Potential effect of two Bacillus probiotic strains on performance and fecal microbiota of breeding sows and their piglets
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
AGL2016-75463-R
Ministry of Economy, Industry, and Competitiveness of Spain
BES-2017-080018
Spanish Ministry of Science and Innovation
QK1810463
Ministry of Agriculture of the Czech Republic
PubMed
35512239
PubMed Central
PMC9175292
DOI
10.1093/jas/skac163
PII: 6580401
Knihovny.cz E-zdroje
- Klíčová slova
- Bacillus amyloliquefaciens, Bacillus subtilis, microbiota, piglet, probiotic, sow,
- MeSH
- Bacillus * MeSH
- dieta veterinární MeSH
- feces MeSH
- krmivo pro zvířata analýza MeSH
- laktace fyziologie MeSH
- mikrobiota * MeSH
- odstavení MeSH
- potravní doplňky analýza MeSH
- prasata MeSH
- probiotika * MeSH
- RNA ribozomální 16S MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
The effect of long-term administration of two Bacillus strains was tested on 98 breeding sows and their litters allotted into three treatments: a control group (CON); supplemented with 5 × 108 cfu/kg B. subtilis - 541 (BSU); or with 5 × 108 cfu/kg B. amyloliquefaciens - 516 (BAM). Reproductive and performance variables were recorded over three cycles with 56 dams remaining through the third lactation. Blood and fecal samples were taken longitudinally from 12 sows per treatment on days 8 and 21 of the third lactation and milk samples were taken on day 21. Feces from one piglet per litter was sampled on days 21 and 33 and jejunal gene expression was assessed in two piglets on day 21. Changes in fecal microbiota were assessed by 16S rRNA gene sequencing (Illumina MiSeq) and gene expression by Open-Array technology. Metabolomic responses were analyzed in milk by NMR and Ig-G and Ig-A specific antibodies were determined by ELISA. No significant differences were observed on feed intake, body weight, or fat mobilization of the sows. However, a significant increase in the total number of piglets born was observed in supplemented sows. Although the increase was seen from the first cycle with BAM, improvements were not seen with BSU until the third cycle. BAM also increased the number of born-alive and weaned piglets. NMR analysis showed an impact of BAM on milk composition. No differences were found in milk or blood immunoglobulins. A different structure of the fecal microbiota was found in supplemented sows, with changes across phylum, family, and genus. These changes were greater at day 8, suggesting a relevant role of probiotics establishing a new intestinal balance after labor. Shifts in the microbiota were also seen in the piglets, with a clearer impact post-weaning than in suckling. In this regard, correlations between microbial groups of sows and piglets showed a higher link with weaned (d33) than with suckling pigs (d21), reinforcing the idea of an early maternal carry-over. No changes due to treatment in jejunal gene expression were detected; however, piglet size had a clear impact on different genes. In summary, the addition of both probiotics, and particularly Bacillus amyloliquefaciens, demonstrated potential benefits on the prolificacy of sows. Daily feeding of Bacillus amyloliquefaciens resulted in an increase in the number of weaned piglets. The high correlations between the compositions of the microbiota of sows and their piglets are evidence of maternal imprinting, with effects lasting beyond weaning.
The aim of the present study was to determine if the inclusion of probiotic microorganisms in the mother’s diet during gestation and the lactation period is capable of modifying the performance of mothers and piglets and the possible effect on the intestinal health of piglets after separation from the mother. For this, 98 females were distributed in three experimental treatments: a control diet, or the same diet in which one of two probiotic strains to be tested (Bacillus subtilis or Bacillus amyloliquefaciens) were incorporated. The experimental diets were administered during pregnancy and the lactation phase for three consecutive productive cycles. Among the most striking results, it is worth highlighting the impact of probiotic treatments on the reproductive performance of sows. Both supplemented groups showed a higher number of total piglets per sow. Furthermore, sows that received the Bacillus amyloliquefaciens diet showed a significant increase in the number of live-born piglets. Probiotic supplementation also showed effects on the fecal microbiota composition of the mothers and their piglets. Changes in the composition of sow milk were also observed. In summary, results demonstrated the potential benefits of supplementing probiotics, and particularly a strain of Bacillus amyloliquefaciens, to improve prolificacy, modulate the intestinal microbial composition, and improve the performance of piglets during lactation.
Zobrazit více v PubMed
Alexopoulos, C., Georgoulakis I. E., Tzivara A., Kritas S. K., Siochu A., and Kyriakis S. C.. . 2004. Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters. J. Anim. Physiol. Anim. Nutr. (Berl) 88:381–392. doi:10.1111/j.1439-0396.2004.00492.x. PubMed DOI
Alexopoulos, C., Karagiannidis A., Kritas S. K., Boscos C., Georgoulakis I. E., and Kyriakis S. C.. . 2001. Field evaluation of a bioregulator containing live Bacillus cereus spores on health status and performance of sows and their litters. J. Vet. Med. Ser. A 48:137–145. doi:10.1046/j.1439-0442.2001.00342.x. PubMed DOI
Antwis, R. E., Edwards K. L., Unwin B., Walker S. L., and Shultz S.. . 2019. Rare gut microbiota associated with breeding success, hormone metabolites and ovarian cycle phase in the critically endangered eastern black rhino. Microbiome 7:27. doi:10.1186/s40168-019-0639-0. PubMed DOI PMC
Apic, I., Savic B., Stancic I., Zivkov-Balas M., Bojkovski J., Jovanovic S., Radovic I., Zvekic D., and Maksimovic Z.. . 2014. Litters health status and growth parameters in the sows feeding diets supplemented with probiotic Actisaf Sc 47® within pregnancy or lactation. In: Proceedings of the International Symposium on Animal Science.Belgrade-Zemun,Serbia.
Ayala, L., Bocourt R., Castro M., Martínez M., and Herrera M.. . 2016. Effect of the probiotic additive Bacillus subtilis and their endospores on milk production and immune response of lactating sows. Cuba. J. Agric. Sci. 49:71–74. Available from: https://cjascience.com/index.php/CJAS/article/view/550.
Azagra-Boronat, I., Tres A., Massot-Cladera M., Franch A., Castell M., Guardiola F., Pérez-Cano F. J., and Rodríguez-Lagunas M. J.. . 2020. Lactobacillus fermentum CECT5716 supplementation in rats during pregnancy and lactation impacts maternal and offspring lipid profile, immune system and microbiota. Cells 9(3):575–595. doi:10.3390/cells9030575. PubMed DOI PMC
Baker, A. A., Davis E., Spencer J. D., Moser R., and Rehberger T.. . 2013. The effect of a Bacillus-based direct-fed microbial supplemented to sows on the gastrointestinal microbiota of their neonatal piglets. J. Anim. Sci. 91:3390–3399. doi:10.2527/jas.2012-5821. PubMed DOI
Barba-Vidal, E., Martín-Orúe S. M., and Castillejos L.. . 2019. Practical aspects of the use of probiotics in pig production: a review. Livest. Sci. 223:84–96. doi: 10.1016/j.livsci.2019.02.017. Available from: https://www.sciencedirect.com/science/article/pii/S1871141318302646. DOI
Belzer, C., and de Vos W. M.. . 2012. Microbes inside—from diversity to function: the case of Akkermansia. ISME J. 6:1449–1458. doi:10.1038/ismej.2012.6. PubMed DOI PMC
Betancur, C., Martínez Y., Tellez-Isaias G., Castillo R., and Ding X.. . 2021. Effect of oral administration with Lactobacillus plantarum CAM6 strain on sows during gestation-lactation and the derived impact on their progeny performance. S. Chen, editor. Mediators Inflamm. 2021:6615960. doi:10.1155/2021/6615960. PubMed DOI PMC
Bhandari, P., Rishi P., and Prabha V.. . 2016. Positive effect of probiotic Lactobacillus plantarum in reversing LPS-induced infertility in a mouse model. J. Med. Microbiol. 65:345–350. doi:10.1099/jmm.0.000230. PubMed DOI
Blavi, L., Jørgensen J. N., and Stein H. H.. . 2019. Effects of Bacillus amyloliquefaciens and Bacillus subtilis on ileal digestibility of AA and total tract digestibility of CP and gross energy in diets fed to growing pigs. J. Anim. Sci. 97:727–734. doi:10.1093/jas/sky432. PubMed DOI PMC
Böhmer, B. M., Kramer W., and Roth-Maier D. A.. . 2006. Dietary probiotic supplementation and resulting effects on performance, health status, and microbial characteristics of primiparous sows. J. Anim. Physiol. Anim. Nutr. (Berl). 90:309–315. doi:10.1111/j.1439-0396.2005.00601.x. PubMed DOI
Bravo-Santano, N., Juncker Boll E., Catrine Capern L., Cieplak T. M., Keleszade E., Letek M., and Costabile A.. . 2020. Comparative evaluation of the antimicrobial and mucus induction properties of selected Bacillus strains against enterotoxigenic Escherichia coli. Antibiot 9(12):849–859. doi:10.3390/antibiotics9120849. PubMed DOI PMC
Callahan, B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., and Holmes S. P.. . 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13:581–583. doi:10.1038/nmeth.3869. PubMed DOI PMC
Chen, L., Xu Y., Chen X., Fang C., Zhao L., and Chen F.. . 2017. The maturing development of gut microbiota in commercial piglets during the weaning transition. Front. Microbiol. 8:1–13. doi:10.3389/fmicb.2017.01688. Available from: http://journal.frontiersin.org/article/10.3389/fmicb.2017.01688/full. PubMed DOI PMC
Chen, X., Xu J., Ren E., Su Y., and Zhu W.. . 2018. Co-occurrence of early gut colonization in neonatal piglets with microbiota in the maternal and surrounding delivery environments. Anaerobe 49:30–40. doi:10.1016/j.anaerobe.2017.12.002. Available from: http://www.sciencedirect.com/science/article/pii/S1075996417302251. PubMed DOI
Crespo-Piazuelo, D., Gardiner G. E., Ranjitkar S., Bouwhuis M. A., Ham R., Phelan J. P., Marsh A., and Lawlor P. G.. . 2021. Maternal supplementation with Bacillus altitudinis spores improves porcine offspring growth performance and carcass weight. Br. J. Nutr. 127(3):403–420. doi:10.1017/S0007114521001203. Available from: https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/abs/maternal-supplementation-with-bacillus-altitudinis-spores-improves-porcine-offspring-growth-performance-and-carcass-weight/0B55BCFAB97EA75CB0C7D354DC8224EC. PubMed DOI
Curtasu, M. V., Theil P. K., and Hedemann M. S.. . 2016. Metabolomic profiles of colostrum and milk from lactating sows. J. Anim. Sci. 94:272–275. doi:10.2527/jas.2015-9769. DOI
Davis, E., Christianson J., Anderson S., Rehberger T., and Sawall J.. . 2020. Administration of a Bacillus probiotic to sows improves growth response and health of their progeny after weaning. J. Anim. Sci. 98:93.
Everaert, N., Van Cruchten S., Weström B., Bailey M., Van Ginneken C., Thymann T., and Pieper R.. . 2017. A review on early gut maturation and colonization in pigs, including biological and dietary factors affecting gut homeostasis. Anim. Feed Sci. Technol. 233:89–103. doi: 10.1016/j.anifeedsci.2017.06.011. . https://www.sciencedirect.com/science/article/pii/S037784011631063X. DOI
Everard, A., Belzer C., Geurts L., Ouwerkerk J. P., Druart C., Bindels L. B., Guiot Y., Derrien M., Muccioli G. G., Delzenne N. M., . et al.. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. 110:9066 LP–9069071. doi:10.1073/pnas.1219451110. Available from: http://www.pnas.org/content/110/22/9066.abstract. PubMed DOI PMC
Ferret-Bernard, S., and Le Huërou-Luron I.. . 2019. Development of the intestinal immune system in young pigs? Role of the microbial environment. In: The suckling and weaned piglet. Wageningen, Netherlands: Wageningen Academic Publishers. p. 159–177 SE–6. Available from: 10.3920/978-90-8686-894-0_6 DOI
Gómez-Gallego, C., Morales J. M., Monleón D., du Toit E., Kumar H., Linderborg K. M., Zhang Y., Yang B., Isolauri E., Salminen S., . et al.. 2018. Human breast milk NMR metabolomic profile across specific geographical locations and its association with the milk microbiota. Nutrients 10(10):1355–1375. doi:10.3390/nu10101355. PubMed DOI PMC
González-Solé, F., Criado-Mesas L., Villodre C., García W. C., Farré M., Borda E., Pérez-Cano F. J., Folch J. M., Solà-Oriol D., and Pérez J. F.. . 2020. Porcine Digestible Peptides (PDP) in weanling diets regulates the expression of genes involved in gut barrier function, immune response and nutrient transport in nursery pigs. Anim. an open access J. from MDPI. 10:2368. doi:10.3390/ani10122368. Available from: https://pubmed.ncbi.nlm.nih.gov/33321976. PubMed DOI PMC
Grazul, H., Kanda L. L., and Gondek D.. . 2016. Impact of probiotic supplements on microbiome diversity following antibiotic treatment of mice. Gut Microbes 7:101–114. doi:10.1080/19490976.2016.1138197. PubMed DOI PMC
Hansen, C. H. F., Nielsen D. S., Kverka M., Zakostelska Z., Klimesova K., Hudcovic T., Tlaskalova-Hogenova H., and Hansen A. K.. . 2012. Patterns of early gut colonization shape future immune responses of the host. PLoS One 7:e34043–e34043. doi:10.1371/journal.pone.0034043. PubMed DOI PMC
Hayakawa, T., Masuda T., Kurosawa D., and Tsukahara T.. . 2016. Dietary administration of probiotics to sows and/or their neonates improves the reproductive performance, incidence of post-weaning diarrhea and histopathological parameters in the intestine of weaned piglets. Anim. Sci. J. 87:1501–1510. doi:10.1111/asj.12565. PubMed DOI
He, Y., Jinno C., Kim K., Wu Z., Tan B., Li X., Whelan R., and Liu Y.. . 2020. Dietary Bacillus spp. enhanced growth and disease resistance of weaned pigs by modulating intestinal microbiota and systemic immunity. J. Anim. Sci. Biotechnol. 11:101. doi:10.1186/s40104-020-00498-3. PubMed DOI PMC
Holman, D. B., Brunelle B. W., Trachsel J., and Allen H. K.. . 2017. Meta-analysis to define a core microbiota in the swine gut. mSystems 2:1–14. doi:10.1128/msystems.00004-17. PubMed DOI PMC
Hu, J., Kim Y. H., and Kim I. H.. . 2021. Effects of two bacillus strains probiotic supplement on reproduction performance, nutrient digestibility, blood profile, fecal score, excreta odor contents and fecal microflora in lactation sows, and growth performance in sucking piglets. Livest. Sci. 244:104293. doi: 10.1016/j.livsci.2020.104293 . https://www.sciencedirect.com/science/article/pii/S1871141319315306. DOI
Hu, J., Nie Y., Chen J., Zhang Y., Wang Z., Fan Q., and Yan X.. . 2016. Gradual changes of gut microbiota in weaned miniature piglets. Front. Microbiol. 7:1–15. doi:10.3389/fmicb.2016.01727. PubMed DOI PMC
Jadamus, A., Vahjen W., and Simon O.. . 2001. Growth behaviour of a spore forming probiotic strain in the gastrointestinal tract of broiler chicken and piglets . Arch. für Tierernaehrung. 54:1–17. doi:10.1080/17450390109381962. PubMed DOI
Jeong, J., Kim J., Lee S., and Kim I.. . 2015. Evaluation of Bacillus subtilis and Lactobacillus acidophilus probiotic supplementation on reproductive performance and noxious gas emission in sows. Ann. Anim. Sci. 15:699–710. doi: 10.1515/aoas-2015-0018. Available from: https://content.sciendo.com/view/journals/aoas/15/3/article-p699.xml. DOI
Jiang, L., Feng C., Tao S., Li N., Zuo B., Han D., and Wang J.. . 2019. Maternal imprinting of the neonatal microbiota colonization in intrauterine growth restricted piglets: a review. J. Anim. Sci. Biotechnol. 10:88. doi:10.1186/s40104-019-0397-7. PubMed DOI PMC
Jost, T., Lacroix C., Braegger C. P., Rochat F., and Chassard C.. . 2014. Vertical mother–neonate transfer of maternal gut bacteria via breastfeeding. Environ. Microbiol. 16:2891–2904. doi: 10.1111/1462-2920.12238. PubMed DOI
Kelly, D., and Conway S.. . 2005. Bacterial modulation of mucosal innate immunity. Mol. Immunol. 42:895–901. doi:10.1016/j.molimm.2004.12.003. PubMed DOI
Kenny, M., Smidt H., Mengheri E., and Miller B.. . 2011. Probiotics—do they have a role in the pig industry? Animal 5:462–470. doi:10.1017/S175173111000193X. Available from: https://www.sciencedirect.com/science/article/pii/S175173111000193X. PubMed DOI
Konstantinov, S. R., Awati A. A., Williams B. A., Miller B. G., Jones P., Stokes C. R., Akkermans A. D. L., Smidt H., and De Vos W. M.. . 2006. Post-natal development of the porcine microbiota composition and activities. Environ. Microbiol. 8:1191–1199. doi:10.1111/j.1462-2920.2006.01009.x. PubMed DOI
Kritas, S. K., Marubashi T., Filioussis G., Petridou E., Christodoulopoulos G., Burriel A. R., Tzivara A., Theodoridis A., and Pískoriková M.. . 2015. Reproductive performance of sows was improved by administration of a sporing bacillary probiotic (Bacillus subtilis C-3102). J. Anim. Sci. 93:405–413. doi:10.2527/jas.2014-7651. PubMed DOI
Lahti, L., Shetty S., Blake T., and Salojarvi J.. . 2017. Microbiome R package. London (UK): Tools Microbiome Anal. R.
Lan, R., and Kim I.. . 2020. Enterococcus faecium supplementation in sows during gestation and lactation improves the performance of sucking piglets. Vet. Med. Sci. 6:92–99. doi:10.1002/vms3.215. PubMed DOI PMC
Larsen, N., Thorsen L., Kpikpi E. N., Stuer-Lauridsen B., Cantor M. D., Nielsen B., Brockmann E., Derkx P. M. F., and Jespersen L.. . 2014. Characterization of Bacillus spp. strains for use as probiotic additives in pig feed. Appl. Microbiol. Biotechnol. 98:1105–1118. doi:10.1007/s00253-013-5343-6. PubMed DOI
Li, Y., Guo Y., Wen Z., Jiang X., Ma X., and Han X.. . 2018. Weaning stress perturbs gut microbiome and its metabolic profile in piglets. Sci. Rep. 8:1–12. doi:10.1038/s41598-018-33649-8. PubMed DOI PMC
Liu, H., Hou C., Li N., Zhang X., Zhang G., Yang F., Zeng X., Liu Z., and Qiao S.. . 2019a. Microbial and metabolic alterations in gut microbiota of sows during pregnancy and lactation. FASEB J. 33:4490–4501. doi:10.1096/fj.201801221RR. PubMed DOI
Liu, H., Zeng X., Zhang G., Hou C., Li N., Yu H., Shang L., Zhang X., Trevisi P., Yang F., . et al.. 2019b. Maternal milk and fecal microbes guide the spatiotemporal development of mucosa-associated microbiota and barrier function in the porcine neonatal gut. BMC Biol. 17:106. doi:10.1186/s12915-019-0729-2. PubMed DOI PMC
Luise, D., Bertocchi M., Motta V., Salvarani C., Bosi P., Luppi A., Fanelli F., Mazzoni M., Archetti I., Maiorano G., . et al.. 2019. Bacillus sp. probiotic supplementation diminish the Escherichia coli F4ac infection in susceptible weaned pigs by influencing the intestinal immune response, intestinal microbiota, and blood metabolomics. J. Anim. Sci. Biotechnol. 10:74. doi:10.1186/s40104-019-0380-3. PubMed DOI PMC
Mach, N., Berri M., Estellé J., Levenez F., Lemonnier G., Denis C., Leplat J. J., Chevaleyre C., Billon Y., Doré J., . et al.. 2015. Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ. Microbiol. Rep. 7:554–569. doi:10.1111/1758-2229.12285. PubMed DOI
McMurdie, P. J., and Holmes S.. . 2013. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8. doi:10.1371/journal.pone.0061217. PubMed DOI PMC
Medina, M., Izquierdo E., Ennahar S., and Sanz Y.. . 2007. Differential immunomodulatory properties of Bifidobacterium logum strains: relevance to probiotic selection and clinical applications. Clin. Exp. Immunol. 150:531–538. doi:10.1111/j.1365-2249.2007.03522.x. PubMed DOI PMC
Menegat, M. B., DeRouchey J. M., Woodworth J. C., Dritz S. S., Tokach M. D., and Goodband R. D.. . 2019. Effects of Bacillus subtilis C-3102 on sow and progeny performance, fecal consistency, and fecal microbes during gestation, lactation, and nursery periods. J. Anim. Sci. 97:3920–3937. doi:10.1093/jas/skz236. PubMed DOI PMC
Menegat, M. B., DeRouchey J. M., Woodworth J. C., Tokach M. D., Goodband R. D., and Dritz S. S.. . 2020. Effects of oral administration of Bacillus subtilis C-3102 to nursing piglets on preweaning growth performance, fecal consistency, and fecal microbes. J. Swine Heal. Prod. 28:12–20.
Mu, C., Bian G., Su Y., and Zhu W.. . 2019. Differential effects of breed and nursing on early-life colonic microbiota and immune status as revealed in a cross-fostering piglet model. Appl. Environ. Microbiol. 85(9):2510–2518. doi:10.1128/AEM.02510-18. PubMed DOI PMC
Nasiri, A. H., Towhidi A., Shakeri M., Zhandi M., Dehghan-Banadaky M., and Colazo M. G.. . 2018. Effects of live yeast dietary supplementation on hormonal profile, ovarian follicular dynamics, and reproductive performance in dairy cows exposed to high ambient temperature. Theriogenology 122:41–46. doi:10.1016/j.theriogenology.2018.08.013. Available from: https://www.sciencedirect.com/science/article/pii/S0093691X18306393. PubMed DOI
Nowland, T. L., Kirkwood R. N., Torok V. A., Plush K. J., and Barton M. D.. . 2021. Characterisation of early microbial colonisers within the spiral colon of pre- and post-natal piglets. Life (Basel, Switzerland) 11(4):312–326. doi:10.3390/life11040312. PubMed DOI PMC
Nowland, T., Plush K., Barton M., and Kirkwood R.. . 2019. Development and function of the intestinal microbiome and potential implications for pig production. Animals 9:76. doi:10.3390/ani9030076. Available from: https://www.mdpi.com/2076-2615/9/3/76. PubMed DOI PMC
NRC. 2012. Nutrient requirements of swine. Eleventh R. National Academies Press,Washington, DC.
Oksanen, J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P. R., O’Hara R. B., Simpson G. L., . et al. 2013. Package “vegan.” Community Ecol. Package version. 2:1–295.
Paulson, J. N., Stine O. C., Bravo H. C., and Pop M.. . 2013a. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 10:1200. PubMed PMC
Paulson, J. N., Talukder H., Pop M., and Bravo H. C.. . 2013b. metagenomeSeq: statistical analysis for sparse high-throughput sequencing. Bioconductor Packag. 1:1–191. Available from: http://bioconductor.jp/packages/2.14/bioc/vignettes/metagenomeSeq/inst/doc/metagenomeSeq.pdf.
Picone, G., Zappaterra M., Luise D., Trimigno A., Capozzi F., Motta V., Davoli R., Nanni Costa L., Bosi P., and Trevisi P.. . 2018. Metabolomics characterization of colostrum in three sow breeds and its influences on piglets’ survival and litter growth rates. J. Anim. Sci. Biotechnol. 9:23. doi:10.1186/s40104-018-0237-1. PubMed DOI PMC
Quast, C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., and Glöckner F. O.. . 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41:D590–D596. doi:10.1093/nar/gks1219. PubMed DOI PMC
R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Reyes-Camacho, D., Vinyeta E., Pérez J. F., Aumiller T., Criado L., Palade L. M., Taranu I., Folch J. M., Calvo M. A., Van der Klis J. D., . et al.. 2020. Phytogenic actives supplemented in hyperprolific sows: effects on maternal transfer of phytogenic compounds, colostrum and milk features, performance and antioxidant status of sows and their offspring, and piglet intestinal gene expression. J. Anim. Sci. 98. doi:10.1093/jas/skz390. PubMed DOI PMC
Saladrigas-García, M., D’Angelo M., Ko H. -L., Nolis P., Ramayo-Caldas Y., Folch J. M., Llonch P., Solà-Oriol D., Pérez J. F., and Martín-Orúe S. M.. . 2021a. Understanding host-microbiota interactions in the commercial piglet around weaning. Sci. Rep. 11:23488. doi:10.1038/s41598-021-02754-6. PubMed DOI PMC
Saladrigas-García, M., D’Angelo M., Ko H. -L., Traserra S., Nolis P., Ramayo-Caldas Y., Folch J. M., Vergara P., Llonch P., Pérez J. F., . et al.. 2021b. Early socialization and environmental enrichment of lactating piglets affects the caecal microbiota and metabolomic response after weaning. Sci. Rep. 11:6113. doi:10.1038/s41598-021-85460-7. PubMed DOI PMC
Scharek-Tedin, L., Kreuzer-Redmer S., Twardziok S. O., Siepert B., Klopfleisch R., Tedin K., Zentek J., and Pieper R.. . 2015. Probiotic treatment decreases the number of CD14-expressing cells in porcine milk which correlates with several intestinal immune parameters in the piglets. Front. Immunol. 6:108. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2015.00108. PubMed DOI PMC
Sommer, F., Anderson J. M., Bharti R., Raes J., and Rosenstiel P.. . 2017. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol. 15:630–638. doi:10.1038/nrmicro.2017.58. PubMed DOI
Stamati, S., Alexopoulos C., Siochu A., Saoulidis K., and Kyriakis S. C.. . 2006. Probiosis in sows by administration of Bacillus toyoi spores during late pregnancy and lactation: effect on their health status/performance and on litter characteristics. Int. J. Probiotics Prebiotics. 1:33.
Starke, I. C., Pieper R., Neumann K., Zentek J., and Vahjen W.. . 2013. Individual responses of mother sows to a probiotic Enterococcus faecium strain lead to different microbiota composition in their offspring. Benef. Microbes 4:345–356. doi:10.3920/BM2013.0021. Available from: https://www.wageningenacademic.com/doi/10.3920/BM2013.0021. PubMed DOI
Tan, C., Zhai Z., Ni X., Wang H., Ji Y., Tang T., Ren W., Long H., Deng B., Deng J., . et al.. 2018. Metabolomic profiles reveal potential factors that correlate with lactation performance in sow milk. Sci. Rep. 8:10712. doi:10.1038/s41598-018-28793-0. PubMed DOI PMC
Taras, D., Vahjen W., Macha M., and Simon O.. . 2005. Response of performance characteristics and fecal consistency to long-lasting dietary supplementation with the probiotic strain Bacillus cereus var. toyoi to sows and piglets. Arch. Anim. Nutr. 59:405–417. doi:10.1080/17450390500353168. PubMed DOI
Taras, D., Vahjen W., Macha M., and Simon O.. . 2006. Performance, diarrhea incidence, and occurrence of Escherichia coli virulence genes during long-term administration of a probiotic Enterococcus faecium strain to sows and piglets. J. Anim. Sci. 84:608–617. doi:10.2527/2006.843608x. PubMed DOI
Thompson, C. L., Wang B., and Holmes A. J.. . 2008. The immediate environment during postnatal development has long-term impact on gut community structure in pigs. ISME J. 2:739–748. doi:10.1038/ismej.2008.29. PubMed DOI
Whittaker, R. H. 1960. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30:279–338. doi:10.2307/1943563. Available from: https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1943563. DOI
Yang, H., Xiang Y., Robinson K., Wang J., Zhang G., Zhao J., and Xiao Y.. . 2018. Gut microbiota is a major contributor to adiposity in pigs. Front. Microbiol. 9:3045. doi:10.3389/fmicb.2018.03045. Available from: https://www.frontiersin.org/article/10.3389/fmicb.2018.03045. PubMed DOI PMC
Zhang, Q., Li J., Cao M., Li Y., Zhuo Y., Fang Z., Che L., Xu S., Feng B., Lin Y., . et al.. 2020. Dietary supplementation of Bacillus subtilis PB6 improves sow reproductive performance and reduces piglet birth intervals. Anim. Nutr. 6:278–287. doi: 10.1016/j.aninu.2020.04.002. Available from: https://www.sciencedirect.com/science/article/pii/S2405654520300615. PubMed DOI PMC