Study of selected genes of Wnt signaling pathway in relation to the parameters in the bone tissue of the laying hens
Status PubMed-not-MEDLINE Language English Country Saudi Arabia Media print-electronic
Document type Journal Article
PubMed
35531234
PubMed Central
PMC9072936
DOI
10.1016/j.sjbs.2021.12.024
PII: S1319-562X(21)01057-3
Knihovny.cz E-resources
- Keywords
- Bone, Laying hens, Osteoporosis, Polymorphism, Wnt signaling pathway,
- Publication type
- Journal Article MeSH
The Wnt signaling pathway plays a critical role in almost all aspects of skeletal development and homeostasis. Many studies suggest the importance of this signaling pathway in connection with bone metabolism through many skeletal disorders caused by mutations in Wnt signaling genes. The knowledge gained through targeting this pathway is of great value for skeletal health and diseases, for example of increased bone mass in the case of osteoporosis. Our objective was to focus on the detection of single nucleotide polymorphisms and investigate the associations between possible polymorphisms in selected genes that are part of those signaling pathways and parameters of bones in hens of ISA Brown hybrids (bone breaking strength, length, width, and bone mass). Different regions of the GPR177, ESR1 and RUNX2 genes were studied, using PCR and sequencing, in a total of forty-eight samples for each marker. Thirteen polymorphisms have been discovered in selected regions of studied genes, whereas these polymorphisms were only within the GPR177 gene. Eight of these polymorphisms were synonymous and five were in the intron. The tested regions of the ESR1 and RUNX2 genes were monomorphic. The only statistically significant difference was found within the GPR177 gene (exon 2) and the bone length parameter, in the c.443 + 86G > A polymorphism. However, this polymorphism was found in the intron, and no other one was found within the selected regions to show associations with the observed bone parameters.
See more in PubMed
Azbazdar Y., Karabicici M., Erdal E., Ozhan G. Regulation of Wnt signaling pathways at the plasma membrane and their misregulation in cancer. Front. Cell Dev. Biol. 2021;9 doi: 10.3389/fcell.2021.631623. PubMed DOI PMC
Börjesson A.E., Lagerquist M.K., Windahl S.H., Ohlsson C. The role of estrogen receptor α in the regulation of bone and growth plate cartilage. Cell. Mol. Life Sci. 2013;70(21):4023–4037. doi: 10.1007/s00018-013-1317-1. PubMed DOI PMC
Bullock W.A., Robling A.G. WNT-mediated modulation of bone metabolism: implications for WNT targeting to treat extraskeletal disorders. Toxicol. Pathol. 2017;45(7):864–868. doi: 10.1177/0192623317738170. PubMed DOI PMC
Cai H., Zhou Y., Jia W., Zhang B., Lan X., Lei C.h., Fang X., Chen H. Effect of SNPs and alternative splicing within HGF gene on its expression patterns in Qinchuan cattle. J. Anim. Sci. Biotechnol. 2015;6:55. doi: 10.1186/s40104-015-0059-3. PubMed DOI PMC
Cooper D.N. Functional intronic polymorphisms: Buried treasure awaiting discovery within our genes. Human Genomics. 2010;4(5):284–288. doi: 10.1186/1479-7364-4-5-284. PubMed DOI PMC
Fornari, M. B., Neis, K. L., Marchesi, J. A. P., Ledur, M. C., Soccol, V. T., Peixoto, J. De O. 2012. Association of the A211G polymorphism in the bone sialoprotein gene with skeletal structure in a paternal broiler line. Poultry Science Journal, Supplement 1.
Guo J., Sun C., Qu L., Shen M., Dou T., Ma M., Wang K., Yang N. Genetic architecture of bone quality variation in layer chickens revealed by a genome-wide association study. Sci. Rep. 2017;7:45317. doi: 10.1038/srep45317. PubMed DOI PMC
Hardy E., Fernandez-Patron C. Destroy to rebuild: the connection between bone tissue remodeling and matrix metalloproteinases. Front. Physiol. 2020;11:47. doi: 10.3389/fphys.2020.00047. PubMed DOI PMC
Horecka E., Horecky C., Kovarikova L., Musilova A., Knoll A., Pavlik A. Mendel University in Brno; Brno: 2015. Polymorphisms in plasma membrane calcium-transporting ATPase 1 (ATP2B1) gene in hens.
Horecka E., Horecky C., Kovarikova L., Musilova A., Knoll A., Nedomova S., Pavlik A. Association between single nucleotide polymorphisms of ATP2B1 gene and bone parameters of laying hens. Avian Biol. Res. 2018;11(3):178–182. doi: 10.3184/175815618X15269357438898. DOI
Houschyar K.S., Tapking C.h., Borrelli M.R., Poop D., Duscher D., Maan Z.N., Chelliah M.P., Li J., Harati K., Wallner C.h., Rein S., Pförringer D., Reumuth G., Grieb G., Mouraret S., Dadras M., Wagner J.M., Cha J.Y., Siemers F., Lehnhardt M., Behr B. Wnt pathway in bone repair and regeneration – what do we know so far. Front. Cell Dev. Biol. 2018;6:170. doi: 10.3389/fcell.2018.00170. PubMed DOI PMC
Haxaire C., Haÿ E., Geoffroy V. Runx2 controls bone resorption through the down-regulation of the Wnt pathway in osteoblasts. The American Journal of Pathology. 2016;186:6. doi: 10.1016/j.ajpath.2016.01.016. PubMed DOI
Johnsson M., Jonsson K.B., Andersson L., Jensen P., Wright D., Copenhaver G. Genetic regulation of bone metabolism in the chicken: similarities and differences to mammalian systems. Public Library of Science Genetics. 2015;11(5):e1005250. doi: 10.1371/journal.pgen.1005250. PubMed DOI PMC
Komori T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int. J. Mol. Sci. 2019;20(7):1694. doi: 10.3390/ijms20071694. PubMed DOI PMC
Kumar J., Swanberg M., Mcguigan F., Callreus M., Gerdhem P., Akesson K. LRP4 association to bone properties and fracture and interaction with genes in the Wnt- and BMP signaling pathways. Bone. 2011;49(3):343–348. doi: 10.1016/j.bone.2011.05.018. PubMed DOI
Lee H.J., Koh J.M., Hwang J.Y., Choi K.Y., Lee S.H., Park E.K., Kim T.H., Han B.G., Kim G.S., Kim S.Y., Lee J.Y. Association of a Runx2 promoter polymorphism with bone mineral density in postmenopausal Korean woman. Calcif. Tissue Int. 2009;84:439–445. doi: 10.1007/s00223-009-9246-6. PubMed DOI
Liedert A., Nemitz C., Haffner-Luntzer M., Schick F., Jakob F., Ignatius A. Effects of estrogen receptor and Wnt signaling activation on mechanically induced bone formation in a mouse model of postmenopausal bone loss. Int. J. Mol. Sci. 2020;21(21):8301. doi: 10.3390/ijms21218301. PubMed DOI PMC
Liu K., Tan L.-J., Wang P., Chen X.-D., Zhu L.-H., Zeng Q., Hu Y., Deng H.-W., Zhang H. Functional relevance for associations between osteoporosis and genetic variants. Public Library of Science One. 2017;12(4):e0174808. doi: 10.1371/journal.pone.0174808. PubMed DOI PMC
Lu Y., Han J. In: Osteogenesis and Bone Regeneration. Yang H., editor. IntechOpen; 2019. Wnt Signaling and Genetic Bone Diseases. 10.5772/intechopen.81070.
Luo J., Sun P., Siwko S., Liu M., Xiao J. The role of GPCRs in bone diseases and dysfunctions. Bone Res. 2019;7:19. doi: 10.1038/s41413-019-0059-6. PubMed DOI PMC
Mäkitie R.E., Costantini A., Kämpe A., Alm J.J., Mäkitie O. New insights into monogenic causes of osteoporosis. Front. Endocrinol. (Lausanne) 2019;10:70. doi: 10.3389/fendo.2019.00070. PubMed DOI PMC
Manolagas S.C. Wnt signaling and osteoporosis. Maturitas. 2014;78(3):233–237. doi: 10.1016/j.maturitas.2014.04.013. PubMed DOI PMC
Maruyama T., Jiang M., Hsu W. Gpr177, a novel locus for bone mineral density and osteoporosis, regulates osteogenesis and chondrogenesis in skeletal development. J. Bone Miner. Res. 2013;28(5):1150–1159. doi: 10.1002/jbmr.1830. PubMed DOI PMC
Osterhoff G., Morgan E.F., Shefelbine S.J., Karim L., Mcnamara L.M., Augat P. Bone mechanical properties and changes with osteoporosis. Injury. 2016;47(2):S11–S20. doi: 10.1016/S0020-1383(16)47003-8. PubMed DOI PMC
Pineda B., Hermenegildo C., Laporta P., Tarín J.J., Cano A., García-Pérez M.A. Common polymorphisms rather than rare genetic variants of the Runx gene are associated with femoral neck BMD in Spanish woman. J. Bone Mineral Metabol. 2010;28(6):696–705. doi: 10.1007/s00774-010-0183-2. PubMed DOI
Raymond B., Johansson A.M., Mccormack H.A., Fleming R.H., Schmutz M., Dunn I.C., De Koning D.J. Genome-wide association study for bone strength in laying hens. J. Animal Sci. 2018;96(7):2525–2535. doi: 10.1093/jas/sky157. PubMed DOI PMC
Seo S., Takayama K., Uno K., Ohi K., Hashimoto R., Nishizawa D., Ikeda K., Ozaki N., Nabeshima T., Miyamoto Y., Nitta A., Liu C. Functional analysis of deep intronic SNP rs 13438494 in intron 24 of PCLO gene. Public Library of Science One. 2013;8(10):e76960. doi: 10.1371/journal.pone.0076960. PubMed DOI PMC
Steinerova, M., Horecky, C|., Knoll, A., Nedomova, S., Pavlik, A., 2019a. The search for single nucleotide polymorphisms in genes encoding non-collagenous proteins in bone tissue of laying hens. Mendelnet 2019: Proceedings of 26th International PhD Students Conference 2019a, 1, 490–493.
Steinerova M., Horecky C|., Horecka E., Knoll A., Nedomova S., Pavlik A. Variability of selected genes in relation to the parameters of bones in laying hens: A pilot study. Journal of Microbiology, Biotechnology and Food Sciences. 2019;9:449–452. doi: 10.15414/jmbfs.2019.9.special.449-452. DOI
Steinerova, M., Horecky, C|., Knoll, A., Nedomova, S., Pavlik, A., 2020. Study of selected signaling pathways genes that play an important role in bone metabolism in laying hens. In Mendelnet 2020: Proceedings of 27th International PhD Students Conference 2020, 1: 424–429.
Ye W., Wang Y., Mei B., Hou S., Liu X., Wu G., Qin L., Zhao K., Huang Q. Computational and functional characterization of four SNPs in the SOST locus associated with osteoporosis. Bone. 2018;108:132–144. doi: 10.1016/j.bone.2018.01.001. PubMed DOI
Zhang X., Deng H.W., Shen H., Ehrlich M. Prioritization of osteoporosis-associated Genome wide association study (GWAS) Single Nucleotid Polymorphisms (SNPs) using epigenomics and transcriptomics. J. Bone Miner. Res. 2021;5(5) doi: 10.1002/jbm4.10481. PubMed DOI PMC
Zhong Z., Zylstra-Diegel C.R., Schumacher C.A., Baker J.J., Carpenter A.C., Rao S., Yao W., Guan M., Helms J.A., Lane N.E., Lang R.A., Williams B.O. Wntless functions in mature osteoblasts to regulate bone mass. PNAS. 2012;109(33):E2197–E2204. doi: 10.1073/pnas.1120407109. PubMed DOI PMC
Zhu X., Bai W., Zheng H. Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res. 2021;9(1):23. doi: 10.1038/s41413-021-00143-3. PubMed DOI PMC