Investigation of Brønsted acidity in zeolites through adsorbates with diverse proton affinities
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-12735S
Grantová Agentura České Republiky
PubMed
37524787
PubMed Central
PMC10390515
DOI
10.1038/s41598-023-39667-5
PII: 10.1038/s41598-023-39667-5
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Understanding the adsorption behavior of base probes in aluminosilicates and its relationship to the intrinsic acidity of Brønsted acid sites (BAS) is essential for the catalytic applications of these materials. In this study, we investigated the adsorption properties of base probe molecules with varying proton affinities (acetonitrile, acetone, formamide, and ammonia) within six different aluminosilicate frameworks (FAU, CHA, IFR, MOR, FER, and TON). An important objective was to propose a robust criterion for evaluating the intrinsic BAS acidity (i.e., state of BAS deprotonation). Based on the bond order conservation principle, the changes in the covalent bond between the aluminum and oxygen carrying the proton provide a good description of the BAS deprotonation state. The ammonia and formamide adsorption cause BAS deprotonation and cannot be used to assess intrinsic BAS acidity. The transition from ion-pair formation, specifically conjugated acid/base interaction, in formamide to strong hydrogen bonding in acetone occurs within a narrow range of base proton affinities (812-822 kJ mol-1). The adsorption of acetonitrile results in the formation of hydrogen-bonded complexes, which exhibit a deprotonation state that follows a similar trend to the deprotonation induced by acetone. This allows for a semi-quantitative comparison of the acidity strengths of BAS within and between the different aluminosilicate frameworks.
Zobrazit více v PubMed
Busca G. Acid catalysts in industrial hydrocarbon chemistry. Chem. Rev. 2007;107:5366–5410. doi: 10.1021/cr068042e. PubMed DOI
Derouane EG, et al. The acidity of zeolites: Concepts, measurements and relation to catalysis: A review on experimental and theoretical methods for the study of zeolite acidity. Catal. Rev. 2013;55:454–515. doi: 10.1080/01614940.2013.822266. DOI
Ravi M, Sushkevich VL, van Bokhoven JA. Towards a better understanding of Lewis acidic aluminium in zeolites. Nat. Mater. 2020;19:1047–1056. doi: 10.1038/s41563-020-0751-3. PubMed DOI
Farneth WE, Gorte RJ. Methods for characterizing zeolite acidity. Chem. Rev. 1995;95:615–635. doi: 10.1021/cr00035a007. DOI
van Santen RA, Kramer GJ. Reactivity theory of zeolitic Broensted acidic sites. Chem. Rev. 1995;95:637–660. doi: 10.1021/cr00035a008. DOI
Lercher JA, Gründling C, Eder-Mirth G. Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules. Catal. Today. 1996;27:353–376. doi: 10.1016/0920-5861(95)00248-0. DOI
Gorte RJ. What do we know about the acidity of solid acids ? Catal. Lett. 1999;62:1–13. doi: 10.1023/a:1019010013989. DOI
Brand, H. V., Curtiss, L. A. & Iton, L. E. Ab initio molecular orbital cluster studies of the zeolite ZSM-5. 1. Proton affinities.
Kramer GJ, Van Santen RA. Theoretical determination of proton affinity differences in zeolites. J. Am. Chem. Soc. 1993;115:2887–2897. doi: 10.1021/ja00060a042. DOI
Eichler U, Brändle M, Sauer J. Predicting absolute and site specific acidities for zeolite catalysts by a combined quantum mechanics/interatomic potential function approach. J. Phys. Chem. B. 1997;101:10035–10050. doi: 10.1021/jp971779a. DOI
Sauer J, Schröder K-P, Termath V. Comparing the acidities of microporous aluminosilicate and silico-aluminophosphate catalysts: A combined quantum mechanics-interatomic potential function study. Collect. Czech. Chem. Commun. 1998;63:1394–1408. doi: 10.1135/cccc19981394. DOI
Rybicki M, Sauer J. Acidity of two-dimensional zeolites. Phys. Chem. Chem. Phys. 2015;17:27873–27882. doi: 10.1039/c5cp05088j. PubMed DOI
Rybicki M, Sauer J. Acid strength of zeolitic Brønsted sites—Dependence on dielectric properties. Catal. Today. 2019;323:86–93. doi: 10.1016/j.cattod.2018.04.031. DOI
Trachta M, Bulanek R, Bludsky O, Rubes M. Bronsted acidity in zeolites measured by deprotonation energy. Sci. Rep. 2022;12:7301. doi: 10.1038/s41598-022-11354-x. PubMed DOI PMC
Grajciar L, Arean CO, Pulido A, Nachtigall P. Periodic DFT investigation of the effect of aluminium content on the properties of the acid zeolite H-FER. Phys. Chem. Chem. Phys. 2010;12:1497–1506. doi: 10.1039/b917969k. PubMed DOI
Deshlahra P, Iglesia E. Toward more complete descriptors of reactivity in catalysis by solid acids. ACS Catal. 2016;6:5386–5392. doi: 10.1021/acscatal.6b01402. DOI
Wang CM, Brogaard RY, Weckhuysen BM, Norskov JK, Studt F. Reactivity descriptor in solid acid catalysis: Predicting turnover frequencies for propene methylation in zeotypes. J. Phys. Chem. Lett. 2014;5:1516–1521. doi: 10.1021/jz500482z. PubMed DOI
Knaeble W, Carr RT, Iglesia E. Mechanistic interpretation of the effects of acid strength on alkane isomerization turnover rates and selectivity. J. Catal. 2014;319:283–296. doi: 10.1016/j.jcat.2014.09.005. DOI
Jones AJ, Iglesia E. The strength of Brønsted acid sites in microporous aluminosilicates. ACS Catal. 2015;5:5741–5755. doi: 10.1021/acscatal.5b01133. DOI
Boronat M, Corma A. Factors controlling the acidity of zeolites. Catal. Lett. 2015;145:162–172. doi: 10.1007/s10562-014-1438-7. DOI
Boronat M, Corma A. What is measured when measuring acidity in zeolites with probe molecules? ACS Catal. 2019;9:1539–1548. doi: 10.1021/acscatal.8b04317. PubMed DOI PMC
Thang HV, et al. The Brønsted acidity of three- and two-dimensional zeolites. Microporous Mesoporous Mater. 2019;282:121–132. doi: 10.1016/j.micromeso.2019.03.033. DOI
Grifoni E, et al. Confinement effects and acid strength in zeolites. Nat. Commun. 2021;12:2630. doi: 10.1038/s41467-021-22936-0. PubMed DOI PMC
Zhao W, Zhang W, Peng S, Liu W, Mei D. Effects of next-nearest-neighbor aluminum location on the Brønsted acidity of HY zeolites. J. Phys. Chem. C. 2022;126:20864–20877. doi: 10.1021/acs.jpcc.2c06508. DOI
Rubeš M, et al. Temperature dependence of carbon monoxide adsorption on a high-silica H-FER zeolite. J. Phys. Chem. C. 2018;122:26088–26095. doi: 10.1021/acs.jpcc.8b08935. DOI
Arean CO, et al. Measuring the Bronsted acid strength of zeolites—Does it correlate with the O–H frequency shift probed by a weak base? Phys. Chem. Chem. Phys. 2014;16:10129–10141. doi: 10.1039/c3cp54738h. PubMed DOI
Chakarova K, Hadjiivanov K. Chem. Commun. 2011;47:1878–1880. doi: 10.1039/C0CC04484A. PubMed DOI
Paul G, et al. Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chem. Soc. Rev. 2018;47:5684–5739. doi: 10.1039/c7cs00358g. PubMed DOI
Thibault-Starzyk F, Travert A, Saussey J, Lavalley JC. Correlation between activity and acidity on zeolites: A high temperature infrared study of adsorbed acetonitrile. Top. Catal. 1998;6:111–118. doi: 10.1023/A:1019182826692. DOI
Xiao Y, et al. Confinement-driven “flexible” acidity properties of porous zeolite catalysts with varied probe-assisted solid-state NMR spectroscopy. J. Phys. Chem. C. 2021;125:11580–11590. doi: 10.1021/acs.jpcc.1c01209. DOI
Khalid M, Makarova MA, Al-Ghefaili KM, Dwyer J. Brønsted acid strength in US-Y: FTIR study of CO adsorption. J. Chem. Soc. Faraday Trans. 1994;90:383–386. doi: 10.1039/FT9949000383. DOI
Frash MV, Makarova MA, Rigby AM. Quantum-chemical justification of the zeolite acid strength measurement by infrared spectroscopy. J. Phys. Chem. B. 1997;101:2116–2119. doi: 10.1021/jp9616223. DOI
Derouane EG, et al. The acidity of zeolites: Concepts, measurements and relation to catalysis: A review on experimental and theoretical methods for the study of zeolite acidity. Catal. Rev.-Sci. Eng. 2013;55:454–515. doi: 10.1080/01614940.2013.822266. DOI
Hunger M. Multinuclear solid-state NMR studies of acidic and non-acidic hydroxyl protons in zeolites. Solid State Nucl. Magn. Reson. 1996;6:1–29. doi: 10.1016/0926-2040(95)01201-x. PubMed DOI
Vayssilov GN, et al. Superacidity and spectral signatures of hydroxyl groups in zeolites. Microporous Mesoporous Mater. 2022;343:8. doi: 10.1016/j.micromeso.2022.112144. DOI
Vedrine JC. Acid-base characterization of heterogeneous catalysts: An up-to-date overview. Res. Chem. Intermed. 2015;41:9387–9423. doi: 10.1007/s11164-015-1982-9. DOI
Medeiros-Costa IC, et al. Silanol defect engineering and healing in zeolites: Opportunities to fine-tune their properties and performances. Chem. Soc. Rev. 2021;50:11156–11179. doi: 10.1039/d1cs00395j. PubMed DOI
Louis B, Walspurger S, Sommer J. Quantitative determination of Bronsted acid sites on zeolites: A new approach towards the chemical composition of zeolites. Catal. Lett. 2004;93:81–84. doi: 10.1023/b:Catl.0000016953.36257.88. DOI
Blasco T. Insights into reaction mechanisms in heterogeneous catalysis revealed by in situ NMR spectroscopy. Chem. Soc. Rev. 2010;39:4685–4702. doi: 10.1039/c0cs00033g. PubMed DOI
Yang WJ, Wang ZC, Huang J, Jiang YJ. Qualitative and quantitative analysis of acid properties for solid acids by solid-state nuclear magnetic resonance spectroscopy. J. Phys. Chem. C. 2021;125:10179–10197. doi: 10.1021/acs.jpcc.1c01887. DOI
Zheng AM, Liu SB, Deng F. P-31 NMR chemical shifts of phosphorus probes as reliable and practical acidity scales for solid and liquid catalysts. Chem. Rev. 2017;117:12475–12531. doi: 10.1021/acs.chemrev.7b00289. PubMed DOI
Yi XF, Ko HH, Deng F, Liu SB, Zheng AM. Solid-state(31)P NMR mapping of active centers and relevant spatial correlations in solid acid catalysts. Nat. Protoc. 2020;15:3527–3555. doi: 10.1038/s41596-020-0385-6. PubMed DOI
Zheng AM, Liu SB, Deng F. Acidity characterization of heterogeneous catalysts by solid-state NMR spectroscopy using probe molecules. Solid State Nucl. Magn. Reson. 2013;55–56:12–27. doi: 10.1016/j.ssnmr.2013.09.001. PubMed DOI
Chu YY, et al. Acidic strengths of Bronsted and Lewis acid sites in solid acids scaled by P-31 NMR chemical shifts of adsorbed trimethylphosphine. J. Phys. Chem. C. 2011;115:7660–7667. doi: 10.1021/jp200811b. DOI
Zheng AM, et al. P-31 chemical shift of adsorbed trialkylphosphine oxides for acidity characterization of solid acids catalysts. J. Phys. Chem. A. 2008;112:7349–7356. doi: 10.1021/jp8027319. PubMed DOI
Filek U, Bressel A, Sulikowski B, Hunger M. Structural stability and Bronsted acidity of thermally treated AlPW12O40 in comparison with H3PW12O40. J. Phys. Chem. C. 2008;112:19470–19476. doi: 10.1021/jp807947v. DOI
Fang HJ, Zheng AM, Chu YY, Deng F. C-13 chemical shift of adsorbed acetone for measuring the acid strength of solid acids: A theoretical calculation study. J. Phys. Chem. C. 2010;114:12711–12718. doi: 10.1021/jp1044749. DOI
Lercher, J. A., Jentys, A. & Brait, A. n
Niwa, M.
Wang C-M, Brogaard RY, Xie Z-K, Studt F. Transition-state scaling relations in zeolite catalysis: Influence of framework topology and acid-site reactivity. Catal. Sci. Technol. 2015;5:2814–2820. doi: 10.1039/c4cy01692k. DOI
Wang C, Li S, Mao XY, Caratzoulas S, Gorte RJ. H-D exchange of simple aromatics as a measure of Br Onsted-acid site strengths in solids. Catal. Lett. 2018;148:3548–3556. doi: 10.1007/s10562-018-2563-5. DOI
Bulanek R, Kubu M, Vaculik J, Cejka J. H/D reactivity and acidity of Bronsted acid sites of MWW zeolites: Comparison with MFI zeolite. Appl. Catal. -Gen. 2019;575:180–186. doi: 10.1016/j.apcata.2019.02.024. DOI
Čičmanec, P., Kotera, J., Vaculík, J. & Bulánek, R. Influence of substrate concentration on kinetic parameters of ethanol dehydration in MFI and CHA zeolites and relation of these kinetic parameters to acid–base properties.
Verma R, Nair NN. Proton-exchange reaction in acidic zeolites: Mechanism and free energetics. J. Phys. Chem. C. 2022;126:19169–19177. doi: 10.1021/acs.jpcc.2c06146. DOI
Zhao R, Haller GL, Lercher JA. Alkene adsorption and cracking on acidic zeolites—A gradual process of understanding. Microporous Mesoporous Mater. 2022 doi: 10.1016/j.micromeso.2022.112390. DOI
Chizallet C, Bouchy C, Larmier K, Pirngruber G. Molecular views on mechanisms of Bronsted acid-catalyzed reactions in zeolites. Chem. Rev. 2023 doi: 10.1021/acs.chemrev.2c00896. PubMed DOI
Park, H. S.
Rubeš M, et al. Experimental and theoretical study of propene adsorption on K-FER zeolites: New evidence of bridged complex formation. J. Phys. Chem. C. 2018;122:6128–6136. doi: 10.1021/acs.jpcc.7b12706. DOI
Liu C, Li G, Hensen EJM, Pidko EA. Relationship between acidity and catalytic reactivity of faujasite zeolite: A periodic DFT study. J. Catal. 2016;344:570–577. doi: 10.1016/j.jcat.2016.10.027. DOI
Sastre G. Confinement effects in methanol to olefins catalysed by zeolites: A computational review. Front. Chem. Sci. Eng. 2016;10:76–89. doi: 10.1007/s11705-016-1557-3. DOI
Baerlocher, C. & McCusker, L. B.
Trachta M, Rubes M, Bludsky O. Toward accurate ab initio modeling of siliceous zeolite structures. J. Chem. Phys. 2022;156:094708. doi: 10.1063/5.0083191. PubMed DOI
Sanders, M., Leslie, M. & Catlow, C. Interatomic potentials for SiO
Schröder K-P, et al. Bridging hydrodyl groups in zeolitic catalysts: A computer simulation of their structure, vibrational properties and acidity in protonated faujasites (H–Y zeolites) Chem. Phys. Lett. 1992;188:320–325. doi: 10.1016/0009-2614(92)90030-Q. DOI
Gale, J. D. GULP: A computer program for the symmetry-adapted simulation of solids.
Perdew J, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B. 1993;48:13115–13115. doi: 10.1103/PhysRevB.48.13115. PubMed DOI
Kresse G, Hafner J. Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys. Rev. B. 1994;49:14251–14269. doi: 10.1103/PhysRevB.49.14251. PubMed DOI
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006;27:1787–1799. doi: 10.1002/jcc.20495. PubMed DOI
MATLAB v. Version: 9.14.0 (R2023a) (The MathWorks Inc., 2023).
Rubeš, M., Trachta, M., Vaculík, J., Bulánek, R. & Bludský, O. The analysis of the BAS OH band in zeolites.
Solans-Monfort, X. PubMed
Liu C, Tranca I, van Santen RA, Hensen EJM, Pidko EA. Scaling relations for acidity and reactivity of zeolites. J. Phys. Chem. C. 2017;121:23520–23530. doi: 10.1021/acs.jpcc.7b08176. PubMed DOI PMC
Lee C, Parrillo DJ, Gorte RJ, Farneth WE. Relationship between differential heats of adsorption and Bronsted acid strengths of acidic zeolites: H-ZSM-5 and H-mordenite. J. Am. Chem. Soc. 1996;118:3262–3268. doi: 10.1021/ja953452y. DOI
Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/s0021889811038970. DOI