A new Ru(ii) polypyridyl complex as an efficient photosensitizer for enhancing the visible-light-driven photocatalytic activity of a TiO2/reduced graphene oxide nanocomposite for the degradation of atrazine: DFT and mechanism insights

. 2020 Jun 10 ; 10 (38) : 22500-22514. [epub] 20200616

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35514572

TiO2 is one of the most widely used semiconductors for photocatalytic reactions. However, its wide bandgap energy and fast charge recombination limit its catalytic activity. Thus, herein, a new Ru(ii) polypyridyl complex, [Ruii(tptz)(CH3CN)Cl2] (tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine), was synthesized and used as a visible-light photosensitizer dye for improving the light harvesting and quantum efficiency of TiO2. Accordingly, a well-designed nanostructured photocatalyst was proposed using mesoporous TiO2 nanocrystals coupled with reduced graphene oxide (rGO) and the polypyridyl Ru(ii) complex, which was tested for the photocatalytic degradation of atrazine (ATZ) as a model of emerging water contaminants. Specifically, the Ru complex (Ru-CMP) served as an electron donor, while rGO acted as an electron acceptor, and the synergistic effect between them promoted the separation of electron-hole pairs and suppressed the charge recombination in the hybridized species. Structural analysis indicated that the TiO2 nanoparticles with an anatase crystal structure had a mesoporous texture and were homogeneously coated on the rGO sheets. The detailed FT-IR, Raman, XPS and UV-vis absorption spectroscopic analyses combined with EDS mapping clearly confirmed the successful loading of the Ru complex onto the catalyst. The PL and EIS results revealed that the addition of the Ru-CMP photosensitizer enhanced the charge separation and transport. The gas-phase geometry and energies of the molecular orbitals of the Ru complex were evaluated via DFT calculations. The results from the DFT calculations were consistent with the experimental results. Compared to pure TiO2, the as-synthesized Ru-CMP-TiO2/rGO hybrid exhibited significantly enhanced photocatalytic activity for the degradation of ATZ. The rate of ATZ degradation in the developed photocatalytic process with the Ru-CMP-TiO2/rGO hybrid was 9 times that with commercial TiO2. The enhanced photocatalytic activity of the prepared catalyst can be attributed to its better light harvesting and efficient electron transportation due to its more suitable LUMO position than the conduction band of TiO2. Moreover, the excellent conductivity and adsorption capacity of graphene contributed to the increase in photocatalytic activity. Thus, these features make the Ru-CMP-TiO2/rGO hybrid nanomaterial an excellent candidate for the photocatalytic purification of contaminated water.

Zobrazit více v PubMed

Granados-Oliveros G. Páez-Mozo E. A. Ortega F. M. Ferronato C. Chovelon J. M. Appl. Catal., B. 2009;89:448–454. doi: 10.1016/j.apcatb.2009.01.001. DOI

Zhao X. Zhang C. Wang S. Songc C. Li X. RSC Adv. 2017;7:1581–1587. doi: 10.1039/C6RA26918D. DOI

Santacruz-Chávez J. A. Oros-Ruiz S. Prado B. Zanella R. J. Environ. Chem. Eng. 2015;3:3055–3061. doi: 10.1016/j.jece.2015.04.025. DOI

Cheshme Khavar A. H. Moussavi G. Mahjoub A. R. Appl. Surf. Sci. 2018;440:963–973. doi: 10.1016/j.apsusc.2018.01.238. DOI

Jo W.-K. Adinaveen T. Vijaya J. J. Selvam N. C. S. RSC Adv. 2016;6:10487–10497. doi: 10.1039/C5RA24676H. DOI

Sher Shah M. S. A. Park A. R. Zhang K. Park J. H. Yoo P. J. ACS Appl. Mater. Interfaces. 2012;4:3893–3901. doi: 10.1021/am301287m. PubMed DOI

Khavar A. H. C. Moussavi G. Mahjoub A. R. Satari M. Abdolmaleki P. Chem. Eng. J. 2018;345:300–311. doi: 10.1016/j.cej.2018.03.095. DOI

Liang X. w. Wang L. Ma F. Lou H. Jiang X. Lia Z. RSC Adv. 2016;6:89994–90001. doi: 10.1039/C6RA11256K. DOI

Sharotri N. Sud D. Sep. Purif. Technol. 2017;183:382–391. doi: 10.1016/j.seppur.2017.03.053. DOI

Xue C. Wang T. Yang G. Yanga B. Ding S. J. Mater. Chem. A. 2014;2:7674–7679. doi: 10.1039/C4TA01190B. DOI

Khan H. Rigamonti M. G. Patience G. S. Boffito D. C. Appl. Catal., B. 2018;226:311–323. doi: 10.1016/j.apcatb.2017.12.049. DOI

Zukalova M. Bousa M. Bastl Z. Jirka I. Kavan L. J. Phys. Chem. C. 2014;118:25970–25977. doi: 10.1021/jp504457v. DOI

Khan M. Xu J. Chen N. Cao W. Asadullah S. Usman Z. Khan D. F. Res. Chem. Intermed. 2013;39:1633–1644. doi: 10.1007/s11164-012-0897-y. DOI

Sinn S. Schulze B. Friebe C. Brown D. G. Jäger M. Kübel J. Dietzek B. Berlinguette C. P. Schubert U. S. Inorg. Chem. 2014;53:1637–1645. doi: 10.1021/ic402701v. PubMed DOI

Şahin Ç. Apostolopoulou A. Stathatos E. Inorg. Chim. Acta. 2018;478:130–138. doi: 10.1016/j.ica.2018.04.009. DOI

Chitumalla R. K. Gupta K. S. V. Malapaka C. Fallahpour R. Islam A. Han L. Kotamarthi B. Singh S. P. Phys. Chem. Chem. Phys. 2014;16:2630–2640. doi: 10.1039/C3CP53613K. PubMed DOI

Katsumata K. Matsui H. Yamaguchi T. Tanabe N. Inorg. Chim. Acta. 2017;463:118–125. doi: 10.1016/j.ica.2017.04.030. DOI

Mahmood A. Sol. Energy. 2016;123:127–144. doi: 10.1016/j.solener.2015.11.015. DOI

Hagfeldt A. Boschloo G. Sun L. Kloo L. Pettersson H. Chem. Rev. 2010;110:6595–6663. doi: 10.1021/cr900356p. PubMed DOI

Yadav H. M. Kim J. S. J. Alloys Compd. 2016;688:123–129. doi: 10.1016/j.jallcom.2016.07.133. DOI

Baghayeri M. Sens. Actuators, B. 2017;240:255–263. doi: 10.1016/j.snb.2016.08.161. DOI

Khan M. Tahir M. N. Adil S. F. Khan H. U. Siddiqui M. R. H. Al-warthan A. Tremel W. J. Mater. Chem. A. 2015;3:18753–18808. doi: 10.1039/C5TA02240A. DOI

Saravanakumar B. Vadivel S. Dhar S. S. Maruthamani D. Kumaravel M. Ramadoss G. Manikandan A. Paul B. Habibi-Yangjeh A. J. Colloid Interface Sci. 2017;498:449–459. doi: 10.1016/j.jcis.2017.03.086. PubMed DOI

Li G. Bomben P. G. Robson K. C. D. Gorelsky S. I. Berlinguette C. P. Shatruk M. Chem. Commun. 2012;48:8790–8792. doi: 10.1039/C2CC34311H. PubMed DOI

Burla M. C. Camalli M. Cascarano G. L. J. Appl. Crystallogr. 2003;36:1103. doi: 10.1107/S0021889803012585. DOI

Petrícek V. Dušek M. Palatinus L. Z. Kristallogr. 2014;229:345–352.

Macrae C. F. Bruno I. J. Chisholm J. A. Edgington P. R. McCabe P. Pidcock E. Rodriguez-Monge L. Taylor R. van de Streek J. Wood P. A. J. Appl. Crystallogr. 2008;41:466–470. doi: 10.1107/S0021889807067908. DOI

Becke A. D. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI

Farhat D. J. Educ. Work. 2014;27:1–42. doi: 10.1080/13639080.2012.711944. DOI

Oliveira D. M. Andrada A. S. Cerâmica. 2019;65:170–179. doi: 10.1590/0366-69132019653742509. DOI

Cheshme Khavar A. H. Moussavi G. Mahjoub A. R. Satari M. Sol. Energy. 2018;173:848–860. doi: 10.1016/j.solener.2018.08.034. DOI

Li Z. Q. Wang H. L. Zi L. Y. Zhang J. J. Zhang Y. S. Ceram. Int. 2015;41:10634–10643. doi: 10.1016/j.ceramint.2015.04.163. DOI

Pan L. Liu S. Oderinde O. Li K. Yao F. Fu G. Appl. Surf. Sci. 2018;427:779–786. doi: 10.1016/j.apsusc.2017.07.104. DOI

Zheng Y. Q. Xu W. Lin F. Fang G. S. J. Coord. Chem. 2006;59:1825–1834. doi: 10.1080/00958970600571760. DOI

Wu J. Lin M. Cong X. Liua H. Tan P. Chem. Soc. Rev. 2018;47:1822–1873. doi: 10.1039/C6CS00915H. PubMed DOI

Zhu H. Wu J. Fang M. Tan L. Chen C. Alharbi N. S. Hayat T. Tan X. RSC Adv. 2017;7:36231–36241. doi: 10.1039/C7RA05314B. DOI

Liu J. Shi H. Shen Q. Guo C. Zhao G. Appl. Catal., B. 2017;210:368–378. doi: 10.1016/j.apcatb.2017.03.060. DOI

Coates C. G. Keyes T. E. Hughes H. P. Jayaweera P. M. McGarvey J. J. Vos J. G. J. Phys. Chem. A. 1998;102:5013–5018. doi: 10.1021/jp980737z. DOI

Gu L. Wang J. Cheng H. Zhao Y. Liu L. Han X. ACS Appl. Mater. Interfaces. 2013;5:3085–3093. doi: 10.1021/am303274t. PubMed DOI

Li B. Xiong S. Liao Y. Xiao X. Huang N. Geng Y. Zou S. Yang S. J. Phys. Chem. C. 2016;120:23511–23522. doi: 10.1021/acs.jpcc.6b06697. DOI

Chen X. Y. Pan Q. J. Guo Y. R. Mater. Res. Bull. 2018;107:164–170. doi: 10.1016/j.materresbull.2018.07.024. DOI

Sher Shah M. S. A. Park A. R. Zhang K. Park J. H. Yoo P. J. ACS Appl. Mater. Interfaces. 2012;4:3893–3901. doi: 10.1021/am301287m. PubMed DOI

Jiang G. Geng K. Wu Y. Han Y. Shen X. Appl. Catal., B. 2018;227:366–375. doi: 10.1016/j.apcatb.2018.01.034. DOI

Sayan S. Suzer S. Uner D. O. J. Mol. Struct. 1997;410–411:111–114.

Lin X. Yang K. Si R. Chen X. Dai W. Fu X. Appl. Catal., B. 2014;147:585–591. doi: 10.1016/j.apcatb.2013.09.035. DOI

Kumar P. Singh A. K. Saxena J. K. Pandey D. S. J. Organomet. Chem. 2009;694:3570–3579. doi: 10.1016/j.jorganchem.2009.07.014. DOI

Abdi K. Hadadzadeh H. Salimi M. Simpson J. Khalaji A. D. Polyhedron. 2012;44:101–112. doi: 10.1016/j.poly.2012.06.089. DOI

Truc N. T. T. Sy Duc D. Van Thuan D. Al Tahtamouni T. Dong Pham T. Thi Hanhg N. Trinh Tran D. Viet Nguyen M. Min Dang N. Le Chib N. T. P. Noi Nguyen V. Appl. Surf. Sci. 2019;489:875–882. doi: 10.1016/j.apsusc.2019.05.360. DOI

Mohamed R. M. Ibrahim F. M. J. Ind. Eng. Chem. 2015;22:28–33. doi: 10.1016/j.jiec.2014.06.021. DOI

Qin J. Zeng H. Appl. Catal., B. 2017;209:161–173. doi: 10.1016/j.apcatb.2017.03.005. DOI

Sun H. Zeng S. He Q. She P. Xu K. Liu Z. Dalton Trans. 2017;46:3887–3894. doi: 10.1039/C7DT00345E. PubMed DOI

Nazeeruddin M. K. Zakeeruddin S. M. Humphry-Baker R. Jirousek M. Liska P. Vlachopoulos N. Shklover V. Fischer C.-H. Grätzel M. Inorg. Chem. 2002;38:6298–6305. doi: 10.1021/ic990916a. PubMed DOI

Wang G. Feng W. Zeng X. Wang Z. Feng C. McCarthy D. T. Deletic A. Zhang X. Water Res. 2016;94:363–370. doi: 10.1016/j.watres.2016.02.067. PubMed DOI

Hua Z. Zhang J. Bai X. Ye Z. Tang Z. Liang L. Liu Y. Sci. Total Environ. 2016;539:196–205. doi: 10.1016/j.scitotenv.2015.08.143. PubMed DOI

Zhang L. Zhang J. Jiu H. Ni C. Zhang X. Xu M. J. Phys. Chem. Solids. 2015;86:82–89. doi: 10.1016/j.jpcs.2015.06.018. DOI

Sim L. C. Leong K. H. Ibrahim S. Saravanan P. J. Mater. Chem. A. 2014;2:5315–5322. doi: 10.1039/C3TA14857B. DOI

Arifin Z. Soeparman S. Widhiyanuriyawan D. Suyitno S. Int. J. Photoenergy. 2017;2017:1–5. doi: 10.1155/2017/2704864. DOI

Ma P. Yu H. Yu Y. Wang W. Wang H. Zhang J. Fu Z. Phys. Chem. Chem. Phys. 2016;18:3638–3643. doi: 10.1039/C5CP04585A. PubMed DOI

Liu X. Li D. Zhang X. Liu S. Zhang L. J. Alloys Compd. 2015;655:38–43.

Tang X. Wang Y. Cao G. J. Electroanal. Chem. 2013;694:6–11. doi: 10.1016/j.jelechem.2013.01.036. DOI

Arjunan T. V. Senthil T. S. Mater. Technol. 2012;28:9–14. doi: 10.1179/1753555712Y.0000000040. DOI

Athanas Anish B. Thangaraj S. Kalaiyar S. Chem. Phys. Lett. 2018;699:32–39. doi: 10.1016/j.cplett.2018.03.033. DOI

Polo A. S. Itokazu M. K. Murakami Iha N. Y. Coord. Chem. Rev. 2004;248:1343–1361. doi: 10.1016/j.ccr.2004.04.013. DOI

Hagfeldt A. Boschloo G. Sun L. Kloo L. Pettersson H. Chem. Rev. 2010;110:6595–6663. doi: 10.1021/cr900356p. PubMed DOI

Gong J. Liang J. Sumathy K. Renew. Sustain. Energy Rev. 2012;16:5848–5860. doi: 10.1016/j.rser.2012.04.044. DOI

Sherly E. D. Vijaya J. J. Kennedy L. J. J. Mol. Struct. 2015;1099:114–125. doi: 10.1016/j.molstruc.2015.05.057. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...