A new Ru(ii) polypyridyl complex as an efficient photosensitizer for enhancing the visible-light-driven photocatalytic activity of a TiO2/reduced graphene oxide nanocomposite for the degradation of atrazine: DFT and mechanism insights
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35514572
PubMed Central
PMC9054594
DOI
10.1039/c9ra06704c
PII: c9ra06704c
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
TiO2 is one of the most widely used semiconductors for photocatalytic reactions. However, its wide bandgap energy and fast charge recombination limit its catalytic activity. Thus, herein, a new Ru(ii) polypyridyl complex, [Ruii(tptz)(CH3CN)Cl2] (tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine), was synthesized and used as a visible-light photosensitizer dye for improving the light harvesting and quantum efficiency of TiO2. Accordingly, a well-designed nanostructured photocatalyst was proposed using mesoporous TiO2 nanocrystals coupled with reduced graphene oxide (rGO) and the polypyridyl Ru(ii) complex, which was tested for the photocatalytic degradation of atrazine (ATZ) as a model of emerging water contaminants. Specifically, the Ru complex (Ru-CMP) served as an electron donor, while rGO acted as an electron acceptor, and the synergistic effect between them promoted the separation of electron-hole pairs and suppressed the charge recombination in the hybridized species. Structural analysis indicated that the TiO2 nanoparticles with an anatase crystal structure had a mesoporous texture and were homogeneously coated on the rGO sheets. The detailed FT-IR, Raman, XPS and UV-vis absorption spectroscopic analyses combined with EDS mapping clearly confirmed the successful loading of the Ru complex onto the catalyst. The PL and EIS results revealed that the addition of the Ru-CMP photosensitizer enhanced the charge separation and transport. The gas-phase geometry and energies of the molecular orbitals of the Ru complex were evaluated via DFT calculations. The results from the DFT calculations were consistent with the experimental results. Compared to pure TiO2, the as-synthesized Ru-CMP-TiO2/rGO hybrid exhibited significantly enhanced photocatalytic activity for the degradation of ATZ. The rate of ATZ degradation in the developed photocatalytic process with the Ru-CMP-TiO2/rGO hybrid was 9 times that with commercial TiO2. The enhanced photocatalytic activity of the prepared catalyst can be attributed to its better light harvesting and efficient electron transportation due to its more suitable LUMO position than the conduction band of TiO2. Moreover, the excellent conductivity and adsorption capacity of graphene contributed to the increase in photocatalytic activity. Thus, these features make the Ru-CMP-TiO2/rGO hybrid nanomaterial an excellent candidate for the photocatalytic purification of contaminated water.
Department of Basic Science Farhangian University Tehran Iran
Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran Iran
Institute of Physics ASCR Na Slovance 2 182 21 Prague Czech Republic
Zobrazit více v PubMed
Granados-Oliveros G. Páez-Mozo E. A. Ortega F. M. Ferronato C. Chovelon J. M. Appl. Catal., B. 2009;89:448–454. doi: 10.1016/j.apcatb.2009.01.001. DOI
Zhao X. Zhang C. Wang S. Songc C. Li X. RSC Adv. 2017;7:1581–1587. doi: 10.1039/C6RA26918D. DOI
Santacruz-Chávez J. A. Oros-Ruiz S. Prado B. Zanella R. J. Environ. Chem. Eng. 2015;3:3055–3061. doi: 10.1016/j.jece.2015.04.025. DOI
Cheshme Khavar A. H. Moussavi G. Mahjoub A. R. Appl. Surf. Sci. 2018;440:963–973. doi: 10.1016/j.apsusc.2018.01.238. DOI
Jo W.-K. Adinaveen T. Vijaya J. J. Selvam N. C. S. RSC Adv. 2016;6:10487–10497. doi: 10.1039/C5RA24676H. DOI
Sher Shah M. S. A. Park A. R. Zhang K. Park J. H. Yoo P. J. ACS Appl. Mater. Interfaces. 2012;4:3893–3901. doi: 10.1021/am301287m. PubMed DOI
Khavar A. H. C. Moussavi G. Mahjoub A. R. Satari M. Abdolmaleki P. Chem. Eng. J. 2018;345:300–311. doi: 10.1016/j.cej.2018.03.095. DOI
Liang X. w. Wang L. Ma F. Lou H. Jiang X. Lia Z. RSC Adv. 2016;6:89994–90001. doi: 10.1039/C6RA11256K. DOI
Sharotri N. Sud D. Sep. Purif. Technol. 2017;183:382–391. doi: 10.1016/j.seppur.2017.03.053. DOI
Xue C. Wang T. Yang G. Yanga B. Ding S. J. Mater. Chem. A. 2014;2:7674–7679. doi: 10.1039/C4TA01190B. DOI
Khan H. Rigamonti M. G. Patience G. S. Boffito D. C. Appl. Catal., B. 2018;226:311–323. doi: 10.1016/j.apcatb.2017.12.049. DOI
Zukalova M. Bousa M. Bastl Z. Jirka I. Kavan L. J. Phys. Chem. C. 2014;118:25970–25977. doi: 10.1021/jp504457v. DOI
Khan M. Xu J. Chen N. Cao W. Asadullah S. Usman Z. Khan D. F. Res. Chem. Intermed. 2013;39:1633–1644. doi: 10.1007/s11164-012-0897-y. DOI
Sinn S. Schulze B. Friebe C. Brown D. G. Jäger M. Kübel J. Dietzek B. Berlinguette C. P. Schubert U. S. Inorg. Chem. 2014;53:1637–1645. doi: 10.1021/ic402701v. PubMed DOI
Şahin Ç. Apostolopoulou A. Stathatos E. Inorg. Chim. Acta. 2018;478:130–138. doi: 10.1016/j.ica.2018.04.009. DOI
Chitumalla R. K. Gupta K. S. V. Malapaka C. Fallahpour R. Islam A. Han L. Kotamarthi B. Singh S. P. Phys. Chem. Chem. Phys. 2014;16:2630–2640. doi: 10.1039/C3CP53613K. PubMed DOI
Katsumata K. Matsui H. Yamaguchi T. Tanabe N. Inorg. Chim. Acta. 2017;463:118–125. doi: 10.1016/j.ica.2017.04.030. DOI
Mahmood A. Sol. Energy. 2016;123:127–144. doi: 10.1016/j.solener.2015.11.015. DOI
Hagfeldt A. Boschloo G. Sun L. Kloo L. Pettersson H. Chem. Rev. 2010;110:6595–6663. doi: 10.1021/cr900356p. PubMed DOI
Yadav H. M. Kim J. S. J. Alloys Compd. 2016;688:123–129. doi: 10.1016/j.jallcom.2016.07.133. DOI
Baghayeri M. Sens. Actuators, B. 2017;240:255–263. doi: 10.1016/j.snb.2016.08.161. DOI
Khan M. Tahir M. N. Adil S. F. Khan H. U. Siddiqui M. R. H. Al-warthan A. Tremel W. J. Mater. Chem. A. 2015;3:18753–18808. doi: 10.1039/C5TA02240A. DOI
Saravanakumar B. Vadivel S. Dhar S. S. Maruthamani D. Kumaravel M. Ramadoss G. Manikandan A. Paul B. Habibi-Yangjeh A. J. Colloid Interface Sci. 2017;498:449–459. doi: 10.1016/j.jcis.2017.03.086. PubMed DOI
Li G. Bomben P. G. Robson K. C. D. Gorelsky S. I. Berlinguette C. P. Shatruk M. Chem. Commun. 2012;48:8790–8792. doi: 10.1039/C2CC34311H. PubMed DOI
Burla M. C. Camalli M. Cascarano G. L. J. Appl. Crystallogr. 2003;36:1103. doi: 10.1107/S0021889803012585. DOI
Petrícek V. Dušek M. Palatinus L. Z. Kristallogr. 2014;229:345–352.
Macrae C. F. Bruno I. J. Chisholm J. A. Edgington P. R. McCabe P. Pidcock E. Rodriguez-Monge L. Taylor R. van de Streek J. Wood P. A. J. Appl. Crystallogr. 2008;41:466–470. doi: 10.1107/S0021889807067908. DOI
Becke A. D. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI
Farhat D. J. Educ. Work. 2014;27:1–42. doi: 10.1080/13639080.2012.711944. DOI
Oliveira D. M. Andrada A. S. Cerâmica. 2019;65:170–179. doi: 10.1590/0366-69132019653742509. DOI
Cheshme Khavar A. H. Moussavi G. Mahjoub A. R. Satari M. Sol. Energy. 2018;173:848–860. doi: 10.1016/j.solener.2018.08.034. DOI
Li Z. Q. Wang H. L. Zi L. Y. Zhang J. J. Zhang Y. S. Ceram. Int. 2015;41:10634–10643. doi: 10.1016/j.ceramint.2015.04.163. DOI
Pan L. Liu S. Oderinde O. Li K. Yao F. Fu G. Appl. Surf. Sci. 2018;427:779–786. doi: 10.1016/j.apsusc.2017.07.104. DOI
Zheng Y. Q. Xu W. Lin F. Fang G. S. J. Coord. Chem. 2006;59:1825–1834. doi: 10.1080/00958970600571760. DOI
Wu J. Lin M. Cong X. Liua H. Tan P. Chem. Soc. Rev. 2018;47:1822–1873. doi: 10.1039/C6CS00915H. PubMed DOI
Zhu H. Wu J. Fang M. Tan L. Chen C. Alharbi N. S. Hayat T. Tan X. RSC Adv. 2017;7:36231–36241. doi: 10.1039/C7RA05314B. DOI
Liu J. Shi H. Shen Q. Guo C. Zhao G. Appl. Catal., B. 2017;210:368–378. doi: 10.1016/j.apcatb.2017.03.060. DOI
Coates C. G. Keyes T. E. Hughes H. P. Jayaweera P. M. McGarvey J. J. Vos J. G. J. Phys. Chem. A. 1998;102:5013–5018. doi: 10.1021/jp980737z. DOI
Gu L. Wang J. Cheng H. Zhao Y. Liu L. Han X. ACS Appl. Mater. Interfaces. 2013;5:3085–3093. doi: 10.1021/am303274t. PubMed DOI
Li B. Xiong S. Liao Y. Xiao X. Huang N. Geng Y. Zou S. Yang S. J. Phys. Chem. C. 2016;120:23511–23522. doi: 10.1021/acs.jpcc.6b06697. DOI
Chen X. Y. Pan Q. J. Guo Y. R. Mater. Res. Bull. 2018;107:164–170. doi: 10.1016/j.materresbull.2018.07.024. DOI
Sher Shah M. S. A. Park A. R. Zhang K. Park J. H. Yoo P. J. ACS Appl. Mater. Interfaces. 2012;4:3893–3901. doi: 10.1021/am301287m. PubMed DOI
Jiang G. Geng K. Wu Y. Han Y. Shen X. Appl. Catal., B. 2018;227:366–375. doi: 10.1016/j.apcatb.2018.01.034. DOI
Sayan S. Suzer S. Uner D. O. J. Mol. Struct. 1997;410–411:111–114.
Lin X. Yang K. Si R. Chen X. Dai W. Fu X. Appl. Catal., B. 2014;147:585–591. doi: 10.1016/j.apcatb.2013.09.035. DOI
Kumar P. Singh A. K. Saxena J. K. Pandey D. S. J. Organomet. Chem. 2009;694:3570–3579. doi: 10.1016/j.jorganchem.2009.07.014. DOI
Abdi K. Hadadzadeh H. Salimi M. Simpson J. Khalaji A. D. Polyhedron. 2012;44:101–112. doi: 10.1016/j.poly.2012.06.089. DOI
Truc N. T. T. Sy Duc D. Van Thuan D. Al Tahtamouni T. Dong Pham T. Thi Hanhg N. Trinh Tran D. Viet Nguyen M. Min Dang N. Le Chib N. T. P. Noi Nguyen V. Appl. Surf. Sci. 2019;489:875–882. doi: 10.1016/j.apsusc.2019.05.360. DOI
Mohamed R. M. Ibrahim F. M. J. Ind. Eng. Chem. 2015;22:28–33. doi: 10.1016/j.jiec.2014.06.021. DOI
Qin J. Zeng H. Appl. Catal., B. 2017;209:161–173. doi: 10.1016/j.apcatb.2017.03.005. DOI
Sun H. Zeng S. He Q. She P. Xu K. Liu Z. Dalton Trans. 2017;46:3887–3894. doi: 10.1039/C7DT00345E. PubMed DOI
Nazeeruddin M. K. Zakeeruddin S. M. Humphry-Baker R. Jirousek M. Liska P. Vlachopoulos N. Shklover V. Fischer C.-H. Grätzel M. Inorg. Chem. 2002;38:6298–6305. doi: 10.1021/ic990916a. PubMed DOI
Wang G. Feng W. Zeng X. Wang Z. Feng C. McCarthy D. T. Deletic A. Zhang X. Water Res. 2016;94:363–370. doi: 10.1016/j.watres.2016.02.067. PubMed DOI
Hua Z. Zhang J. Bai X. Ye Z. Tang Z. Liang L. Liu Y. Sci. Total Environ. 2016;539:196–205. doi: 10.1016/j.scitotenv.2015.08.143. PubMed DOI
Zhang L. Zhang J. Jiu H. Ni C. Zhang X. Xu M. J. Phys. Chem. Solids. 2015;86:82–89. doi: 10.1016/j.jpcs.2015.06.018. DOI
Sim L. C. Leong K. H. Ibrahim S. Saravanan P. J. Mater. Chem. A. 2014;2:5315–5322. doi: 10.1039/C3TA14857B. DOI
Arifin Z. Soeparman S. Widhiyanuriyawan D. Suyitno S. Int. J. Photoenergy. 2017;2017:1–5. doi: 10.1155/2017/2704864. DOI
Ma P. Yu H. Yu Y. Wang W. Wang H. Zhang J. Fu Z. Phys. Chem. Chem. Phys. 2016;18:3638–3643. doi: 10.1039/C5CP04585A. PubMed DOI
Liu X. Li D. Zhang X. Liu S. Zhang L. J. Alloys Compd. 2015;655:38–43.
Tang X. Wang Y. Cao G. J. Electroanal. Chem. 2013;694:6–11. doi: 10.1016/j.jelechem.2013.01.036. DOI
Arjunan T. V. Senthil T. S. Mater. Technol. 2012;28:9–14. doi: 10.1179/1753555712Y.0000000040. DOI
Athanas Anish B. Thangaraj S. Kalaiyar S. Chem. Phys. Lett. 2018;699:32–39. doi: 10.1016/j.cplett.2018.03.033. DOI
Polo A. S. Itokazu M. K. Murakami Iha N. Y. Coord. Chem. Rev. 2004;248:1343–1361. doi: 10.1016/j.ccr.2004.04.013. DOI
Hagfeldt A. Boschloo G. Sun L. Kloo L. Pettersson H. Chem. Rev. 2010;110:6595–6663. doi: 10.1021/cr900356p. PubMed DOI
Gong J. Liang J. Sumathy K. Renew. Sustain. Energy Rev. 2012;16:5848–5860. doi: 10.1016/j.rser.2012.04.044. DOI
Sherly E. D. Vijaya J. J. Kennedy L. J. J. Mol. Struct. 2015;1099:114–125. doi: 10.1016/j.molstruc.2015.05.057. DOI