Synthesis of chiral 1,4-oxazepane-5-carboxylic acids from polymer-supported homoserine
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35517075
PubMed Central
PMC9056997
DOI
10.1039/d0ra07997a
PII: d0ra07997a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The preparation of novel 1,4-oxazepane-5-carboxylic acids bearing two stereocenters is reported in this article. Fmoc-HSe(TBDMS)-OH immobilized on Wang resin was reacted with different nitrobenzenesulfonyl chlorides and alkylated with 2-bromoacetophenones to yield N-phenacyl nitrobenzenesulfonamides. Their cleavage from the polymer support using trifluoroacetic acid (TFA) led to the removal of the silyl protective group followed by spontaneous lactonization. In contrast, TFA/triethylsilane (Et3SiH)-mediated cleavage yielded 1,4-oxazepane derivatives as a mixture of inseparable diastereomers. The regioselectivity/stereoselectivity depended on the substitution of the starting 2-bromoacetophenones and was studied in detail. Catalytic hydrogenation of the nitro group improved the separability of the resulting diastereomeric anilines, which allowed us to isolate and fully characterize the major isomers.
Department of Organic Chemistry Faculty of Science Palacký University 771 46 Olomouc Czech Republic
JEOL Ltd JEOL House Silver Court Watchmead Welwyn Garden City Hertfordshire AL7 1LT UK
Zobrazit více v PubMed
Du Y. Garden D. P. Wang L. Zhorov B. S. Dong K. J. Biol. Chem. 2011;286:13151–13160. doi: 10.1074/jbc.M110.208496. PubMed DOI PMC
Ishimoto K. Yamaguchi K. Nishimoto A. Murabayashi M. Ikemoto T. Org. Process Res. Dev. 2017;21:2001–2011. doi: 10.1021/acs.oprd.7b00313. DOI
Yukawa T. Nakada Y. Sakauchi N. Kamei T. Yamada M. Ohba Y. Fujimori I. Ueno H. Takiguchi M. Kuno M. Kamo I. Nakagawa H. Fujioka Y. Igari T. Ishichi Y. Tsukamoto T. Bioorg. Med. Chem. 2016;24:3716–3726. doi: 10.1016/j.bmc.2016.06.014. PubMed DOI
Audouze K. Nielsen E. Ø. Peters D. J. Med. Chem. 2004;47:3089–3104. doi: 10.1021/jm031111m. PubMed DOI
Serrano-Wu M. H. Laurent D. R. S. Chen Y. Huang S. Lam K.-R. Matson J. A. Mazzucco C. E. Stickle T. M. Tully T. P. Wong H. S. Vyas D. M. Balasubramanian B. N. Bioorg. Med. Chem. Lett. 2002;12:2757–2760. doi: 10.1016/S0960-894X(02)00529-2. PubMed DOI
Kaneko S. Arai M. Uchida T. Harasaki T. Fukuoka T. Konosu T. Bioorg. Med. Chem. Lett. 2002;12:1705–1708. doi: 10.1016/S0960-894X(02)00290-1. PubMed DOI
Sharma G. Park J. Y. Park M. S. Arch. Pharmacal Res. 2008;31:838. doi: 10.1007/s12272-001-1235-0. PubMed DOI
Kaneko S. Arai M. Uchida T. Harasaki T. Fukuoka T. Konosu T. Bioorg. Med. Chem. Lett. 2002;12:1705–1708. doi: 10.1016/S0960-894X(02)00290-1. PubMed DOI
Insmed Incorporated, USA PCT Int. Appl. 2020:82.
Insmed Incorporated, USA PCT Int. Appl. 2020:51.
AstraZeneca AB, Swed. PCT Int. Appl. 2019:106.
Insmed Incorporated, USA AstraZeneca AB PCT Int. Appl. 2018:61.
Bezanson M. Pottel J. Bilbeisi R. Toumieux S. Cueto M. Moitessier N. J. Org. Chem. 2013;78:872–885. doi: 10.1021/jo3021715. PubMed DOI
Deka M. J. Indukuri K. Sultana S. Borah M. Saikia A. K. J. Org. Chem. 2015;80:4349–4359. doi: 10.1021/acs.joc.5b00049. PubMed DOI
Gharpure S. J. Vishwakarma D. S. Nanda S. K. Org. Lett. 2017;19:6534–6537. doi: 10.1021/acs.orglett.7b03241. PubMed DOI
Vandavasi J. K. Hu W.-P. Chen H.-Y. Senadi G. C. Chen C.-Y. Wang J.-J. Org. Lett. 2012;14:3134–3137. doi: 10.1021/ol301219c. PubMed DOI
Gharpure S. J. Prasad J. V. K. Eur. J. Org. Chem. 2013;2013:2076–2079. doi: 10.1002/ejoc.201300135. DOI
Castillo J.-C. Portilla J. Insuasty B. Quiroga J. Abonia R. Curr. Org. Chem. 2018;15:370–379.
Das S. K. Srivastava A. K. Panda G. Tetrahedron Lett. 2010;51:1483–1485. doi: 10.1016/j.tetlet.2010.01.035. DOI
Ghosh P. Deka M. J. Saikia A. K. Tetrahedron. 2016;72:690–698. doi: 10.1016/j.tet.2015.12.015. DOI
Nonnenmacher J. Grellepois F. Portella C. Eur. J. Org. Chem. 2009;2009:3726–3731. doi: 10.1002/ejoc.200900387. DOI
Bera T. Singh B. Hamlin T. A. Sahoo S. C. Saha J. J. Org. Chem. 2019;84:15255–15266. doi: 10.1021/acs.joc.9b02269. PubMed DOI
Zhou R. Wang J. Duan C. He Z. Org. Lett. 2012;14:6134–6137. doi: 10.1021/ol302696e. PubMed DOI
Samanta K. Panda G. Org. Biomol. Chem. 2011;9:7365–7371. doi: 10.1039/C1OB05462G. PubMed DOI
Jackl M. K. Legnani L. Morandi B. Bode J. W. Org. Lett. 2017;19:4696–4699. doi: 10.1021/acs.orglett.7b02395. PubMed DOI
Králová P. Fülöpová V. Maloň M. Volná T. Popa I. Soural M. ACS Comb. Sci. 2017;19:173–180. doi: 10.1021/acscombsci.6b00178. PubMed DOI
Králová P. Maloň M. Volná T. Ručilová V. Soural M. ACS Comb. Sci. 2017;19:670–674. doi: 10.1021/acscombsci.7b00115. PubMed DOI
Králová P. Maloň M. Soural M. ACS Comb. Sci. 2017;19:770–774. doi: 10.1021/acscombsci.7b00134. PubMed DOI
Ručilová V. Králová P. Soural M. Eur. J. Org. Chem. 2017;2017:7034–7039. doi: 10.1002/ejoc.201701448. DOI
Ručilová M. Maloň V. Soural M. Eur. J. Org. Chem. 2018;2018:564–570. doi: 10.1002/ejoc.201701553. DOI
Filira F. Biondi B. Biondi L. Giannini E. Gobbo M. Negri L. Rocchi R. Org. Biomol. Chem. 2003;1:3059–3063. doi: 10.1039/B306142F. PubMed DOI
Zwick C. R. Renata H. Tetrahedron. 2018;74:6469–6473. doi: 10.1016/j.tet.2018.09.046. DOI
Fülöpová V. Krchňáková A. Schütznerová E. Zajíček J. Krchňák V. J. Org. Chem. 2015;80:1795–1801. doi: 10.1021/jo502713k. PubMed DOI
Fülöpová V. Gucký T. Grepl M. Soural M. ACS Comb. Sci. 2012;14:651–656. doi: 10.1021/co300124q. PubMed DOI
Martin G. E. Hadden C. E. J. Nat. Prod. 2000;63:543–585. doi: 10.1021/np9903191. PubMed DOI