Temperature responsiveness of soil carbon fractions, microbes, extracellular enzymes and CO2 emission: mitigating role of texture
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35539011
PubMed Central
PMC9080434
DOI
10.7717/peerj.13151
PII: 13151
Knihovny.cz E-zdroje
- Klíčová slova
- CO2 fluxes, Extracellular enzymes, Soil C fractions, Soil microbes and biomass, Temperature sensitivity, Texture,
- MeSH
- jíl MeSH
- oxid uhličitý * analýza MeSH
- písek MeSH
- půda * MeSH
- půdní mikrobiologie MeSH
- teplota MeSH
- uhlík MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- jíl MeSH
- oxid uhličitý * MeSH
- písek MeSH
- půda * MeSH
- uhlík MeSH
The interaction of warming and soil texture on responsiveness of the key soil processes i.e. organic carbon (C) fractions, soil microbes, extracellular enzymes and CO2 emissions remains largely unknown. Global warming raises the relevant question of how different soil processes will respond in near future, and what will be the likely regulatory role of texture? To bridge this gap, this work applied the laboratory incubation method to investigate the effects of temperature changes (10-50 °C) on dynamics of labile, recalcitrant and stable C fractions, soil microbes, microbial biomass, activities of extracellular enzymes and CO2 emissions in sandy and clayey textured soils. The role of texture (sandy and clayey) in the mitigation of temperature effect was also investigated. The results revealed that the temperature sensitivity of C fractions and extracellular enzymes was in the order recalcitrant C fractions > stable C fractions > labile C fractions and oxidative enzymes > hydrolytic enzymes. While temperature sensitivity of soil microbes and biomass was in the order bacteria > actinomycetes > fungi ≈ microbial biomass C (MBC) > microbial biomass N (MBN) > microbial biomass N (MBP). Conversely, the temperature effect and sensitivity of all key soil processes including CO2 emissions were significantly (P < 0.05) higher in sandy than clayey textured soil. Results confirmed that under the scenario of global warming and climate change, soils which are sandy in nature are more susceptible to temperature increase and prone to become the CO2-C sources. It was revealed that clayey texture played an important role in mitigating and easing off the undue temperature influence, hence, the sensitivity of key soil processes.
College of Forestry Sichuan Agricultural University Chengdu Sichuan China
Department of Biochemistry College of Science King Saud University Riyadh Saudi Arabia
Landwirtschaftlich Gärtnerischen Humboldt Universität zu Berlin Berlin Germany
Zobrazit více v PubMed
Aislabie J, Deslippe JR. Soil microbes and their contribution to soil services. In: Dymond JR, editor. Ecosystem Services in New Zealand–Conditions and Trends. Lincoln: Manaaki Whenua Press; 2013.
Allison SD, Romero-Olivares AL, Ying Lu, Taylor JW. Temperature sensitivities of extracellular enzyme V max and K m across thermal environments. Global Change Biology. 2018;24:2884–2897. doi: 10.1111/gcb.14045. PubMed DOI
Amundson R, Biardeau L. Soil carbon sequestration is an elusive climate mitigation tool. Proceedings of the National Academy of Sciences of the United States of America. 2019;115:11652–11656. doi: 10.1073/pnas.1815901115. PubMed DOI PMC
Badagliacca G, Ruisi P, Rees RM, Saia S. An assessment of factors controlling N2O and CO2 emissions from crop residues using different measurement approaches. Biology and Fertility of Soils. 2017;53:547–561. doi: 10.1007/s00374-017-1195-z. PubMed DOI PMC
Badalucco L, Gelsonimo A, Del’Orco S, Greco S, Nannipieri P. Biochemical characterization of soil organic compounds extracted by 0.5 M K2SO4 before and after chloroform fumigation. Soil Biology and Biochemistry. 1992;24:569–578. doi: 10.1016/0038-0717(92)90082-9. DOI
Badgery W, Murphy B, Cowie A, Orgill S, Rawson A, Simmons A, Crean J. Soil carbon market-based instrument pilot—the sequestration of soil organic carbon for the purpose of obtaining carbon credits. Soil Research. 2020;59:12–23. doi: 10.1071/SR19331. DOI
Biswas DR, Ghosh A, Ramachandran S, Basak BB, Moharana PC. Dependence of thermal and moisture sensitivity of soil organic carbon decomposition on manure composition in an inceptisol under a 5-year-old maize-wheat cropping system. Journal of Geophysical Research: Biogeosciences. 2018;123(5):1637–1650. doi: 10.1029/2017JG004329. DOI
Blair GJ, Lefory RDB, Lise L. Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural system. Australian Journal of Agricultural Research. 1995;46(7):1459–1466. doi: 10.1071/AR9951459. DOI
Cambardella C, Elliott E. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal. 1992;56:777–783. doi: 10.2136/sssaj1992.03615995005600030017x. DOI
Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, Behrenfeld MJ, Boetius A, Boyd PW, Classen AT, Crowther TW, Danovaro R, Foreman CM, Huisman J, Hutchins DA, Jansson JK, Karl QM, Koskella B, Welch DBM, Martiny JBH, Moran MA, Orphan VJ, Reay DS, Remais JV, Rich VI, Singh BK, Stein LY, Stewart FJ, Sullivan MB, von Oppen MHH, Weaver SC, Webb EA, Webster NS. Scientists’ warning to humanity: microorganisms and climate change. Nature Reviews. 2019;17(9):569–586. doi: 10.1038/s41579-019-0222-5. PubMed DOI PMC
Cheng L, Zhang N, Yuan M, Xiao J, Qin Y, Deng Y, Tu Q, Xue K, Nostrand JDV, Wu L, He Z, Zhou X, Leigh MB, Konstantinidis KT, Schuur EAG, Luo Y, Tiedje JM, Zhou J. Warming enhances old organic carbon decomposition through altering functional microbial communities. The ISME Journal. 2017;11(8):1–11. doi: 10.1038/ismej.2017.48. PubMed DOI PMC
Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, Snoek BL, Fang S, Zhou G, Allisom SD, Blair JM, Bridgham SD, Burton AJ, Carrillo Y, Reich PB, Clark JS, Classen AT, Dijkstra FA, Elberling B, Emmett BA, Estiarte M, Frey SD, Guo J, Harte J, Jiang L, Johnson BR. Quantifying global soil carbon losses in response to warming. Ecological Letters. 2016;104(7631):104–108. doi: 10.1038/nature20150. PubMed DOI
Dai SS, Li LJ, Ye R, Zhu-Barker X, Horwath WR. The temperature sensitivity of organic carbon mineralization is affected by exogenous carbon inputs and soil organic carbon content. European Journal of Soil Biology. 2017;81:69–75. doi: 10.1016/j.ejsobi.2017.06.010. DOI
Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165–173. doi: 10.1038/nature04514. PubMed DOI
Dick RP. Methods of soil enzymology. Madison: Soil Science Society of America; 2011.
Ding F, Huang Y, Sun W, Jiang G, Chen Y. Decomposition of organic carbon in fine soil particles is likely more sensitive to warming than in coarse particles: an incubation study with temperate grassland and forest soils in northern China. PLOS ONE. 2014;9:e103801. doi: 10.1371/journal.pone.0103801. PubMed DOI PMC
Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, Sharma S, Khare PK, Khan ML. Soil microbiome: a key player for conservation of soil health under changing climate. Biodiversity and Conservation. 2019;28:2405–2429. doi: 10.1007/s10531-019-01760-5. DOI
Eivazi F, Tabatabai MA. Glucosidases and galactosidases in soils. Soil Biology and Biochemistry. 1988;20:601–606. doi: 10.1016/0038-0717(88)90141-1. DOI
Ekwurzel B, Boneham J, Dalton MW, Heede R, Mera RJ, Allen MR, Frumhoff PC. The rise in global atmospheric CO2, surface temperature, and sea level from emissions traced to major carbon producers. Climatic Change. 2017;144:579–590. doi: 10.1007/s10584-017-1978-0. DOI
Elliott ET, Burke IC, Monz CA, Frey SD, Paustian KH, Collins HP, Paul EA, Cole CA, Blevins RL, Frye WW, Lyon DW, Halvorson AD, Huggins DR, Turco RF, Hickman MV. Terrestrial carbon pools. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA, editors. Preliminary data from the Corn Belt and Great Plains regions. Defining soil quality for a sustainable environment. Madison: American Society of Agronomy; 1994. pp. 179–191.
Fang X, Zhou G, Li Y, Liu S, Chu G, Xu Z, Liu J. Warming effects on biomass and composition of microbial communities and enzyme activities within soil aggregates in subtropical forest. Biology and Fertility of Soils. 2016;52:353–365. doi: 10.1007/s00374-015-1081-5. DOI
Feng W, Plante AF, Six J. Improving estimates of maximal organic carbon stabilization by fine soil particles. Biogeochemistry. 2013;112:1–13. doi: 10.1007/s10533-011-9679-7. DOI
Frøseth RB, Bleken MA. Effect of low temperature and soil type on the decomposition rate of soil organic carbon and clover leaves, and related priming effect. Soil Biology and Biochemistry. 2015;80:156–166. doi: 10.1016/j.soilbio.2014.10.004. DOI
García-Palacios P, Vandegehuchte ML, Shaw EA, Dam M, Post KH, Ramirez KS, Sylvain ZA, de Tomasel CM, Wall DH. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective. Global Change Biology. 2015;21:1590–1600. doi: 10.1111/gcb.12788. PubMed DOI
Ghosh A, Bhattacharyya R, Dwivedi BS, Meena MC, Agarwal BK, Mahapatra P, Shahi DK, Salwani R, Agnihorti R. Temperature sensitivity of soil organic carbon decomposition as affected by long-term fertilization under a soybean based cropping system in a sub-tropical Alfisol. Agriculture, Ecosystem and Environment. 2016;233:202–213. doi: 10.1016/j.agee.2016.09.010. DOI
Gregorich EG, Ellert BH. Light fraction and macroorganic matter in mineral soils. In: Carter MR, editor. Soil Sampling Methods and Analysis. Boca Raton: Canadian Society of Soil Science; 1993.
Hamarashid N, Othman M, Hussain M. Effects of soil texture on chemical compositions, microbial populations and carbon mineralization in soil. Egyptian Journal of Experimental Biology. 2010;6:59–64.
Hassan W, David J, Abbas F. Effect of type and quality of two contrasting crop residues on CO2 emission potential of Ultisol soil: implications for indirect influence of temperature and moisture. CATENA. 2014;114:90–96. doi: 10.1016/j.catena.2013.11.001. DOI
Hassan W, Akmal M, Muhammad I, Ali F, Younas M, Zahaid KR. Response of soil microbial biomass and enzymes activity to cadmium toxicity under different soil textures and incubation times. Australian Journal of Crop Science. 2013a;7:674–680. doi: 10.3316/informit.364836133250432. DOI
Hassan W, Chen W, Huang Q, Mohamed I. Microcalorimetric evaluation of soil microbiological properties under plant residues and dogmatic water gradients in Red soil. Soil Science and Plant Nutrition. 2013b;59:858–870. doi: 10.1080/00380768.2013.845735. DOI
Hobley E, Willgoose GR, Frisia S, Jacobsen G. Stability and storage of soil organic carbon in a heavy-textured Karst soil from south-eastern Australia. Soil Research. 2014;52:476–482. doi: 10.1071/SR13296. DOI
Hutchins DA, Jansson JK, Remais JV, Rich Singh, VI, Trivedi BK, P Climate change microbiology-problems and perspectives. Nature Reviews Microbiology. 2019;17:391–396. doi: 10.1038/s41579-019-0178-5. PubMed DOI
Karhu K, Fritze H, Hämäläinen K, Vanhala P, Jungner H, Oinonen M, Sonninen E, Tuomi M, Spetz P, Kitunen V, Liski J. Temperature sensitivity of soil carbon fractions in boreal forest soil. Ecology. 2010;91:370–376. doi: 10.1890/09-0478.1. PubMed DOI
Lian Z, Jiang Z, Huang X, Liu S, Zhang J, Wu Y. Labile and recalcitrant sediment organic carbon pools in the Pearl River Estuary, southern China. Science of the Total Environment. 2018;640-641:1302–1311. doi: 10.1016/j.scitotenv.2018.05.389. PubMed DOI
Li Y, Liu YH, Wang YL, Niu L, Xu X, Tian YQ. Interactive effects of soil temperature and moisture on soil N mineralization in a Stipa krylovii grassland in inner Mongolia, China. Journal of Arid Land. 2014;6:571–580. doi: 10.1007/s40333-014-0025-5. DOI
Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, Bowles FP, Pold G, Knorr A, Grandy AS. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science. 2017;358:101–105. doi: 10.1126/science.aan2874. PubMed DOI
Meng C, Tian D, Zeng H, Li Z, Chen HYH, Niu S. Global meta-analysis on the responses of soil extracellular enzyme activities to warming. Science of the Total Environment. 2020;705:135992. doi: 10.1016/j.scitotenv.2019.135992. PubMed DOI
Mishra S, Rath AK, Adhya TK, Rao VR, Sethunathan N. Effect of continuous and alternate water regimes on methane efflux from rice under greenhouse conditions. Biology and Fertility of Soils. 1997;24:399–405. doi: 10.1007/s003740050264. DOI
Nguyen BT, Lehmann J, Hockaday WC, Joseph S, Masiello CA. Temperature sensitivity of black carbon decomposition and oxidation. Environmental Science and Technology. 2010;44(9):3324–3331. doi: 10.1021/es903016y. PubMed DOI
Nottingham AT, Bååth E, Reischke S, Salinas N, Meir P. Adaptation of soil microbial growth to temperature: using a tropical elevation gradient to predict future changes. Global Change Biology. 2019;25(3):827–838. doi: 10.1111/gcb.14502. PubMed DOI PMC
Oertel C, Matschullat J, Zurba K, Zimmermann F, Erasmi S. Greenhouse gas emissions from soils: a review. Geochemistry. 2016;76(3):327–352. doi: 10.1016/j.chemer.2016.04.002. DOI
Paul EA, Morris SJ, Bohm S. The determination of soil C pool sizes and turnover rates: biophysical fractionation and tracers, in assessment methods for soil C pools. In: Lal R, Kimble JM, Follett RF, editors. The Determination of Soil C Pool Sizes and Turnover Rates: Biophysical Fractionation and Tracers, in Assessment Methods for Soil C Pools. Boca Raton: CRC Press; 2001.
Paustian K, Larson E, Kent J, Marx E, Swan A. Soil C sequestration as a biological negative emission strategy. Frontiers in Climate. 2019;1:8. doi: 10.3389/fclim.2019.00008. DOI
Qi R, Li J, Lin Z, Li Z, Li Y, Yang X, Zhang J, Zhao B. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Applied Soil Ecology. 2016;102:36–45. doi: 10.1016/j.apsoil.2016.02.004. DOI
Qu Y, Tang J, Li Z, Zhou Z, Wang J, Wang S, Cao Y. Soil enzyme activity and microbial metabolic function diversity in soda saline-alkali rice paddy fields of Northeast China. Sustainability. 2020;12:10095. doi: 10.3390/su122310095. DOI
Rittl TF, Canisares L, Sagrilo E, Butterbach-Bahl K, Dannenmann M, Cerri CEP. Temperature sensitivity of soil organic matter decomposition varies with biochar application and soil type. Pedosphere. 2020;30:336–342. doi: 10.1016/S1002-0160(20)60013-3. DOI
Roberge MR. Methodology of enzymes determination and extraction. In: Burns RG, editor. Soil Enzymes. New York: Academic Press; 1978. pp. 341–373.
Romero-Olivares AL, Alisson SD, Trescedar KK. Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biology and Biochemistry. 2017;107:32–40. doi: 10.1016/j.soilbio.2016.12.026. DOI
Schinner F, Von Mersi W. Xylanase, CM-cellulase and invertase activity in soil: an improved method. Soil Biology and Biochemistry. 1990;22:511–515. doi: 10.1016/0038-0717(90)90187-5. DOI
Sánchez-Cañete EP, Barron-Gaford GA, Chorover J. A considerable fraction of soil respired CO2 is not emitted directly to the atmosphere. Scientific Reports. 2018;8:13518. doi: 10.1038/s41598-018-29803-x. PubMed DOI PMC
Sierra CA, Malghani S, Loescher HW. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil. Biogeosciences. 2017;14(3):703–710. doi: 10.5194/bg-14-703-2017. DOI
Six J, Paustian K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry. 2014;68:A4–A9. doi: 10.1016/j.soilbio.2013.06.014. DOI
Takriti M, Wild B, Schnecker J, Moosjammer M, Knoltsch A, Lashchinskiy N, Alves RJE, Gentsch N, Giteel A, Mikutta R, Wanek W, Richter A. Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect. Soil Biology and Biochemistry. 2018;121:212–2020. doi: 10.1016/j.soilbio.2018.02.022. DOI
Tang L, Zhong L, Xue K, Wang S, Xu Z, Lin Q, Luo C, Rui Y, Li X, Li M, Liu W, Yang Y, Zhou J, Wang Y. Warming counteracts grazing effects on the functional structure of the soil microbial community in a Tibetan grassland. Soil Biology and Biochemistry. 2019;134:113–121. doi: 10.1016/j.soilbio.2019.02.018. DOI
Thakur MP, reich PB, Wagg C, Fisichelli NA, Ciobanu M, Hobbie SE, Rich RL, Stefanski A. Effects of soil warming history on the performances of congeneric temperate and boreal herbaceous plant species and their associations with soil biota. Journal of Plant Ecology. 2017;10:670–680. doi: 10.1093/jpe/rtw066. DOI
Wachiye S, Merbold L, Vesala T, Rinne J, Räsänen M, Leitner S, Pellikka P. Soil greenhouse gas emissions under different land-use types in savanna ecosystems of Kenya. Biogeosciences. 2019;17(8):2149–2167. doi: 10.5194/bg-17-2149-2020. DOI
Wang X, Dong S, Gao Q, Zhou H, Liu S, Su X, Li Y. Effects of short-term and long-term warming on soil nutrients, microbial biomass and enzyme activities in an alpine meadow on the Qinghai-Tibet Plateau of China. Soil Biology and Biochemistry. 2014;76:140–142. doi: 10.1016/j.soilbio.2014.05.014. DOI
Wang Y, Gao S, Li C, Zhang J, Wang L. Effects of temperature on soil organic carbon fractions contents, aggregate stability and structural characteristics of humic substances in a Mollisol. Journal of Soils and Sediments. 2016;16:1849–1857. doi: 10.1007/s11368-016-1379-4. DOI
Walker TWN, Kaiser C, Strasser F, Herbold CW, Leblans NIK, Woebken D, Janssens IA, Sigurdsson BD, Richter A. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nature Climate Change. 2018;8(10):885–889. doi: 10.1038/s41558-018-0259-x. PubMed DOI PMC
Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science. 1934;37:29–38. doi: 10.1097/00010694-193401000-00003. DOI
Wankhede M, Ghosh A, Manna MC, Misra S, Sirothia P, Rahman MM, Bhattacharyya P, Singh M, Bhattacharyya R, Patra AK. Does soil organic carbon quality or quantity govern relative temperature sensitivity in soil aggregates? Biogeochemistry. 2020;148(2):191–206. doi: 10.1007/s10533-020-00653-y. DOI
Witkamp M. Decomposition of leaf litter in relation to environment, microflora and microbial respiration. Ecology. 1966;47:194–201. doi: 10.2307/1933765. DOI
Yang F, Wei X, Huang M, Li C, Zhao X, Zhang Z. Spatiotemporal variability of soil organic carbon for different topographic and land use types in a gully watershed on the Chinese Loess Plateau. Soil Research. 2021;59(4):383–395. doi: 10.1071/SR19317. DOI
Zhang H, Zhou Z. Recalcitrant carbon controls the magnitude of soil organic matter mineralization in temperate forests of northern China. Forest Ecosystems. 2018;5(1):1. doi: 10.1186/s40663-018-0137-z. DOI
Zhang Q, Wu J, Yang F, Lei Y, Zhang Q, Cheng X. Alterations in soil microbial community composition and biomass following agricultural land use change. Scientific Reports. 2016;6(1):36587. doi: 10.1038/srep36587. PubMed DOI PMC
Zhang ZS, Dong XJ, Xu BX, Chen YL, Zhao Y, Gao YH, Hu YG, Huang L. Soil respiration sensitivities to water and temperature in a revegetated desert. Journal Geophysical Research Biogeosciences. 2015;120(4):773–787. doi: 10.1002/2014JG002805. DOI
Zheng Q, Hu Y, Zhang S, Noll L, Böckle T, Richter A, Wanek W. Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biology and Biochemistry. 2019;128(6):45–55. doi: 10.1016/j.soilbio.2018.10.006. PubMed DOI PMC
Zhou XQ, Chen CR, Wang YF, Xu ZH, Han HY, Li LH, Wan SQ. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland. Science of Total Environment. 2013;444:552–558. doi: 10.1016/j.scitotenv.2012.12.023. PubMed DOI
Zomer RJ, Bossio DA, Sommer R, Verchot LV. Global sequestration potential of increased organic carbon in cropland soils. Scientific Reports. 2017;7(1):15554. doi: 10.1038/s41598-017-15794-8. PubMed DOI PMC
Zsolnay A. Dissolved organic matter (DOM): artefacts, definitions, and functions. Geoderma. 2003;113(3–4):187–209. doi: 10.1016/S0016-7061(02)00361-0. DOI