Highly-efficient removal of Pb(ii), Cu(ii) and Cd(ii) from water by novel lithium, sodium and potassium titanate reusable microrods
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
35492627
PubMed Central
PMC9048722
DOI
10.1039/c9ra08737k
PII: c9ra08737k
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
In this work, we report on the efficient removal of heavy metal ions with nanostructured lithium, sodium and potassium titanates from simulated wastewater. The titanates were obtained via a fast, easy and cost effective process based on extraction of sulfate ions from the crystals of titanyl sulfate and their replacement with hydroxyl groups of NaOH, LiOH and KOH solutions leaving the Ti-O framework intact. The as-prepared titanates were carefully examined by scanning and transmission electron microscopy. Furthermore, the effect of contact time, pH, annealing temperature, together with adsorption in real conditions including competitive adsorption and reusability were studied. It was found that the maximum adsorption capacity, as calculated from the Langmuir adsorption model, is up to 3.8 mmol Pb(ii) per g, 3.6 mmol Cu(ii) per g and 2.3 mmol Cd(ii) per g. Based on the characterization results, a possible mechanism for heavy metal removal was proposed. This work provides a very efficient, fast and convenient approach for exploring promising materials for water treatment.
Centre for Analysis and Synthesis Lunds Universitet Naturvetarvägen 14 Lund 222 61 Sweden
Faculty of Science University of Ostrava 30 dubna 22 Ostrava CZ 701 30 Czech Republic
See more in PubMed
Hu J. S. Zhong L. S. Song W. G. Wan L. J. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal. Adv. Mater. 2008;20:2977–2982. doi: 10.1002/adma.200800623. DOI
Dabrowski A. Hubicki Z. Podkoscielny P. Robens E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere. 2004;56:91–106. doi: 10.1016/j.chemosphere.2004.03.006. PubMed DOI
Akieh M. N. Lahtinen M. Vaisanen A. Sillanpaa M. Preparation and characterization of sodium iron titanate ion exchanger and its application in heavy metal removal from waste waters. J. Hazard. Mater. 2008;152:640–647. doi: 10.1016/j.jhazmat.2007.07.049. PubMed DOI
Huang J. Cao Y. Liu Z. Deng Z. Tang F. Wang W. Efficient removal of heavy metal ions from water system by titanate nanoflowers. Chem. Eng. J. 2012;180:75–80. doi: 10.1016/j.cej.2011.11.005. DOI
Leinonen H. Lehto J. Makela A. Purification of nickel and zinc from waste-waters of metal-plating plants by ion-exchange. React. Polym. 1994;23:221–228. doi: 10.1016/0923-1137(94)90024-8. DOI
di Bitonto L. Volpe A. Pagano M. Bagnuolo G. Mascolo G. La Parola V. Di Leo P. Pastore C. Amorphous boron-doped sodium titanates hydrates: efficient and reusable adsorbents for the removal of Pb2+ from water. J. Hazard. Mater. 2017;324:168–177. doi: 10.1016/j.jhazmat.2016.10.046. PubMed DOI
Liu W. Wang T. Borthwick A. G. L. Wang Y. Q. Yin X. C. Li X. Z. Ni J. R. Adsorption of Pb2+, Cd2+, Cu2+ and Cr3+ onto titanate nanotubes: competition and effect of inorganic ions. Sci. Total Environ. 2013;456:171–180. doi: 10.1016/j.scitotenv.2013.03.082. PubMed DOI
Wang T. Liu W. Xiong L. Xu N. Ni J. R. Influence of pH, ionic strength and humic acid on competitive adsorption of Pb(ii), Cd(ii) and Cr(iii) onto titanate nanotubes. Chem. Eng. J. 2013;215:366–374. doi: 10.1016/j.cej.2012.11.029. DOI
Liu W. T. Nanoparticles and their biological and environmental applications. J. Biosci. Bioeng. 2006;102:1–7. doi: 10.1263/jbb.102.1. PubMed DOI
Shipley H. J. Yean S. Kan A. T. Tomson M. B. Adsorption of arsenic to magnetite nanoparticles: effect of particle concentration, pH, ionic strength, and temperature. Environ. Toxicol. Chem. 2009;28:509–515. doi: 10.1897/08-155.1. PubMed DOI
Tratnyek P. G. Johnson R. L. Nanotechnologies for environmental cleanup. Nano Today. 2006;1:44–48. doi: 10.1016/S1748-0132(06)70048-2. DOI
Engates K. E. Shipley H. J. Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ. Sci. Pollut. Res. 2011;18:386–395. doi: 10.1007/s11356-010-0382-3. PubMed DOI
Liang P. Shi T. Q. Li J. Nanometer-size titanium dioxide separation/preconcentration and FAAS determination of trace Zn and Cd in water sample. Int. J. Environ. Anal. Chem. 2004;84:315–321. doi: 10.1080/03067310310001640456. DOI
Ohnuki T. Kozai N. Adsorption behavior of radioactive cesium by non-mica minerals. J. Nucl. Sci. Technol. 2013;50:369–375. doi: 10.1080/00223131.2013.773164. DOI
Chakravarty R. Dash A. Role of Nanoporous Materials in Radiochemical Separations for Biomedical Applications. J. Nanosci. Nanotechnol. 2013;13:2431–2450. doi: 10.1166/jnn.2013.7349. PubMed DOI
Singh B. K. Tomar R. Kumar S. Kar A. S. Tomar B. S. Ramanathan S. Manchanda V. K. Role of the humic acid for sorption of radionuclides by synthesized titania. Radiochim. Acta. 2014;102:255–261.
Yang W. F. Guo L. D. Chuang C. Y. Santschi P. H. Schumann D. Ayranov M. Influence of organic matter on the adsorption of Pb-210, Po-210, Be-7 and their fractionation on nanoparticles in seawater. Earth Planet. Sci. Lett. 2015;423:193–201. doi: 10.1016/j.epsl.2015.05.007. DOI
Santhosh C. Velmurugan V. Jacob G. Jeong S. K. Grace A. N. Bhatnagar A. Role of nanomaterials in water treatment applications: a review. Chem. Eng. J. 2016;306:1116–1137. doi: 10.1016/j.cej.2016.08.053. DOI
Yang D. J. Zheng Z. F. Liu H. W. Zhu H. Y. Ke X. B. Xu Y. Wu D. Sun Y. Layered Titanate Nanofibers as Efficient Adsorbents for Removal of Toxic Radioactive and Heavy Metal Ions from Water. J. Phys. Chem. C. 2008;112:16275–16280. doi: 10.1021/jp803826g. DOI
Huang J. Cao Y. Deng Z. Tong H. Formation of titanate nanostructures under different NaOH concentration and their application in wastewater treatment. J. Solid State Chem. 2011;184:712–719. doi: 10.1016/j.jssc.2011.01.023. DOI
Kochkar H. Turki A. Bergaoui L. Berhault G. Ghorbel A. Study of Pd(ii) adsorption over titanate nanotubes of different diameters. J. Colloid Interface Sci. 2009;331:27–31. doi: 10.1016/j.jcis.2008.11.002. PubMed DOI
Niu H. Y. Wang J. M. Shi Y. L. Cai Y. Q. Wei F. S. Adsorption behavior of arsenic onto protonated titanate nanotubes prepared via hydrothermal method. Microporous Mesoporous Mater. 2009;122:28–35. doi: 10.1016/j.micromeso.2009.02.005. DOI
Liu S. S. Lee C. K. Chen H. C. Wang C. C. Juang L. C. Application of titanate nanotubes for Cu(ii) ions adsorptive removal from aqueous solution. Chem. Eng. J. 2009;147:188–193. doi: 10.1016/j.cej.2008.06.034. DOI
Wang S. Tan L. Q. Jiang J. L. Chen J. Feng L. D. Preparation and characterization of nanosized TiO2 powder as an inorganic adsorbent for aqueous radionuclide Co(ii) ions. J. Radioanal. Nucl. Chem. 2013;295:1305–1312. doi: 10.1007/s10967-012-2296-7. DOI
Kolar M. Mest'ankova H. Jirkovsky J. Heyrovsky M. Subrt J. Some aspects of physico-chemical properties of TiO2 nanocolloids with respect to their age, size, and structure. Langmuir. 2006;22:598–604. doi: 10.1021/la058016w. PubMed DOI
Ma R. Z. Sasaki T. Bando Y. Alkali metal cation intercalation properties of titanate nanotubes. Chem. Commun. 2005:948–950. doi: 10.1039/B415983G. PubMed DOI
Chen D. H. Caruso R. A. Recent Progress in the Synthesis of Spherical Titania Nanostructures and Their Applications. Adv. Funct. Mater. 2013;23:1356–1374. doi: 10.1002/adfm.201201880. DOI
Privman V. Goia D. V. Park J. Matijevic E. Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors. J. Colloid Interface Sci. 1999;213:36–45. doi: 10.1006/jcis.1999.6106. PubMed DOI
Vesely V. Pekarek V. Synthetic Inorganic Ion-Exchangers. 1. Hydrous Oxides and Acidic Salts of Multivalent Metals. Talanta. 1972;19:219–262. doi: 10.1016/0039-9140(72)80075-4. PubMed DOI
Gerasimova L. G. Maslova M. V. Nikolaev A. I. Application of Colloid Titanium-Containing Precursors in the Inorganic Ion-Exchange Technology. Glass Phys. Chem. 2011;37:401–405. doi: 10.1134/S1087659611040055. DOI
Fernandez-Ibanez P. Blanco J. Malato S. de las Nieves F. J. Application of the colloidal stability of TiO2 particles for recovery and reuse in solar photocatalysis. Water Res. 2003;37:3180–3188. doi: 10.1016/S0043-1354(03)00157-X. PubMed DOI
Klementová M. Motlochová M. Boháček J. Kupčík J. Palatinus L. Pližingrová E. Szatmáry L. Šubrt J. Metatitanic acid pseudomorphs after titanyl sulfates: nanostructured sorbents and precursors for crystalline titania with desired particle size and shape. Cryst. Growth Des. 2017;17:6762–6769. doi: 10.1021/acs.cgd.7b01349. DOI
Palkovska M. Slovak V. Subrt J. Bohacek J. Barbierikova Z. Brezova V. Fajgar R. Investigation of the thermal decomposition of a new titanium dioxide material. J. Therm. Anal. Calorim. 2016;125:1071–1078. doi: 10.1007/s10973-016-5526-3. DOI
Motlochová M. Slovák V. Pližingrová E. Klementová M. Bezdička P. Šubrt J. Thermal Decomposition Study of Nanostructured Amorphous Lithium, Sodium and Potassium Metatitanates. Thermochim. Acta. 2018;670:148–154. doi: 10.1016/j.tca.2018.10.028. DOI
Liu W. Chen H. Borthwick A. G. L. Han Y. F. Ni J. R. Mutual promotion mechanism for adsorption of coexisting Cr(iii) and Cr(vi) onto titanate nanotubes. Chem. Eng. J. 2013;232:228–236. doi: 10.1016/j.cej.2013.07.100. DOI
Volpe A. Pagano M. Pastore C. Cuocci C. Milella A. Sorption properties of an amorphous hydroxo titanate towards Pb2+, Ni2+, and Cu2+ ions in aqueous solution. J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 2016;51:1121–1130. doi: 10.1080/10934529.2016.1199885. PubMed DOI
Kim S. A. Kamala-Kannan S. Lee K. J. Park Y. J. Shea P. J. Lee W. H. Kim H. M. Oh B. T. Removal of Pb(ii) from aqueous solution by a zeolite-nanoscale zero-valent iron composite. Chem. Eng. J. 2013;217:54–60. doi: 10.1016/j.cej.2012.11.097. DOI
Wang S. Ariyanto E. Competitive adsorption of malachite green and Pb ions on natural zeolite. J. Colloid Interface Sci. 2007;314:25–31. doi: 10.1016/j.jcis.2007.05.032. PubMed DOI
Wang X. Y. Cai J. H. Zhang Y. J. Li L. H. Jiang L. Wang C. R. Heavy metal sorption properties of magnesium titanate mesoporous nanorods. J. Mater. Chem. A. 2015;3:11796–11800. doi: 10.1039/C5TA02034D. DOI
Xiong L. Chen C. Chen Q. Ni J. R. Adsorption of Pb(ii) and Cd(ii) from aqueous solutions using titanate nanotubes prepared via hydrothermal method. J. Hazard. Mater. 2011;189:741–748. doi: 10.1016/j.jhazmat.2011.03.006. PubMed DOI
Motlochova M. Slovak V. Plizingrova E. Klementova M. Bezdicka P. Subrt J. Thermal decomposition study of nanostructured amorphous lithium, sodium and potassium metatitanates. Thermochim. Acta. 2018;670:148–154. doi: 10.1016/j.tca.2018.10.028. DOI
Motlochova M. Slovak V. Plizingrova E. Szatmary L. Bezdicka P. Subrt J. The influence of annealing temperature on properties of TiO2 based materials as adsorbents of radionuclides. Thermochim. Acta. 2019;673:34–39. doi: 10.1016/j.tca.2019.01.005. DOI
Persson I. Hydrated metal ions in aqueous solution: how regular are their structures? Pure Appl. Chem. 2010;82:1901–1917.