Fractional Flow Reserve Versus Instantaneous Wave-Free Ratio in Assessment of Lesion Hemodynamic Significance and Explanation of their Discrepancies. International, Multicenter and Prospective Trial: The FiGARO Study

. 2022 May 03 ; 11 (9) : e021490. [epub] 20220503

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, multicentrická studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35502771

Background The FiGARO (FFR versus iFR in Assessment of Hemodynamic Lesion Significance, and an Explanation of Their Discrepancies) trial is a prospective registry searching for predictors of fractional flow reserve/instantaneous wave-free ratio (FFR/iFR) discrepancy. Methods and Results FFR/iFR were analyzed using a Verrata wire, and coronary flow reserve was analyzed using a Combomap machine (both Philips-Volcano). The risk polymorphisms for endothelial nitric oxide synthase and for heme oxygenase-1 were analyzed. In total, 1884 FFR/iFR measurements from 1564 patients were included. The FFR/iFR discrepancy occurred in 393 measurements (20.9%): FFRp (positive)/iFRn (negative) type (264 lesions, 14.0%) and FFRn/iFRp (129 lesions, 6.8%) type. Coronary flow reserve was measured in 343 lesions, correlating better with iFR (R=0.56, P<0.0001) than FFR (R=0.36, P<0.0001). The coronary flow reserve value in FFRp/iFRn lesions (2.24±0.7) was significantly higher compared with both FFRp/iFRp (1.39±0.36), and FFRn/iFRn lesions (1.8±0.64, P<0.0001). Multivariable logistic regression analysis confirmed (1) sex, age, and lesion location in the right coronary artery as predictors for FFRp/iFRn discrepancy; and (2) hemoglobin level, smoking, and renal insufficiency as predictors for FFRn/iFRp discrepancy. The FFRn/iFRp type of discrepancy was significantly more frequent in patients with both risk types of polymorphisms (endothelial nitric oxide synthaser+heme oxygenase-1r): 8 patients (24.2%) compared with FFRp/iFRn type of discrepancy: 2 patients (5.9%), P=0.03. Conclusions Predictors for FFRp/iFRn discrepancy were sex, age, and location in the right coronary artery. Predictors for FFRn/iFRp were hemoglobin level, smoking, and renal insufficiency. The risk type of polymorphism in endothelial nitric oxide synthase and heme oxygenase-1 genes was more frequently found in patients with FFRn/iFRp type of discrepancy. Registration URL: https://clinicaltrials.gov; Unique identifier: NCT03033810.

Komentář v

PubMed

Zobrazit více v PubMed

Park S‐J, Kang S‐J, Ahn J‐M, Shim EB, Kim Y‐T, Yun S‐C, Song H, Lee J‐Y, Kim W‐J, Park D‐W, et al. Visual‐functional mismatch between coronary angiography and fractional flow reserve. JACC. 2012;5:1029–1036. doi: 10.1016/j.jcin.2012.07.007 PubMed DOI

Davies JE, Sen S, Dehbi H‐M, Al‐Lamee R, Petraco R, Nijjer SS, Bhindi R, Lehman SJ, Walters D, Sapontis J, et al. Use of the instantane‐ous wave‐free ratio or fractional flow reserve in PCI. N Engl J Med. 2017;376:1824–1834. doi: 10.1056/NEJMoa1700445 PubMed DOI

Götberg M, Christiansen EH, Gudmundsdottir IJ, Sandhall L, Danielewicz M, Jakobsen L, Olsson S‐E, Öhagen P, Olsson H, Omerovic E, et al.; for the iFR‐SWEDEHEART Investigators . Instantaneous wave‐free ratio versus fractional flow reserve to guide PCI. N Engl J Med. 2017;376:1813–1823. doi: 10.1056/NEJMoa1616540 PubMed DOI

Jeremias A, Maehara A, Généreux P, Asrress KN, Berry C, De Bruyne B, Davies J, Escaned J, Fearon W, Gould L, et al. Multicenter core laboratory comparison of the instantaneous wave‐free ratio and resting PD/PA with fractional flow reserve: the RESOLVE study. JACC. 2014;63:1253–1261. doi: 10.1016/j.jacc.2013.09.060 PubMed DOI

Daiber A, Xia N, Steven S, Oelze M, Hanf A, Kröller‐Schön S, Münzel T, Li H. New therapeutic implications of endothelial nitric oxide synthase (eNOS) function/dysfunction in cardiovascular disease. Int J Mol Sci. 2019;20:E187. doi: 10.3390/ijms20010187 PubMed DOI PMC

Kishimoto Y, Kondo K, Momiyama Y. The protective role of heme oxygenase‐1 in atherosclerotic diseases. Int J Mol Sci. 2019;20:E3628. doi: 10.3390/ijms20153628 PubMed DOI PMC

Balligand JL, Feron O, Dessy C. eNOS activation by physical forces: from short‐term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev. 2009;89:481–534. doi: 10.1152/physrev.00042.2007 PubMed DOI

Naber CK, Baumgart D, Altmann C, Siffert W, Erbel R, Heusch G. eNOS 894T allele and coronary blood flow at rest and during adenosine‐induced hyperemia. Am J Physiol Heart Circ Physiol. 2001;281:H1908–H1912. doi: 10.1152/ajpheart.2001.281.5.H1908 PubMed DOI

Rosa S, Polimeni A, Petraco R, Davies JE, Indolfi C. Diagnostic performance of the instantaneous wave‐free ratio comparison with fractional flow reserve. Circ Cardiovasc Interv. 2018;11:e004613. doi: 10.1161/CIRCINTERVENTIONS.116.004613 PubMed DOI

Cook CH, Jeremias A, Petraco R, Sen S, Nijjer S, Shun‐Shin M, Ahmad Y, de Waard G, van de Hoef T, Echavarria‐Pinto M, et al. Fractional flow reserve/instantaneous wave‐free ratio discordance in angiographically intermediate coronary stenoses an analysis using Doppler‐derived coronary flow measurements. JACC. 2017;10:2514–2524. doi: 10.1016/j.jcin.2017.09.021 PubMed DOI PMC

Petraco R, van de Hoef TP, Nijjer S, Sen S, van Lavieren MA, Foale RA, Meuwissen M, Broyd C, Echavarria‐Pinto M, Foin N, et al. Baseline instantaneous wave‐free ratio as a pressure‐only estimation of underlying coronary flow reserve: results of the JUSTIFY‐CFR Study. Circ Cardiovasc Interv. 2014;7:492–502. doi: 10.1161/CIRCINTERVENTIONS.113.000926 PubMed DOI

Hwang D, Jeon K‐H, Lee JM, Park J, Kim CH, Tong Y, Zhang J, Bang J‐I, Suh M, Paeng JC, et al. Diagnostic performance of resting and hyperemic invasive physiological indices to define myocardial ischemia. Validation with 13N‐ammonia positron emission tomography. JACC. 2017;10:751–760. doi: 10.1016/j.jcin.2016.12.015 PubMed DOI

Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary‐artery stenosis. N Engl J Med. 1994;330:1782–1788. doi: 10.1056/NEJM199406233302503 PubMed DOI

Sen S, Asrress KN, Nijjer S, Petraco R, Malik IS, Foale RA, Mikhail GW, Foin N, Broyd C, Hadjiloizou N, et al. Diagnostic classification of the instantaneous wave‐free ratio is equivalent to fractional flow reserve and is not improved with adenosine administration. Results of CLARIFY (Classification Accuracy of Pressure‐Only Ratios Against Indices Using Flow Study). JACC. 2013;61:1409–1420. doi: 10.1016/j.jacc.2013.01.034 PubMed DOI

Gore A, Ahn JM, van ’t Veer M, Jeremias A, Watkins S, Berry C, Oldroyd K, Hennigan B, Crowley A, Maehara A, et al. Diagnostic accuracy of iFR versus FFR in the left versus right coronary artery. JACC. 2018;72(SupplB), B66,TCT‐154. doi: 10.1016/j.jacc.2013.09.060 DOI

Svanerud J, Ahn J‐M, Jeremias A, van 't Veer M, Gore A, Maehara A, Crowley A, Pijls NHJ, De Bruyne B, Johnson NP, et al. Validation of a novel non‐hyperaemic index of coronary artery stenosis severity: the Resting Full‐cycle Ratio (VALIDATE RFR) study. EuroIntervention. 2018;14:806–814. doi: 10.4244/EIJ-D-18-00342 PubMed DOI

Kobayashi Y, Johnson N, Berry C, De Bruynde B, Gould L, Jeremias A, Oldroyd K, Pijls N, Fearon W; CONTRAST Study Investigators . The influence of lesion location on the diagnostic accuracy of adenosine‐free coronary pressure wire measurements. JACC CV Interv. 2016;9:2390–2399. doi: 10.1016/j.jcin.2016.08.041 PubMed DOI

Lee JM, Shin ES, Nam CHW, Doh JH, Hwang D, Park J, Kim KJ, Zhang J, Ahn CH, Koo BK. Discrepancy between fractional flow reserve and instantaneous wave‐free ratio: clinical and angiographic characteristics. Int J Cardiol. 2017;245:63–68. doi: 10.1016/j.ijcard.2017.07.099 PubMed DOI

Dérimay F, Johnson NP, Zimmermann FM, Adjedj J, Witt N, Hennigan B, Koo B‐K, Barbato E, Esposito G, Trimarco B, et al. Predictive factors of discordance between the instantaneous wave‐free ratio and fractional flow reserve. Catheter Cardiovasc Interv. 2019;94:356–363. doi: 10.1002/ccd.28116 PubMed DOI

Yonetsu T, Hoshino M, Lee T, Murai T, Sumino Y, Hada M, Yamaguchi M, Kanaji Y, Sugiyama T, Niida T, et al. Impact of sex difference on the discordance of revascularization decision making between fractional flow reserve and diastolic pressure ratio during the wave‐free period. J Am Heart Assoc. 2020;9:e014790. doi: 10.1161/JAHA.119.014790 PubMed DOI PMC

Van’t Veer M, Pijls NHJ, Hennigan B, Watkins S, Ali ZA, De Bruyne B, Zimmermann FM, van Nunen LX, Barbato E, Berry C, Oldroyd KG. Comparison of different diastolic resting indexes to iFR: are they all equal? JACC. 2017;70:3088–3096. doi: 10.1016/j.jacc.2017.10.066 PubMed DOI

Kim CH, Koo BK, Dehbi HM, Lee JM, Doh JH, Nam CW, Shin ES, Cook CM, Al‐Lamee R, Petraco R, et al. Sex differences in instantaneous wave‐free ratio or fractional flow reserve‐guided revascularization strategy. JACC. 2019;12:2035–2046. doi: 10.1016/j.jcin.2019.06.035 PubMed DOI

Kim HS, Tonino PA, De Bruyne B, Yong AS, Tremmel JA, Pijls NH, Fearon WF; FAME Study Investigators . The impact of sex differences on fractional flow reserve‐guided percutaneous coronary intervention: a FAME (Fractional Flow Reserve Versus Angiography or Multivessel Evaluation) substudy. JACC. 2012;5:1037–1042. doi: 10.1016/j.jcin.2012.06.016 PubMed DOI

Hirata K, Shimada K, Watanabe H, Muro T, Yoshiyama M, Takeuchi K, Hozumi T, Yoshikawa J. Modulation of coronary flow velocity reserve by gender, menstrual cycle and hormone replacement therapy. JACC. 2001;38:1879–1884. doi: 10.1016/S0735-1097(01)01658-8 PubMed DOI

Ge X, Liu Y, Yin Z, Tu S, Fan Y, Vassilevski Y, Simakov S, Liang Y. Comparison of Instantaneous Wave‐Free Ratio (iFR) and Fractional Flow Reserve (FFR) with respect to their sensitivities to cardiovascular factors: a computational model‐based study. J Invasive Cardiol. 2020;2020:4094121. doi: 10.1155/2020/4094121 PubMed DOI PMC

Muroya T, Kawano H, Hata S, Shinboku H, Sonoda K, Kusumoto S, Eto R, Otsuka K, Maemura K. Relationship between resting full‐cycle ratio and fractional flow reserve in assessments of coronary stenosis severity. Catheter Cardiovasc Interv. 2020;96:E432–E438. doi: 10.1002/ccd.28835 PubMed DOI

Östlund‐Papadogeorgos N, Ekenbäck CH, Jokhaji F, Mir‐Akbari H, Witt N, Jernberg T, Wallén H, Linder R, Törnerud M, Samad B, et al. Blood haemoglobin, renal insufficiency, fractional flow reserve and plasma NT‐proBNP is associated with index of microcirculatory resistance in chronic coronary syndrome. Int J Cardiol. 2020;317:1–6. doi: 10.1016/j.ijcard.2020.05.037 PubMed DOI

Kato Y, Dohi T, Chikata Y, Fukase T, Takeuchi M, Takahashi N, Endo H, Nishiyama H, Doi S, Okai I, et al. Predictors of discordance between fractional flow reserve and resting full‐cycle ratio in patients with coronary artery disease: evidence from clinical practice. J Cardiol. 2021;77(3):313–319. doi: 10.1016/j.jjcc.2020.10.014 PubMed DOI

Tebaldi M, Biscaglia S, Fineschi M, Manari A, Menozzi M, Secco GG, Di Lorenzo E, D'Ascenzo F, Fabbian F, Tumscitz C, et al. Fractional flow reserve evaluation and chronic kidney disease: analysis from a multi‐ center Italian registry (the FREAK Study). Catheter Cardiovasc Interv. 2016;88:555–562. doi: 10.1002/ccd.26364 PubMed DOI

Sumida H, Matsuzawa Y, Sugiyama S, Sugamura K, Nozaki T, Akiyama E, Ohba K, Konishi M, Matsubara J, Fujisue K, et al. Pre‐procedural peripheral endothelial function is associated with increased serum creatinine following percutaneous coronary procedure in stable patients with a preserved estimated glomerular filtration rate. J Cardiol. 2017;70:461–469. doi: 10.1016/j.jjcc.2017.03.004 PubMed DOI

Hirose K, Chikamori T, Hida S, Tanaka N, Yamashita J, Igarashi Y, Saitoh T, Tanaka H, Yamashina A. Application of pressure‐ derived myocardial fractional flow reserve in chronic hemodialysis patients. J Cardiol. 2018;71:52–58. doi: 10.1016/j.jjcc.2017.05.007 PubMed DOI

Arashi H, Satomi N, Ishida I, Soontorndhada K, Ebihara S, Tanaka K, Otsuki H, Nakao M, Jujo K, Yamaguchi J, et al. Hemodynamic and lesion characteristics associated with diskordance between the instantaneous wave‐free ration and fraction flow reserve. J Interv Cardiol. 2019;2019:3765282. doi: 10.1155/2019/3765282 PubMed DOI PMC

Powel J, Higman D. Smoking, nitric oxide and the endothelium. Br J Surg. 1994;81:785–787. doi: 10.1002/bjs.1800810602 PubMed DOI

Joshi MS, Mineo C, Shaul PW, Bauer JA. Biochemical consequences of the NOS3 Glu298Asp variation in human endothelium: altered caveolar localization and impaired response to shear. FASEB J. 2007;21:2655–2663. doi: 10.1096/fj.06-7088com PubMed DOI PMC

Jones CJ, Kuo L, Davis MJ, DeFily DV, Chilian WM. Role of nitric oxide in the coronary microvascular responses to adenosine and increased metabolic demand. Circulation. 1995;9:1807–1813. doi: 10.1161/01.CIR.91.6.1807 PubMed DOI

Li J, Fenton RA, Wheeler HB, Powell CC, Peyton BD, Cutler BS, Dobson JG Jr. Adenosine A2a receptors increase arterial endothelial cell nitric oxide. J Surg Res. 1998;80:357–364. doi: 10.1006/jsre.1998.5439 PubMed DOI

Wu W, Geng P, Zhu J, Li J, Zhang L, Chen W, Zhang D, Lu Y, Xu X. KLF2 regulates eNOS uncoupling via Nrf2/HO‐1 in endothelial cells under hypoxia and reoxygenation. Chem Biol Interact. 2019;305:105–111. doi: 10.1016/j.cbi.2019.03.010 PubMed DOI

Daiber A, Xia N, Steven S, Oelze M, Hanf A, Kröller‐Schön S, Münzel T, Li H. New therapeutic implication of endothelial nitric oxide synthase (eNOS) function/dysfunction in cardiovascular disease. Int J Mol Sci. 2019;20:E187. doi: 10.3390/ijms20010187 PubMed DOI PMC

Ebihara S, Otsuki H, Arashi H, Yamaguchi J, Hagiwara N. Rate Pressure products affect the relationship between the fractional flow reserve and instantaneous wave‐free ratio. J Interv Cardiol. 2020;2020:6230153. doi: 10.1155/2020/6230153 PubMed DOI PMC

Zobrazit více v PubMed

ClinicalTrials.gov
NCT03033810

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...