boron nitride in the system Mg3N2-BN: A new contribution to the phase diagram. Diamond and Related Materials, 4(8), 1046-1049. https://doi.org/10.1016/0925-9635(95)00275-8

Mahmoudi, D., Tabrizi, A. T., & Aghajani, H. (2021). Study the variation of surface topography & corrosion resistance of Cr-GO nanocomposite coatings by addition of GO nanoparticles. Surface Topography: Metrology and Properties, 9(1), 015025. https://doi.org/10.1088/2051-672X/abe6f3

Matos, R. S., Ramos, G. Q., da Fonseca Filho, H. D., & Ţălu, Ş. (2020). Advanced micromorphology study of microbial films grown on kefir loaded with Açaí extract. Micron, 137, 102912. https://doi.org/10.1016/j.micron.2020.102912

Méndez, A., Reyes, Y., Trejo, G., Stępień, K., & Ţălu, Ş. (2015). Micromorphological characterization of zinc/silver particle composite coatings. Microscopy Research and Technique, 78, 1082-1089. https://doi.org/10.1002/jemt.22588

Mirzaei, S., Alishahi, M., Souček, P., Buršíková, V., Zábranský, L., Gröner, L., Burmeister, F., Blug, B., Daum, P., Mikšová, R., & Vašina, P. (2020). Effect of substrate bias voltage on the composition, microstructure and mechanical properties of WBC coatings. Applied Surface Science, 528, 146966. https://doi.org/10.1016/j.apsusc.2020.146966

Mountains Map® 9 Software (Digital Surf, Besançon, France) 2022. Available from: http://www.digitalsurf.fr (last accessed April 18th, 2022).

Mwema, F. M., Akinlabi, E. T., Oladijo, O. P., Fatoba, O. S., Akinlabi, S. A., & Ţălu, Ş. (2020). Advances in manufacturing analysis: Fractal theory in modern manufacturing. In K. Kumar & J. P. Davim (Eds.), Modern manufacturing processes (1st ed., section 1, chapter 2, pp. 13-39). Woodhead Publishing Reviews: Mechanical Engineering Series. https://doi.org/10.1016/B978-0-12-819496-6.00002-6

Nakatsugawa, I., Martin, R., & Knystautas, E. (1996). Improving corrosion resistance of AZ91D magnesium alloy by nitrogen ion implantation. Corrosion, 52(12), 921-926. https://doi.org/10.5006/1.3292085

Orhan, E., Jobic, S., Brec, R., Marchand, R., & Saillard, J. Y. (2002). Binary nitrides α-M3N2 (M = Be, Mg, Ca): A theoretical study. Journal of Materials Chemistry, 12, 2475-2479. https://doi.org/10.1039/B203500F

Parkin, I. P., & Nartowski, A. M. (1998). Solid state metathesis routes to group IIIa nitrides: Comparison of Li3N. NaN3. Ca3N2 and Mg3N2 as nitriding agents. Polyhedron, 17(16), 2617-2622.

Partin, D. E., Williams, D. J., & Okeeffe, M. (1997). The crystal structures of Mg3N2 and Zn3N2. Journal of Solid State Chemistry, 132(1), 56-59. https://doi.org/10.1006/jssc.1997.7407

Ramezani, A. H., Habibi, M., & Ghoranneviss, M. (2014). Deposition of magnesium nitride thin films on stainless steel-304 substrates by using a plasma focus device. Journal of Theoretical and Applied Physics, 8, 175-182. https://doi.org/10.1007/s40094-014-0146-4

Rawat, R. S., Aggarwal, V., Hassan, M., Lee, P., Springham, S. V., Tan, T. L., & Lee, S. (2008). Nano-phase titanium dioxide thin film deposited by repetitive: Ion irradiation and annealing based phase transformation and agglomeration. Applied Surface Science, 255(5), 2932-2936. https://doi.org/10.1016/j.apsusc.2008.08.055

Sedlaček, M., Podgornik, B., & Vižintin, J. (2012). Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces. Tribology International, 48, 102-112. https://doi.org/10.1016/j.triboint.2011.11.008

Shakoury, R., Arman, A., Mwema, F., Luna, C., Ghosh, K., Jurečka, S., Ţălu, Ş., Rezaee, S., & Grayeli-Korpi, A. R. (2020). Multifractal and optical bandgap characterization of Ta2O5 thin films deposited by electron gun method. Optical and Quantum Electronics, 52(2) article number 95, 1-13. https://doi.org/10.1007/s11082-019-2173-5

Shakoury, R., Arman, A., Ţălu, Ş., Dastan, D., Luna, C., & Rezaee, S. (2020). Stereometric analysis of TiO2 thin films deposited by electron beam ion assisted. Optical and Quantum Electronics, 52, 1-12. https://doi.org/10.1007/s11082-020-02388-4

Siddiquia, J., Hussain, T., Ahmad, R., & Khalid, N. (2015). Effect of deposition parameters on structural and mechanical properties of niobium nitride synthesized by plasma focus device. Chinese Physics B, 24(6), 065204. https://doi.org/10.1088/1674-1056/24/6/065204

Sohrabi, M., Habibi, M., Yousefi, H. R., & Roshani, G. H. (2013). Angular distribution analysis of nitrogen ions in a low energy dense plasma focus device. Contributions to Plasma Physics, 53, 592. https://doi.org/10.1002/ctpp.201200099

Solaymani, S., Ţălu, Ş., Nezafat, N. B., Rezaee, S., & Kenari, M. F. (2020). Diamond nano crystal thin films: Case study on surface texture and power spectral density properties. AIP Advances, 10, article 045206, 1-11. https://doi.org/10.1063/5.0003866

Solaymani, S., Yadav, R. P., Ţălu, Ş., Achour, A., Rezaee, S., & Nezafat, N. B. (2020). Averaged power spectrum density, fractal and multifractal spectra of au nanoparticles deposited onto annealed TiO2 thin films. Optical and Quantum Electronics, 52(491), 1-16. https://doi.org/10.1007/s11082-020-02584-2

Song, G., & Atrens, A. (2003). Understanding magnesium corrosion - a framework for improved alloy performance. Advanced Engineering Materials, 5(12), 837-858. https://doi.org/10.1002/adem.200310405

Soto, G., Diaz, J. A., de la Cruz, W., Reyes, A., & Samano, E. C. (2004). Amorphous magnesium nitride films produced by reactive pulsed laser deposition. Journal of Non-Crystalline Solids, 342(1-3), 65-69. https://doi.org/10.1016/j.jnoncrysol.2004.06.002

Tabrizi, A. T., Aghajani, H., & Laleh, F. F. (2021a). Tribological characterization of hybrid chromium nitride thin layer synthesized on titanium. Surface and Coatings Technology, 419, 127317. https://doi.org/10.1016/j.surfcoat.2021.127317

Tabrizi, A. T., Aghajani, H., & Laleh, F. F. (2021c). Tribological study of thin-electroplated chromium: Evaluation of wear rate as a function of surface roughness. Experimental Techniques. https://doi.org/10.1007/s40799-021-00502-z

Tabrizi, A. T., Aghajani, H., Saghafian, H., & Laleh, F. F. (2021). Correction of Archard equation for wear behavior of modified pure titanium. Tribology International, 155, 106772. https://doi.org/10.1016/j.triboint.2020.106772

Ţălu, Ş. (2015). Micro and nanoscale characterization of three dimensional surfaces. Basics and applications. Cluj-Napoca, Romania: Napoca Star Publishing House.

Ţălu, Ş., Ghazai, A. J., Stach, S., Abu Hassan, H., Hassan, Z., & Ţălu, M. (2014). Characterization of surface roughness of Pt Schottky contacts on quaternary n-Al0.08In0.08Ga0.84N thin film assessed by atomic force microscopy and fractal analysis. Journal of Materials Science: Materials in Electronics, 25(1), 466-477. https://doi.org/10.1007/s10854-013-1611-6

Ţălu, Ş., Janus, K., & Stach, S. (2017). Nanoscale patterns in carbon-nickel nanocomposite thin films investigated by AFM and stereometric analysis, international. Journal of Materials, 4, 54-62.

Ţălu, Ş., Luna, C., Ahmadpourian, A., Achour, A., Arman, A., Naderi, S., Ghobadi, N., Stach, S., & Safibonab, B. (2016). Micromorphology and fractal analysis of nickel-carbon composite thin films. Journal of Materials Science: Materials in Electronics, 27(11), 11425-11431. https://doi.org/10.1007/s10854-016-5268-9

Ţălu, Ş., Matos, R. S., Pinto, E. P., Rezaee, S., & Mardani, M. (2020). Stereometric and fractal analysis of sputtered Ag-Cu thin films. Surfaces and Interfaces, 21, 100650. https://doi.org/10.1016/j.surfin.2020.100650

Ţălu, Ş., Patra, N., & Salerno, M. (2015). Micromorphological characterization of polymer-oxide nanocomposite thin films by atomic force microscopy and fractal geometry analysis. Progress in Organic Coatings, 89, 50-56. https://doi.org/10.1016/j.porgcoat.2015.07.024

Ţălu, Ş., Stach, S., Raoufi, D., & Hosseinpanahi, F. (2015). Film thickness efect on fractality of tin-doped In2O3 thin films. Electronic Materials Letters, 11(5), 749-757. https://doi.org/10.1007/s13391-015-4280-1

Ţălu, Ş., Stach, S., Zaharieva, J., Milanova, M., Todorovsky, D., & Giovanzana, S. (2014). Surface roughness characterization of poly(methylmethacrylate) films with immobilized Eu(III) β-Diketonates by fractal analysis. International Journal of Polymer Analysis and Characterization, 19(5), 404-421. https://doi.org/10.1080/1023666X.2014.904149

Tian, X., Wei, C., Yang, S., Fu, R., & Chu, P. (2005). Corrosion resistance improvement of magnesium alloy using nitrogen plasma ion implantation. Surface and Coating Technology, 198, 454-458. https://doi.org/10.1016/j.surfcoat.2004.10.117

Woolf, H., Brown, I., & Bowden, M. (2008). Light metal hydrides - potential hydrogen storage materials. Current Applied Physics, 8(3-4), 459-462. https://doi.org/10.1016/j.cap.2007.10.039

Wu, G., Ding, K., Zeng, X., Wang, X., & Yao, S. (2009). Improving corrosion resistance of titanium-coated magnesium alloy by modifying surface characteristics of magnesium alloy prior to titanium coating deposition. Scripta Materialia, 61(3), 269-272.

Yamamoto, A., Watanabe, A., Sugahara, K., Tsubakino, H., & Fukumoto, S. (2001). Improvement of corrosion resistance of magnesium alloys by vapor deposition. Scripta Materialia, 44(7), 1039-1042. https://doi.org/10.1016/S1359-6462(01)00662-5

Ye, H. Z., Liu, X. Y., & Luan, B. (2004). In situ synthesis of AlN particles in mg-Al alloy by Mg3N2 addition. Materials Letters, 58, 2361-2364. https://doi.org/10.1016/j.matlet.2004.02.028

Zeb, S., Sadiq, M., Qayyum, A., Murtaza, G., & Zakaullah, M. (2007). Deposition of diamond-like carbon film using dense plasma focus. Materials Chemistry and Physics, 103(2-3), 235-240. https://doi.org/10.1016/j.matchemphys.2007.02.020

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...