Brønsted acidity in zeolites measured by deprotonation energy
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-19542S
Grantová Agentura České Republiky
19-19542S
Grantová Agentura České Republiky
19-19542S
Grantová Agentura České Republiky
19-19542S
Grantová Agentura České Republiky
PubMed
35508590
PubMed Central
PMC9068704
DOI
10.1038/s41598-022-11354-x
PII: 10.1038/s41598-022-11354-x
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Acid forms of zeolites have been used in industry for several decades but scaling the strength of their acid centers is still an unresolved and intensely debated issue. In this paper, the Brønsted acidity strength in aluminosilicates measured by their deprotonation energy (DPE) was investigated for FAU, CHA, IFR, MOR, FER, MFI, and TON zeolites by means of periodic and cluster calculations at the density functional theory (DFT) level. The main drawback of the periodic DFT is that it does not provide reliable absolute values due to spurious errors associated with the background charge introduced in anion energy calculations. To alleviate this problem, we employed a novel approach to cluster generation to obtain accurate values of DPE. The cluster models up to 150 T atoms for the most stable Brønsted acid sites were constructed on spheres of increasing diameter as an extension of Harrison's approach to calculating Madelung constants. The averaging of DPE for clusters generated this way provides a robust estimate of DPE for investigated zeolites despite slow convergence with the cluster size. The accuracy of the cluster approach was further improved by a scaled electrostatic embedding scheme proposed in this work. The electrostatic embedding model yields the most reliable values with the average deprotonation energy of about 1245 ± 9 kJ·mol-1 for investigated acidic zeolites. The cluster calculations strongly indicate a correlation between the deprotonation energy and the zeolite framework density. The DPE results obtained with our electrostatic embedding model are highly consistent with the previously reported QM/MM and periodic calculations.
Zobrazit více v PubMed
Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chem. Rev. 1995;95:559–614. doi: 10.1021/cr00035a006. DOI
Busca G. Acid catalysts in industrial hydrocarbon chemistry. Chem. Rev. 2007;107:5366–5410. doi: 10.1021/cr068042e. PubMed DOI
Al-Khattaf S, et al. Recent advances in reactions of alkylbenzenes over novel zeolites: the effects of zeolite structure and morphology. Catal. Rev. 2014;56:333–402. doi: 10.1080/01614940.2014.946846. DOI
Boronat M, Corma A. What is measured when measuring acidity in zeolites with probe molecules? ACS Catal. 2019;9:1539–1548. doi: 10.1021/acscatal.8b04317. PubMed DOI PMC
Brand HV, Curtiss LA, Iton LE. Ab initio molecular orbital cluster studies of the zeolite ZSM-5. 1. Proton affinities. J. Phys. Chem. 1993;97:12773–12782. doi: 10.1021/j100151a024. DOI
Sauer J, Ugliengo P, Garrone E, Saunders VR. Theoretical study of van der Waals complexes at surface sites in comparison with the experiment. Chem. Rev. 1994;94:2095–2160. doi: 10.1021/cr00031a014. DOI
van Santen RA, Kramer GJ. Reactivity theory of zeolitic broensted acidic sites. Chem. Rev. 1995;95:637–660. doi: 10.1021/cr00035a008. DOI
Jones AJ, Carr RT, Zones SI, Iglesia E. Acid strength and solvation in catalysis by MFI zeolites and effects of the identity, concentration and location of framework heteroatoms. J. Catal. 2014;312:58–68. doi: 10.1016/j.jcat.2014.01.007. DOI
Eichler U, Brändle M, Sauer J. Predicting absolute and site specific acidities for zeolite catalysts by a combined quantum mechanics/interatomic potential function approach. J. Phys. Chem. B. 1997;101:10035–10050. doi: 10.1021/jp971779a. DOI
Brandle M, Sauer J. Acidity differences between inorganic solids induced by their framework structure. A combined quantum mechanics/molecular mechanics ab initio study on zeolites. J. Am. Chem. Soc. 1998;120:1556–1570. doi: 10.1021/ja9729037. DOI
Sauer J, Schröder K-P, Termath V. Comparing the acidities of microporous aluminosilicate and silico-aluminophosphate catalysts: a combined quantum mechanics-interatomic potential function study. Collect. Czech. Chem. Commun. 1998;63:1394–1408. doi: 10.1135/cccc19981394. DOI
Sauer J, Sierka M. Combining quantum mechanics and interatomic potential functions in ab initio studies of extended systems. J. Comput. Chem. 2000;21:1470–1493. doi: 10.1002/1096-987X(200012)21:16<1470::AID-JCC5>3.0.CO;2-L. DOI
Rybicki M, Sauer J. Acid strength of zeolitic Brønsted sites: dependence on dielectric properties. Catal. Today. 2019;323:86–93. doi: 10.1016/j.cattod.2018.04.031. DOI
Rybicki M, Sauer J. Acidity of two-dimensional zeolites. Phys. Chem. Chem. Phys. 2015;17:27873–27882. doi: 10.1039/c5cp05088j. PubMed DOI
Jones AJ, Iglesia E. The strength of brønsted acid sites in microporous aluminosilicates. ACS Catal. 2015;5:5741–5755. doi: 10.1021/acscatal.5b01133. DOI
Grajciar L, Arean CO, Pulido A, Nachtigall P. Periodic DFT investigation of the effect of aluminium content on the properties of the acid zeolite H-FER. Phys. Chem. Chem. Phys. 2010;12:1497–1506. doi: 10.1039/b917969k. PubMed DOI
Niwa M, et al. Dependence of cracking activity on the Brønsted acidity of Y zeolite: DFT study and experimental confirmation. Catal. Sci. Technol. 2013 doi: 10.1039/c3cy00195d. DOI
Yang W, Wang Z, Huang J, Jiang Y. Qualitative and quantitative analysis of acid properties for solid acids by solid-state nuclear magnetic resonance spectroscopy. J. Phys. Chem. C. 2021;125:10179–10197. doi: 10.1021/acs.jpcc.1c01887. DOI
Losch P, Joshi H, Stegmann N, Vozniuk O, Schmidt W. Studying proton mobility in zeolites by varying temperature infrared spectroscopy. Molecules. 2019 doi: 10.3390/molecules24173199. PubMed DOI PMC
Eckstein S, et al. Influence of hydronium ions in zeolites on sorption. Angew. Chem. Int. Ed. Engl. 2019;58:3450–3455. doi: 10.1002/anie.201812184. PubMed DOI
Bulanek R, Kubu M, Vaculik J, Cejka J. H/D reactivity and acidity of Bronsted acid sites of MWW zeolites: comparison with MFI zeolite. Appl. Catal. A Gen. 2019;575:180–186. doi: 10.1016/j.apcata.2019.02.024. DOI
Wang C, Li S, Mao XY, Caratzoulas S, Gorte RJ. H-D Exchange of simple aromatics as a measure of Br Onsted-acid site strengths in solids. Catal. Lett. 2018;148:3548–3556. doi: 10.1007/s10562-018-2563-5. DOI
Paul G, et al. Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chem. Soc. Rev. 2018;47:5684–5739. doi: 10.1039/c7cs00358g. PubMed DOI
Arean CO, et al. Measuring the Bronsted acid strength of zeolites: does it correlate with the O-H frequency shift probed by a weak base? Phys. Chem. Chem. Phys. 2014;16:10129–10141. doi: 10.1039/c3cp54738h. PubMed DOI
Chakarova K, Hadjiivanov K. Chem. Commun. 2011;47:1878–1880. doi: 10.1039/C0CC04484A. PubMed DOI
Lercher, J. A., Jentys, A. & Brait, A. in Acidity and Basicity Molecular Sieves Ch. Chapter 17, 153–212 (2008).
Thibault-Starzyk F, Travert A, Saussey J, Lavalley JC. Correlation between activity and acidity on zeolites: a high temperature infrared study of adsorbed acetonitrile. Top. Catal. 1998;6:111–118. doi: 10.1023/A:1019182826692. DOI
Liu C, Tranca I, van Santen RA, Hensen EJM, Pidko EA. Scaling relations for acidity and reactivity of zeolites. J. Phys. Chem. C. 2017;121:23520–23530. doi: 10.1021/acs.jpcc.7b08176. PubMed DOI PMC
Grifoni E, et al. Confinement effects and acid strength in zeolites. Nat. Commun. 2021;12:2630. doi: 10.1038/s41467-021-22936-0. PubMed DOI PMC
Boronat M, Corma A. Factors controlling the acidity of zeolites. Catal. Lett. 2015;145:162–172. doi: 10.1007/s10562-014-1438-7. DOI
Deshlahra P, Iglesia E. Toward more complete descriptors of reactivity in catalysis by solid acids. ACS Catal. 2016;6:5386–5392. doi: 10.1021/acscatal.6b01402. DOI
Alongi, K. S. & Shields, G. C. in Annual Reports in Computational Chemistry Vol. 6 Annual Reports in Computational Chemistry (ed A.W. Wheeler) Ch. 8, 113–138 (2010).
Harrison WA. Simple calculation of Madelung constants. Phys. Rev. B. 2006 doi: 10.1103/PhysRevB.73.212103. DOI
Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B. 1993;48:13115–13115. doi: 10.1103/PhysRevB.48.13115. PubMed DOI
Balasubramani SG, et al. TURBOMOLE: modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 2020;152:184107. doi: 10.1063/5.0004635. PubMed DOI PMC
Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/B508541A. PubMed DOI
Woon DE, Dunning TH. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993;98:1358–1358. doi: 10.1063/1.464303. DOI
Trachta, M., Rubeš, M. & Bludský, O. Towards accurate ab initio modeling of siliceous zeolite structures. J. Chem. Phys.156, 094708. 10.1063/5.0083191 (2022). PubMed
Schröder K-P, et al. Bridging hydrodyl groups in zeolitic catalysts: a computer simulation of their structure, vibrational properties and acidity in protonated faujasites (H-Y zeolites) Chem. Phys. Lett. 1992;188:320–325. doi: 10.1016/0009-2614(92)90030-Q. DOI
Sanders M, Leslie M, Catlow C. Interatomic potentials for SiO2. J. Chem. Soc. Chem. Commun. 1984 doi: 10.1039/C39840001271. DOI
Gale JD. GULP: A computer program for the symmetry-adapted simulation of solids. J. Chem. Soc. Faraday Trans. 1997;93:629–637. doi: 10.1039/A606455H. DOI
Baerlocher, C. & McCusker, L. B. Database of Zeolite Structures. <http://www.iza-structure.org/databases/> (http://www.iza-structure.org/databases).