• This record comes from PubMed

Study of selected genes of Wnt signaling pathway in relation to the parameters in the bone tissue of the laying hens

. 2022 Apr ; 29 (4) : 2526-2531. [epub] 20211216

Status PubMed-not-MEDLINE Language English Country Saudi Arabia Media print-electronic

Document type Journal Article

Links

PubMed 35531234
PubMed Central PMC9072936
DOI 10.1016/j.sjbs.2021.12.024
PII: S1319-562X(21)01057-3
Knihovny.cz E-resources

The Wnt signaling pathway plays a critical role in almost all aspects of skeletal development and homeostasis. Many studies suggest the importance of this signaling pathway in connection with bone metabolism through many skeletal disorders caused by mutations in Wnt signaling genes. The knowledge gained through targeting this pathway is of great value for skeletal health and diseases, for example of increased bone mass in the case of osteoporosis. Our objective was to focus on the detection of single nucleotide polymorphisms and investigate the associations between possible polymorphisms in selected genes that are part of those signaling pathways and parameters of bones in hens of ISA Brown hybrids (bone breaking strength, length, width, and bone mass). Different regions of the GPR177, ESR1 and RUNX2 genes were studied, using PCR and sequencing, in a total of forty-eight samples for each marker. Thirteen polymorphisms have been discovered in selected regions of studied genes, whereas these polymorphisms were only within the GPR177 gene. Eight of these polymorphisms were synonymous and five were in the intron. The tested regions of the ESR1 and RUNX2 genes were monomorphic. The only statistically significant difference was found within the GPR177 gene (exon 2) and the bone length parameter, in the c.443 + 86G > A polymorphism. However, this polymorphism was found in the intron, and no other one was found within the selected regions to show associations with the observed bone parameters.

See more in PubMed

Azbazdar Y., Karabicici M., Erdal E., Ozhan G. Regulation of Wnt signaling pathways at the plasma membrane and their misregulation in cancer. Front. Cell Dev. Biol. 2021;9 doi: 10.3389/fcell.2021.631623. PubMed DOI PMC

Börjesson A.E., Lagerquist M.K., Windahl S.H., Ohlsson C. The role of estrogen receptor α in the regulation of bone and growth plate cartilage. Cell. Mol. Life Sci. 2013;70(21):4023–4037. doi: 10.1007/s00018-013-1317-1. PubMed DOI PMC

Bullock W.A., Robling A.G. WNT-mediated modulation of bone metabolism: implications for WNT targeting to treat extraskeletal disorders. Toxicol. Pathol. 2017;45(7):864–868. doi: 10.1177/0192623317738170. PubMed DOI PMC

Cai H., Zhou Y., Jia W., Zhang B., Lan X., Lei C.h., Fang X., Chen H. Effect of SNPs and alternative splicing within HGF gene on its expression patterns in Qinchuan cattle. J. Anim. Sci. Biotechnol. 2015;6:55. doi: 10.1186/s40104-015-0059-3. PubMed DOI PMC

Cooper D.N. Functional intronic polymorphisms: Buried treasure awaiting discovery within our genes. Human Genomics. 2010;4(5):284–288. doi: 10.1186/1479-7364-4-5-284. PubMed DOI PMC

Fornari, M. B., Neis, K. L., Marchesi, J. A. P., Ledur, M. C., Soccol, V. T., Peixoto, J. De O. 2012. Association of the A211G polymorphism in the bone sialoprotein gene with skeletal structure in a paternal broiler line. Poultry Science Journal, Supplement 1.

Guo J., Sun C., Qu L., Shen M., Dou T., Ma M., Wang K., Yang N. Genetic architecture of bone quality variation in layer chickens revealed by a genome-wide association study. Sci. Rep. 2017;7:45317. doi: 10.1038/srep45317. PubMed DOI PMC

Hardy E., Fernandez-Patron C. Destroy to rebuild: the connection between bone tissue remodeling and matrix metalloproteinases. Front. Physiol. 2020;11:47. doi: 10.3389/fphys.2020.00047. PubMed DOI PMC

Horecka E., Horecky C., Kovarikova L., Musilova A., Knoll A., Pavlik A. Mendel University in Brno; Brno: 2015. Polymorphisms in plasma membrane calcium-transporting ATPase 1 (ATP2B1) gene in hens.

Horecka E., Horecky C., Kovarikova L., Musilova A., Knoll A., Nedomova S., Pavlik A. Association between single nucleotide polymorphisms of ATP2B1 gene and bone parameters of laying hens. Avian Biol. Res. 2018;11(3):178–182. doi: 10.3184/175815618X15269357438898. DOI

Houschyar K.S., Tapking C.h., Borrelli M.R., Poop D., Duscher D., Maan Z.N., Chelliah M.P., Li J., Harati K., Wallner C.h., Rein S., Pförringer D., Reumuth G., Grieb G., Mouraret S., Dadras M., Wagner J.M., Cha J.Y., Siemers F., Lehnhardt M., Behr B. Wnt pathway in bone repair and regeneration – what do we know so far. Front. Cell Dev. Biol. 2018;6:170. doi: 10.3389/fcell.2018.00170. PubMed DOI PMC

Haxaire C., Haÿ E., Geoffroy V. Runx2 controls bone resorption through the down-regulation of the Wnt pathway in osteoblasts. The American Journal of Pathology. 2016;186:6. doi: 10.1016/j.ajpath.2016.01.016. PubMed DOI

Johnsson M., Jonsson K.B., Andersson L., Jensen P., Wright D., Copenhaver G. Genetic regulation of bone metabolism in the chicken: similarities and differences to mammalian systems. Public Library of Science Genetics. 2015;11(5):e1005250. doi: 10.1371/journal.pgen.1005250. PubMed DOI PMC

Komori T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int. J. Mol. Sci. 2019;20(7):1694. doi: 10.3390/ijms20071694. PubMed DOI PMC

Kumar J., Swanberg M., Mcguigan F., Callreus M., Gerdhem P., Akesson K. LRP4 association to bone properties and fracture and interaction with genes in the Wnt- and BMP signaling pathways. Bone. 2011;49(3):343–348. doi: 10.1016/j.bone.2011.05.018. PubMed DOI

Lee H.J., Koh J.M., Hwang J.Y., Choi K.Y., Lee S.H., Park E.K., Kim T.H., Han B.G., Kim G.S., Kim S.Y., Lee J.Y. Association of a Runx2 promoter polymorphism with bone mineral density in postmenopausal Korean woman. Calcif. Tissue Int. 2009;84:439–445. doi: 10.1007/s00223-009-9246-6. PubMed DOI

Liedert A., Nemitz C., Haffner-Luntzer M., Schick F., Jakob F., Ignatius A. Effects of estrogen receptor and Wnt signaling activation on mechanically induced bone formation in a mouse model of postmenopausal bone loss. Int. J. Mol. Sci. 2020;21(21):8301. doi: 10.3390/ijms21218301. PubMed DOI PMC

Liu K., Tan L.-J., Wang P., Chen X.-D., Zhu L.-H., Zeng Q., Hu Y., Deng H.-W., Zhang H. Functional relevance for associations between osteoporosis and genetic variants. Public Library of Science One. 2017;12(4):e0174808. doi: 10.1371/journal.pone.0174808. PubMed DOI PMC

Lu Y., Han J. In: Osteogenesis and Bone Regeneration. Yang H., editor. IntechOpen; 2019. Wnt Signaling and Genetic Bone Diseases. 10.5772/intechopen.81070.

Luo J., Sun P., Siwko S., Liu M., Xiao J. The role of GPCRs in bone diseases and dysfunctions. Bone Res. 2019;7:19. doi: 10.1038/s41413-019-0059-6. PubMed DOI PMC

Mäkitie R.E., Costantini A., Kämpe A., Alm J.J., Mäkitie O. New insights into monogenic causes of osteoporosis. Front. Endocrinol. (Lausanne) 2019;10:70. doi: 10.3389/fendo.2019.00070. PubMed DOI PMC

Manolagas S.C. Wnt signaling and osteoporosis. Maturitas. 2014;78(3):233–237. doi: 10.1016/j.maturitas.2014.04.013. PubMed DOI PMC

Maruyama T., Jiang M., Hsu W. Gpr177, a novel locus for bone mineral density and osteoporosis, regulates osteogenesis and chondrogenesis in skeletal development. J. Bone Miner. Res. 2013;28(5):1150–1159. doi: 10.1002/jbmr.1830. PubMed DOI PMC

Osterhoff G., Morgan E.F., Shefelbine S.J., Karim L., Mcnamara L.M., Augat P. Bone mechanical properties and changes with osteoporosis. Injury. 2016;47(2):S11–S20. doi: 10.1016/S0020-1383(16)47003-8. PubMed DOI PMC

Pineda B., Hermenegildo C., Laporta P., Tarín J.J., Cano A., García-Pérez M.A. Common polymorphisms rather than rare genetic variants of the Runx gene are associated with femoral neck BMD in Spanish woman. J. Bone Mineral Metabol. 2010;28(6):696–705. doi: 10.1007/s00774-010-0183-2. PubMed DOI

Raymond B., Johansson A.M., Mccormack H.A., Fleming R.H., Schmutz M., Dunn I.C., De Koning D.J. Genome-wide association study for bone strength in laying hens. J. Animal Sci. 2018;96(7):2525–2535. doi: 10.1093/jas/sky157. PubMed DOI PMC

Seo S., Takayama K., Uno K., Ohi K., Hashimoto R., Nishizawa D., Ikeda K., Ozaki N., Nabeshima T., Miyamoto Y., Nitta A., Liu C. Functional analysis of deep intronic SNP rs 13438494 in intron 24 of PCLO gene. Public Library of Science One. 2013;8(10):e76960. doi: 10.1371/journal.pone.0076960. PubMed DOI PMC

Steinerova, M., Horecky, C|., Knoll, A., Nedomova, S., Pavlik, A., 2019a. The search for single nucleotide polymorphisms in genes encoding non-collagenous proteins in bone tissue of laying hens. Mendelnet 2019: Proceedings of 26th International PhD Students Conference 2019a, 1, 490–493.

Steinerova M., Horecky C|., Horecka E., Knoll A., Nedomova S., Pavlik A. Variability of selected genes in relation to the parameters of bones in laying hens: A pilot study. Journal of Microbiology, Biotechnology and Food Sciences. 2019;9:449–452. doi: 10.15414/jmbfs.2019.9.special.449-452. DOI

Steinerova, M., Horecky, C|., Knoll, A., Nedomova, S., Pavlik, A., 2020. Study of selected signaling pathways genes that play an important role in bone metabolism in laying hens. In Mendelnet 2020: Proceedings of 27th International PhD Students Conference 2020, 1: 424–429.

Ye W., Wang Y., Mei B., Hou S., Liu X., Wu G., Qin L., Zhao K., Huang Q. Computational and functional characterization of four SNPs in the SOST locus associated with osteoporosis. Bone. 2018;108:132–144. doi: 10.1016/j.bone.2018.01.001. PubMed DOI

Zhang X., Deng H.W., Shen H., Ehrlich M. Prioritization of osteoporosis-associated Genome wide association study (GWAS) Single Nucleotid Polymorphisms (SNPs) using epigenomics and transcriptomics. J. Bone Miner. Res. 2021;5(5) doi: 10.1002/jbm4.10481. PubMed DOI PMC

Zhong Z., Zylstra-Diegel C.R., Schumacher C.A., Baker J.J., Carpenter A.C., Rao S., Yao W., Guan M., Helms J.A., Lane N.E., Lang R.A., Williams B.O. Wntless functions in mature osteoblasts to regulate bone mass. PNAS. 2012;109(33):E2197–E2204. doi: 10.1073/pnas.1120407109. PubMed DOI PMC

Zhu X., Bai W., Zheng H. Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res. 2021;9(1):23. doi: 10.1038/s41413-021-00143-3. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...