CATANA: an online modelling environment for proteins and nucleic acid nanostructures

. 2022 Jul 05 ; 50 (W1) : W152-W158.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35544315

In the last decade, significant advances have been made towards the rational design of proteins, DNA, and other organic nanostructures. The emerging possibility to precisely engineer molecular structures resulted in a wide range of new applications in fields such as biotechnology or medicine. The complexity and size of the artificial molecular systems as well as the number of interactions are greatly increasing and are manifesting the need for computational design support. In addition, a new generation of AI-based structure prediction tools provides researchers with completely new possibilities to generate recombinant proteins and functionalized DNA nanostructures. In this study, we present Catana, a web-based modelling environment suited for proteins and DNA nanostructures. User-friendly features were developed to create and modify recombinant fusion proteins, predict protein structures based on the amino acid sequence, and manipulate DNA origami structures. Moreover, Catana was jointly developed with the novel Unified Nanotechnology Format (UNF). Therefore, it employs a state-of-the-art coarse-grained data model, that is compatible with other established and upcoming applications. A particular focus was put on an effortless data export to allow even inexperienced users to perform in silico evaluations of their designs by means of molecular dynamics simulations. Catana is freely available at http://catana.ait.ac.at/.

Zobrazit více v PubMed

Ljubetic A., Lapenta F., Gradišar H., Drobnak I., Aupič J., Strmšek Ž., Lainsček D., Hafner-Bratkovič I., Majerle A., Krivec N.et al. .. Design of coiled-coil protein-origami cages that self-assemble in vitro and in vivo. Nat. Biotechnol. 2017; 35:1094–1101. PubMed

Rothemund P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature. 2006; 440:297–302. PubMed

Martell J.D., Yamagata M., Deerinck T.J., Phan S., Kwa C.G., Ellisman M.H., Sanes J.R., Ting A.Y.. A split horseradish peroxidase for the detection of intercellular protein–protein interactions and sensitive visualization of synapses. Nat. Biotechnol. 2016; 34:774–780. PubMed PMC

Li S., Jiang Q., Liu S., Zhang Y., Tian Y., Song C., Wang J., Zou Y., Anderson G.J., Han J.-Y.et al. .. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 2018; 36:258–264. PubMed

Douglas S.M., Marblestone A.H., Teerapittayanon S., Vazquez A., Church G.M., Shih W.M. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 2009; 37:5001–5006. PubMed PMC

Veneziano R., Ratanalert S., Zhang K., Zhang F., Yan H., Chiu W., Bathe M.. Designer nanoscale DNA assemblies programmed from the top down. Science. 2016; 352:1534–1534. PubMed PMC

de Llano E., Miao H., Ahmadi Y., Wilson A.J., Beeby M., Viola I., Barisic I.. Adenita: interactive 3D modelling and visualization of DNA nanostructures. Nucleic Acids Res. 2020; 48:8269–8275. PubMed PMC

Huang C.-M., Kucinic A., Johnson J.A., Su H.-J., Castro C.E.. Integrated computer-aided engineering and design for DNA assemblies. Nat. Mater. 2021; 20:1264–1271. PubMed

Benson E., Mohammed A., Gardell J., Masich S., Czeizler E., Orponen P., Högberg B.. DNA rendering of polyhedral meshes at the nanoscale. Nature. 2015; 523:441–444. PubMed

Williams S., Lund K., Lin C., Wonka P., Lindsay S., Yan H.. Tiamat: a three-dimensional editing tool for complex DNA structures. DNA Computing. 2009; Berlin Heidelberg: Springer; 90–101.

Kuťák D., Selzer M.N., Byska J., Ganuza M.L., Barisic I., Kozlikova B., Miao H.. Vivern a virtual environment for multiscale visualization and modeling of DNA nanostructures. IEEE Trans. Vis.Comput.Graph. 2021; 1–1. PubMed

Poppleton E., Bohlin J., Matthies M., Sharma S., Zhang F., Sulc P.. Design, optimization and analysis of large DNA and RNA nanostructures through interactive visualization, editing and molecular simulation. Nucleic Acids Res. 2020; 48:e72. PubMed PMC

Ponce-Salvatierra A., Boccaletto P., Bujnicki J.M.. DNAmoreDB, a database of DNAzymes. Nucleic Acids Res. 2020; 49:D76–D81. PubMed PMC

Ahmadi Y., Soldo R., Rathammer K., Eibler L., Barisič I.. Analyzing criteria affecting the functionality of G-Quadruplex-Based DNA aptazymes as colorimetric biosensors and development of quinine-binding aptazymes. Anal. Chem. 2021; 93:5161–5169. PubMed

Wilson T.J., Lilley D.M.J.. The potential versatility of RNA catalysis. WIREs RNA. 2021; 12:e1651. PubMed

Tunyasuvunakool K., Adler J., Wu Z., Green T., Zielinski M., Žıdek A., Bridgland A., Cowie A., Meyer C., Laydon A.et al. .. Highly accurate protein structure prediction for the human proteome. Nature. 2021; 596:590–596. PubMed PMC

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žıdek A., Potapenko A.et al. .. Highly accurate protein structure prediction with alphafold. Nature. 2021; 596:583–589. PubMed PMC

Kuťák D., Poppleton E., Miao H., Sulc P., Barišič I.. Unified nanotechnology format: one way to store them all. Molecules. 2022; 27:63. PubMed PMC

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žıdek A., otapenko A.et al. .. Applying and improving Alphafold at CASP14. Proteins Struct. Funct. Bioinf. 2021; 89:1711–1721. PubMed PMC

Rose A.S., Hildebrand P.W.. NGL viewer: a web application for molecular visualization. Nucleic Acids Res. 2015; 43:W576–W579. PubMed PMC

del Rio I.G., Marin L., Fernandez J., Millan M.A.S., Ferrero F.J., Valledor M., Campo J.C., Cobian N., Mendez I., Lombo F.. Development of a biosensor′ protein bullet as a fluorescent method for fast detection of Escherichia coli in drinking water. PLoS One. 2018; 13:e0184277. PubMed PMC

Soderberg O., Gullberg M., Jarvius M., Ridderstrale K., Leuchowius K.-J., Jarvius J., Wester K., Hydbring P., Bahram F., Larsson L.G.et al. .. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods. 2006; 3:995–1000. PubMed

Praetorius F., Dietz H.. Self-assembly of genetically encoded DNA–protein hybrid nanoscale shapes. Science. 2017; 355:eaam5488. PubMed

Douglas S.M., Bachelet I., Church G.M.. A logic-gated nanorobot for targeted transport of molecular payloads. Science. 2012; 335:831–834. PubMed

Townshend R.J.L., Eismann S., Watkins A.M., Rangan R., Karelina M., Das R., Dror R.O.. Geometric deep learning of RNA structure. Science. 2021; 373:1047–1051. PubMed PMC

Ahmadi Y., Nord A.L., Wilson A.J., Hutter C., Schroeder F., Beeby M., Barišić I.. The brownian and flow-driven rotational dynamics of a multicomponent DNA origami-based rotor. Small. 2020; 16:2001855. PubMed

Procyk J., Poppleton E., Sulc P.. Coarse-grained nucleic acid–protein model for hybrid nanotechnology. Soft Matter. 2021; 17:3586–3593. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...