Does PARP1 up-regulation correlate with PSMA expression in patients with metastatic castration-resistant prostate cancer studied with [18F]PARPi and [68Ga]PSMA PET/CT?
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40682676
DOI
10.1007/s00259-025-07448-z
PII: 10.1007/s00259-025-07448-z
Knihovny.cz E-zdroje
- Klíčová slova
- 18F-PARPi, PET/CT, PSMA, Prostate cancer, mCRPC,
- Publikační typ
- časopisecké články MeSH
PURPOSE: [18F] Poly-ADP-ribose polymerase inhibitors (PARPi), a novel radiotracer, enables visualization of PARP1 upregulation by PET imaging. Here, we aimed to quantify PARPi uptake in tumor lesions of metastatic castration-resistant PCa (mCRPC) patients and perform a comparison with prostate specific membrane antigen (PSMA) expression using PET/CT scans. METHODS: Data from 22 male patients with mCRPC, who underwent [18F]PARPi and [68Ga]Ga-PSMA-11 PET/CT scans, were retrospectively quantified. Lesions with relevant PARPi uptake (higher than background) were delineated and correlated with their [68Ga]PSMA uptake using standardized uptake values (SUV). Additionally, a comparison was performed to investigate the effects of homologous recombination deficiency (HRD) alterations on PARPi tumor uptake. RESULTS: The majority of metastatic PCa lesions that exhibited PARPi uptake were located in the bones (n = 57), with mean SUVmax values of 4.9 ± 1.5 for PARPi and 30.9 ± 28.3 for [68Ga]PSMA. Additionally, 3 local prostate lesions, 14 lymph nodes and 4 further metastatic lesions were detected. Significant correlations were identified between PARPi- and [68Ga]PSMA uptake, as measured by SUVmean (r = 0.48, p < 0.001), SUVpeak (r = 0.48, p < 0.001) and SUVmax (r = 0.43, p < 0.001) of the osseous metastatic lesions and SUVpeak (r = 0.49, p = 0.04) of extraosseous lesions. No significant differences were found between PARPi uptake of metastatic lesions in patients with or without HRD alterations (all p > 0.05). CONCLUSION: Results showed a considerable uptake of [18F]PARPi in mCRPC patients and indicated a correlation between PARPi uptake and PSMA expression, suggesting the potential of using [18F]PARPi as a diagnostic imaging tool in mCRPC patients. More studies are needed to evaluate the clinical benefit of this innovative radiotracer.
Department of Urology 2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Urology Comprehensive Cancer Center Medical University of Vienna Vienna Austria
Department of Urology University of Texas Southwestern Medical Center Dallas USA
Department of Urology Weill Cornell Medical College New York USA
Division of Urology Department of Special Surgery The University of Jordan Amman Jordan
Karl Landsteiner Institute of Urology and Andrology Vienna Austria
Zobrazit více v PubMed
Withrow D, Pilleron S, Nikita N, Ferlay J, Sharma S, Nicholson B, et al. Current and projected number of years of life lost due to prostate cancer– A global study. Prostate. 2022;82(11):1088–97. PubMed PMC
Van den Broeck T, van den Bergh RCN, Arfi N, Gross T, Moris L, Briers E, et al. Prognostic value of biochemical recurrence following treatment with curative intent for prostate cancer: A systematic review. Eur Urol. 2019;75(6):967–87. PubMed
Armstrong AJ, Szmulewitz RZ, Petrylak DP, Holzbeierlein J, Villers A, Azad A, et al. ARCHES: A randomized, phase III study of androgen deprivation therapy with enzalutamide or placebo in men with metastatic Hormone-Sensitive prostate Cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2019;37(32):2974–86.
Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A, Alekseev BY, et al. Abiraterone plus prednisone in metastatic, Castration-Sensitive prostate Cancer. N Engl J Med. 2017;377(4):352–60. PubMed
Chi KN, Agarwal N, Bjartell A, Chung BH, Gomes AJP, de Given S. Apalutamide for metastatic, Castration-Sensitive prostate Cancer. N Engl J Med. 2019;381(1):13–24. PubMed
Calderoni L, Maietti E, Farolfi A, Mei R, Louie KS, Groaning M, et al. Prostate-Specific membrane antigen expression on PET/CT in patients with metastatic Castration-Resistant prostate cancer: A retrospective observational study. J Nucl Med. 2023;64(6):910–7. PubMed PMC
Eiber M, Fendler WP, Rowe SP, Calais J, Hofman MS, Maurer T, et al. Prostate-Specific membrane antigen ligands for imaging and therapy. J Nucl Med Off Publ Soc Nucl Med. 2017;58(Suppl 2):S67–76.
Li M, Zelchan R, Orlova A. The performance of FDA-Approved PET imaging agents in the detection of prostate Cancer. Biomedicines. 2022;10(10):2533. PubMed PMC
Hennrich U, Eder M. [177Lu]Lu-PSMA-617 (PluvictoTM): the first FDA-Approved radiotherapeutical for treatment of prostate Cancer. Pharmaceuticals. 2022;15(10):1292. PubMed PMC
Perera M, Papa N, Roberts M, Williams M, Udovicich C, Vela I, et al. Gallium-68 prostate-specific membrane antigen positron emission tomography in advanced prostate Cancer-Updated diagnostic utility, sensitivity, specificity, and distribution of prostate-specific membrane antigen-avid lesions: A systematic review and Meta-analysis. Eur Urol. 2020;77(4):403–17. PubMed
Anttinen M, Ettala O, Malaspina S, Jambor I, Sandell M, Kajander S, et al. A prospective comparison of 18F-prostate-specific membrane Antigen-1007 positron emission tomography computed tomography, Whole-body 1.5 T magnetic resonance imaging with Diffusion-weighted imaging, and Single-photon emission computed tomography/Computed tomography with traditional imaging in primary distant metastasis staging of prostate Cancer (PROSTAGE). Eur Urol Oncol. 2021;4(4):635–44. PubMed
Hofman MS, Lawrentschuk N, Francis RJ, Tang C, Vela I, Thomas P, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet Lond Engl. 2020;395(10231):1208–16.
Zacho HD, Nielsen JB, Afshar-Oromieh A, Haberkorn U, deSouza N, De Paepe K, et al. Prospective comparison of 68Ga-PSMA PET/CT, 18F-sodium fluoride PET/CT and diffusion weighted-MRI at for the detection of bone metastases in biochemically recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45(11):1884–97. PubMed
Treglia G, Pereira Mestre R, Ferrari M, Bosetti DG, Pascale M, Oikonomou E, et al. Radiolabelled choline versus PSMA PET/CT in prostate cancer restaging: a meta-analysis. Am J Nucl Med Mol Imaging. 2019;9(2):127–39. PubMed PMC
Minamimoto R, Hancock S, Schneider B, Chin FT, Jamali M, Loening A, et al. Pilot comparison of
Pernthaler B, Kulnik R, Gstettner C, Salamon S, Aigner RM, Kvaternik H. A prospective Head-to-Head comparison of 18F-Fluciclovine with 68Ga-PSMA-11 in biochemical recurrence of prostate Cancer in PET/CT. Clin Nucl Med. 2019;44(10):e566–73. PubMed
Wr AH, Kj A, Mr C, Cp B. S, L D, PSMA-PET/CT findings in patients with high-risk biochemically recurrent prostate cancer with no metastatic disease by conventional imaging. JAMA Netw Open [Internet]. 2025 Feb 1 [cited 2025 Jun 10];8(1). Available from: https://pubmed.ncbi.nlm.nih.gov/39752157/
Shui IM, Burcu M, Shao C, Chen C, Liao CY, Jiang S, et al. Real-world prevalence of homologous recombination repair mutations in advanced prostate cancer: an analysis of two clinico-genomic databases. Prostate Cancer Prostatic Dis. 2024;27(4):728–35. PubMed
Castro E, Goh C, Olmos D, Saunders E, Leongamornlert D, Tymrakiewicz M, et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate Cancer. J Clin Oncol. 2013;31(14):1748–57. PubMed PMC
Tawagi K, Schmolze M, Nguyen B, Laviana A, Reizine N. PARP Inhibitors in prostate cancer– understanding the current landscape. Int J Cancer Care Deliv [Internet]. 2024 Jan 24 [cited 2024 Dec 6];4(1). Available from: https://journal.binayfoundation.org/article/92258-parp-inhibitors-in-prostate-cancer-understanding-the-current-landscape
Nambiar DK, Mishra D, Singh RP. Targeting DNA repair for cancer treatment: lessons from PARP inhibitor trials. Oncol Res. 2023;31(4):405–21.
de Bono J, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S, et al. Olaparib for metastatic Castration-Resistant prostate Cancer. N Engl J Med. 2020;382(22):2091–102. PubMed
Saad F, Clarke NW, Oya M, Shore N, Procopio G, Guedes JD et al. Olaparib plus abiraterone versus placebo plus abiraterone in metastatic castration-resistant prostate cancer (PROpel): final prespecified overall survival results of a randomised, double-blind, phase 3 trial. Lancet Oncol. 2023;24(10):1094-1108.
Agarwal N, Saad F, Azad AA, Mateo J, Matsubara N, Shore ND, et al. TALAPRO-3 clinical trial protocol: phase III study of Talazoparib plus enzalutamide in metastatic castration-sensitive prostate cancer. Future Oncol Lond Engl. 2024;20(9):493–505.
Young RJ, De Demétrio P, Pirovano G, Piotrowski AF, Nicklin PJ, Riedl CC, et al. Preclinical and first-in-human-brain-cancer applications of [18F]poly (ADP-ribose) polymerase inhibitor PET/MR. Neuro-Oncol Adv. 2020;2(1):vdaa119.
Schöder H, França PDDS, Nakajima R, Burnazi E, Roberts S, Brand C, et al. Safety and feasibility of PARP1/2 imaging with 18F-PARPi in patients with head and neck Cancer. Clin Cancer Res. 2020;26(13):3110–6. PubMed PMC
Carney B, Carlucci G, Salinas B, Di Gialleonardo V, Kossatz S, Vansteene A, et al. Non-invasive PET imaging of PARP1 expression in glioblastoma models. Mol Imaging Biol. 2016;18(3):386–92. PubMed PMC
Michel LS, Dyroff S, Brooks FJ, Spayd KJ, Lim S, Engle JT, et al. PET of Poly (ADP-Ribose) polymerase activity in cancer: preclinical assessment and first In-Human studies. Radiology. 2017;282(2):453–63. PubMed
Pacelli A, Zarrad F, Warnier C, Gendron T, Otabashi M, Vriamont C, et al. Fully automated, High-Dose radiosynthesis of [18F]PARPi. Pharmaceuticals. 2022;15(7):865. PubMed PMC
Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;17(3):261–72. PubMed PMC
Laird JH, Lok BH, Carney B, Kossatz S, Ma J, Bell A, et al. [18F]PARPi PET as a marker of intratumoral Talazoparib level in small cell lung Cancer. Int J Radiat Oncol Biol Phys. 2017;99(2):S54.
Dadgar H, Jokar N, Nemati R, Larvie M, Assadi M. PET tracers in glioblastoma: toward neurotheranostics as an individualized medicine approach. Front Nucl Med [Internet]. 2023 Feb 27 [cited 2025 Jan 21];3. Available from: https://www.frontiersin.org/journals/nuclear-medicine/articles/ https://doi.org/10.3389/fnume.2023.1103262/full
Fizazi K, Piulats JM, Reaume MN, Ostler P, McDermott R, Gingerich JR, et al. Rucaparib or physician’s choice in metastatic prostate Cancer. N Engl J Med. 2023;388(8):719–32. PubMed PMC
Agarwal N, Azad AA, Carles J, Fay AP, Matsubara N, Heinrich D, et al. Talazoparib plus enzalutamide in men with first-line metastatic castration-resistant prostate cancer (TALAPRO-2): a randomised, placebo-controlled, phase 3 trial. Lancet Lond Engl. 2023;402(10398):291–303.
Agarwal N, Zhang T, Efstathiou E, Sayegh N, Engelsberg A, Saad F, et al. The biology behind combining Poly [ADP ribose] Polymerase and androgen receptor Inhibition for metastatic castration-resistant prostate cancer. Eur J Cancer. 2023;192:113249. PubMed
Av S, A T, Mc H, A WA, Li B. K, Therapeutic implications of homologous repair deficiency testing in patients with prostate cancer (Part 2 of 2). Prostate Cancer Prostatic Dis [Internet]. 2024 Sep 27 [cited 2025 Apr 29]; Available from: https://pubmed.ncbi.nlm.nih.gov/39333696/
Incorvaia L, Bazan Russo TD, Gristina V, Perez A, Brando C, Mujacic C, et al. The intersection of homologous recombination (HR) and mismatch repair (MMR) pathways in DNA repair-defective tumors. NPJ Precis Oncol. 2024;8(1):190. PubMed PMC
Li L, Karanika S, Yang G, Wang J, Park S, Broom BM, et al. Androgen receptor inhibitor-induced ‘brcaness’ and PARP Inhibition are synthetically lethal for castration-resistant prostate cancer. Sci Signal. 2017;10(480):eaam7479. PubMed PMC
Antonarakis ES, Alshalalfa M, Teply BA, Hao Y, Proudfoot JA, Davicioni E, et al. Assessment of PARP1 mRNA expression as prognostic of aggressive pathology and adverse outcomes, and as predictor of response to PARP Inhibition in castration-sensitive prostate cancer. J Clin Oncol. 2025;43(5suppl):202–202.
Jeong SH, Kyung D, Yuk HD, Jeong CW, Lee W, Yoon JK, et al. Practical utility of liquid biopsies for evaluating genomic alterations in Castration-Resistant prostate Cancer. Cancers. 2023;15(10):2847. PubMed PMC
Schiewer MJ, Mandigo AC, Gordon N, Huang F, Gaur S, de Leeuw R, et al. PARP-1 regulates DNA repair factor availability. EMBO Mol Med. 2018;10(12):e8816. PubMed PMC
Kessel K, Bernemann C, Bögemann M, Rahbar K. Evolving castration resistance and prostate specific membrane antigen expression: implications for patient management. Cancers. 2021;13(14):3556. PubMed PMC
Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med Off Publ Soc Nucl Med. 2007;48(6):932–45.
Narazaki A, Shimizu R, Yoshihara T, Kikuta J, Sakaguchi R, Tobita S, et al. Determination of the physiological range of oxygen tension in bone marrow monocytes using two-photon phosphorescence lifetime imaging microscopy. Sci Rep. 2022;12(1):3497. PubMed PMC
Hiraga T. Hypoxic microenvironment and metastatic bone disease. Int J Mol Sci. 2018;19(11):3523. PubMed PMC
Morgenroth A, Tinkir E, Vogg ATJ, Sankaranarayanan RA, Baazaoui F, Mottaghy FM. Targeting of prostate-specific membrane antigen for radio-ligand therapy of triple-negative breast cancer. Breast Cancer Res. 2019;21(1):116. PubMed PMC
Mishra OP, Akhter W, Ashraf QM, Delivoria-Papadopoulos M. Hypoxia-induced modification of Poly (ADP-ribose) Polymerase and Dna Polymerase beta activity in cerebral cortical nuclei of newborn piglets: role of nitric oxide. Neuroscience. 2003;119(4):1023–32. PubMed
Møller P, Loft S, Lundby C, Olsen NV. Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans. FASEB J Off Publ Fed Am Soc Exp Biol. 2001;15(7):1181–6.
Puri D, Swami U, Gebrael G, Nazari S, Elliott A, Nabhan C, Transcriptomic and immune landscape of prostate cancer (pca) based on site of metastasis (mets). pd09-05 differences in genomic. J Urol [Internet]. 2024 May [cited 2025 Apr 29]; Available from: https://www.auajournals.org/doi/ https://doi.org/10.1097/01.JU.0001008572.33286.63.05
Gandaglia G, Karakiewicz PI, Briganti A, Passoni NM, Schiffmann J, Trudeau V, et al. Impact of the site of metastases on survival in patients with metastatic prostate Cancer. Eur Urol. 2015;68(2):325–34. PubMed
Makvandi M, Pantel A, Schwartz L, Schubert E, Xu K, Hsieh CJ et al. A PET imaging agent for evaluating PARP-1 expression in ovarian cancer. J Clin Invest. 2018;128(5):2116–26.
Gitto SB, Pantel AR, Maxwell KN, Pryma DA, Farwell MD, Liu F, et al. [18F]FluorThanatrace PET imaging as a biomarker of response to PARP inhibitors in breast cancer. Commun Med. 2025;5(1):1–8.
Lee AM, Saidian A, Shaya J, Nonato T, Cabal A, Randall JM, et al. The prognostic significance of homologous recombination repair pathway alterations in metastatic hormone sensitive prostate Cancer. Clin Genitourin Cancer. 2022;20(6):515–23. PubMed PMC