Functionalization of boron-doped diamond with a push-pull chromophore via Sonogashira and CuAAC chemistry

. 2018 Sep 24 ; 8 (58) : 33276-33290. [epub] 20180926

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35548149

Improving the performance of p-type photoelectrodes represents a key challenge toward significant advancement in the field of tandem dye-sensitized solar cells. Herein, we demonstrate the application of boron-doped nanocrystalline diamond (B:NCD) thin films, covalently functionalized with a dithienopyrrole-benzothiadiazole push-pull chromophore, as alternative photocathodes. First, a primary functional handle is introduced on H-terminated diamond via electrochemical diazonium grafting. Afterwards, Sonogashira cross-coupling and Cu(i) catalyzed azide-alkyne cycloaddition (CuAAC) reactions are employed to attach the chromophore, enabling the comparison of the degree of surface functionalization and the importance of the employed linker at the diamond-dye interface. X-ray photoelectron spectroscopy shows that surface functionalization via CuAAC results in a slightly higher chromophore coverage compared to the Sonogashira cross-coupling. However, photocurrents and photovoltages, obtained by photoelectrochemical and Kelvin probe measurements, are approximately three times larger on photocathodes functionalized via Sonogashira cross-coupling. Surface functionalization via Sonogashira cross-coupling is thus considered the preferential method for the development of diamond-based hybrid photovoltaics.

Zobrazit více v PubMed

O'Regan B. Grätzel M. Nature. 1991;353:737–740. doi: 10.1038/353737a0. DOI

Kakiage K. Aoyama Y. Yano T. Oya K. Fujisawa J. Hanaya M. Chem. Commun. 2015;51:15894–15897. doi: 10.1039/C5CC06759F. PubMed DOI

Mathew S. Yella A. Gao P. Humphry-Baker R. Curchod B. F. Ashari-Astani N. Tavernelli I. Rothlisberger U. Nazeeruddin M. K. Gratzel M. Nat. Chem. 2014;6:242–247. doi: 10.1038/nchem.1861. PubMed DOI

Kavan L. Curr. Opin. Electrochem. 2017;2:88–96. doi: 10.1016/j.coelec.2017.03.008. DOI

Wood C. J. Summers G. H. Gibson E. A. Chem. Commun. 2015;51:3915–3918. doi: 10.1039/C4CC10230D. PubMed DOI

Nattestad A. Mozer A. J. Fischer M. K. Cheng Y. B. Mishra A. Bauerle P. Bach U. Nat. Mater. 2010;9:31–35. doi: 10.1038/nmat2588. PubMed DOI

Nattestad A. Perera I. Spiccia L. J. Photochem. Photobiol., C. 2016;28:44–71. doi: 10.1016/j.jphotochemrev.2016.06.003. DOI

Farre Y. Raissi M. Fihey A. Pellegrin Y. Blart E. Jacquemin D. Odobel F. ChemSusChem. 2017;10:2618–2625. doi: 10.1002/cssc.201700468. PubMed DOI

Perera I. R. Daeneke T. Makuta S. Yu Z. Tachibana Y. Mishra A. Bauerle P. Ohlin C. A. Bach U. Spiccia L. Angew. Chem., Int. Ed. Engl. 2015;54:3758–3762. doi: 10.1002/anie.201409877. PubMed DOI

Kobashi K. Nishimura K. Kawate Y. Horiuchi T. Phys. Rev. B: Condens. Matter Mater. Phys. 1988;38:4067–4084. doi: 10.1103/PhysRevB.38.4067. PubMed DOI

Nemanich R. J. Carlisle J. A. Hirata A. Haenen K. MRS Bull. 2014;39:490–494. doi: 10.1557/mrs.2014.97. DOI

Macpherson J. V. Phys. Chem. Chem. Phys. 2015;17:2935–2949. doi: 10.1039/C4CP04022H. PubMed DOI

Lim C. H. Y. X. Zhong Y. L. Janssens S. Nesladek M. Loh K. P. Adv. Funct. Mater. 2010;20:1313–1318. doi: 10.1002/adfm.200902204. DOI

Stotter J. Show Y. Wang S. Swain G. Chem. Mater. 2005;17:4880–4888. doi: 10.1021/cm050762z. DOI

Volpe P.-N. Pernot J. Muret P. Omnès F. Appl. Phys. Lett. 2009;94:092102. doi: 10.1063/1.3086397. DOI

Leroux Y. R. Fei H. Noel J. M. Roux C. Hapiot P. J. Am. Chem. Soc. 2010;132:14039–14041. doi: 10.1021/ja106971x. PubMed DOI

Pinson J. Podvorica F. Chem. Soc. Rev. 2005;34:429–439. doi: 10.1039/B406228K. PubMed DOI

Wang J. Firestone M. A. Auciello O. Carlisle J. A. Langmuir. 2004;20:11450–11456. doi: 10.1021/la048740z. PubMed DOI

Wang X. Colavita P. E. Streifer J. A. Butler J. E. Hamers R. J. J. Phys. Chem. C. 2010;114:4067–4074. doi: 10.1021/jp911264n. DOI

Wang X. Landis E. C. Franking R. Hamers R. J. Acc. Chem. Res. 2010;43:1205–1215. doi: 10.1021/ar100011f. PubMed DOI

Bogdanowicz R. Sawczak M. Niedzialkowski P. Zieba P. Finke B. Ryl J. Karczewski J. Ossowski T. J. Phys. Chem. C. 2014;118:8014–8025. doi: 10.1021/jp5003947. DOI

Nakamura T. Ohana T. Jpn. J. Appl. Phys. 2012;51:085201. doi: 10.7567/JJAP.51.085201. DOI

Zhong Y. L. Loh K. P. Chem.–Asian J. 2010;5:1532–1540. doi: 10.1002/asia.201000027. PubMed DOI

Meziane D. Barras A. Kromka A. Houdkova J. Boukherroub R. Szunerits S. Anal. Chem. 2012;84:194–200. doi: 10.1021/ac202350c. PubMed DOI

Yeap W. S. Murib M. S. Cuypers W. Liu X. van Grinsven B. Ameloot M. Fahlman M. Wagner P. Maes W. Haenen K. ChemElectroChem. 2014;1:1145–1154. doi: 10.1002/celc.201402068. DOI

Natsui K. Yamamoto T. Akahori M. Einaga Y. ACS Appl. Mater. Interfaces. 2015;7:887–894. doi: 10.1021/am5074613. PubMed DOI

Nakabayashi S. Ohta N. Fujishima A. Phys. Chem. Chem. Phys. 1999;1:3993–3997. doi: 10.1039/A905237B. DOI

Zhong Y. L. Loh K. P. Midya A. Chen Z.-K. Chem. Mater. 2008;20:3137–3144. doi: 10.1021/cm703686w. DOI

Zhong Y. L. Midya A. Ng Z. Chen Z. K. Daenen M. Nesladek M. Loh K. P. J. Am. Chem. Soc. 2008;130:17218–17219. doi: 10.1021/ja805977f. PubMed DOI

Yeap W. S. Liu X. Bevk D. Pasquarelli A. Lutsen L. Fahlman M. Maes W. Haenen K. ACS Appl. Mater. Interfaces. 2014;6:10322–10329. doi: 10.1021/am501783b. PubMed DOI

Yeap W. S. Bevk D. Liu X. Krysova H. Pasquarelli A. Vanderzande D. Lutsen L. Kavan L. Fahlman M. Maes W. Haenen K. RSC Adv. 2014;4:42044–42053. doi: 10.1039/C4RA04740K. DOI

Krysova H. Kavan L. Zivcova Z. V. Yeap W. S. Verstappen P. Maes W. Haenen K. Gao F. Nebel C. E. RSC Adv. 2015;5:81069–81077. doi: 10.1039/C5RA12413A. DOI

Krysova H. Vlckova-Zivcova Z. Barton J. Petrak V. Nesladek M. Cigler P. Kavan L. Phys. Chem. Chem. Phys. 2015;17:1165–1172. doi: 10.1039/C4CP04148H. PubMed DOI

Krysova H. Barton J. Petrak V. Jurok R. Kuchar M. Cigler P. Kavan L. Phys. Chem. Chem. Phys. 2016;18:16444–16450. doi: 10.1039/C6CP02209J. PubMed DOI

Chinchilla R. Najera C. Chem. Soc. Rev. 2011;40:5084–5121. doi: 10.1039/C1CS15071E. PubMed DOI

Raymakers J. Artemenko A. Nicley S. S. Štenclová P. Kromka A. Haenen K. Maes W. Rezek B. J. Phys. Chem. C. 2017;121:23446–23454. doi: 10.1021/acs.jpcc.7b06426. DOI

Meldal M. Tornoe C. W. Chem. Rev. 2008;108:2952–3015. doi: 10.1021/cr0783479. PubMed DOI

Wang M. Das M. R. Li M. Boukherroub R. Szunerits S. J. Phys. Chem. C. 2009;113:17082–17086. doi: 10.1021/jp904501q. DOI

Ghodbane S. Ballutaud D. Omnès F. Agnès C. Diamond Relat. Mater. 2010;19:630–636. doi: 10.1016/j.diamond.2010.01.014. DOI

Gupta A. Kelson M. M. A. Armel V. Bilic A. Bhosale S. V. Tetrahedron. 2014;70:2141–2150. doi: 10.1016/j.tet.2014.02.002. DOI

Janssens S. D. Pobedinskas P. Vacik J. Petráková V. Ruttens B. D'Haen J. Nesládek M. Haenen K. Wagner P. New J. Phys. 2011;13:083008. doi: 10.1088/1367-2630/13/8/083008. DOI

Drijkoningen S. Janssens S. D. Pobedinskas P. Koizumi S. Van Bael M. K. Haenen K. Sci. Rep. 2016;6:35667. doi: 10.1038/srep35667. PubMed DOI PMC

Polander L. E. Pandey L. Barlow S. Tiwari S. P. Risko C. Kippelen B. Brédas J.-L. Marder S. R. J. Phys. Chem. C. 2011;115:23149–23163. doi: 10.1021/jp208643k. DOI

Zhou H. Yang L. You W. Macromolecules. 2012;45:607–632. doi: 10.1021/ma201648t. DOI

Rohde R. D. Agnew H. D. Yeo W. S. Bailey R. C. Heath J. R. J. Am. Chem. Soc. 2006;128:9518–9525. doi: 10.1021/ja062012b. PubMed DOI PMC

Gouget-Laemmel A. C. Yang J. Lodhi M. A. Siriwardena A. Aureau D. Boukherroub R. Chazalviel J. N. Ozanam F. Szunerits S. J. Phys. Chem. C. 2012;117:368–375. doi: 10.1021/jp309866d. DOI

Heinrich T. Traulsen C. H. H. Darlatt E. Richter S. Poppenberg J. Traulsen N. L. Linder I. Lippitz A. Dietrich P. M. Dib B. Unger W. E. S. Schalley C. A. RSC Adv. 2014;4:17694–17702. doi: 10.1039/C4RA01730G. DOI

Gallagher W. P. Vo A. Org. Process Res. Dev. 2014;19:1369–1373. doi: 10.1021/op500336h. DOI

Cumpson P. J. Seah M. P. Surf. Interface Anal. 1997;25:430–446. doi: 10.1002/(SICI)1096-9918(199706)25:6<430::AID-SIA254>3.0.CO;2-7. DOI

Meinhardt T. Lang D. Dill H. Krueger A. Adv. Funct. Mater. 2011;21:494–500. doi: 10.1002/adfm.201001219. DOI

Das M. R. Wang M. Szunerits S. Gengembre L. Boukherroub R. Chem. Commun. 2009;25:2753–2755. doi: 10.1039/B901481K. PubMed DOI

Díez-González S. Catal. Sci. Technol. 2011;1:166–178. doi: 10.1039/C0CY00064G. DOI

Sako E. O. Kondoh H. Nakai I. Nambu A. Nakamura T. Ohta T. Chem. Phys. Lett. 2005;413:267–271. doi: 10.1016/j.cplett.2005.07.086. DOI

Chen X. Peng Y. Bradshaw D. Int. J. Miner. Process. 2013;125:129–136. doi: 10.1016/j.minpro.2013.08.007. DOI

Čermák J. Koide Y. Takeuchi D. Rezek B. J. Appl. Phys. 2014;115:053105. doi: 10.1063/1.4864420. DOI

Rezek B. Čermák J. Kromka A. Ledinský M. Kočka J. Diamond Relat. Mater. 2009;18:249–252. doi: 10.1016/j.diamond.2008.07.019. DOI

Hirayama D. Takimiya K. Aso Y. Otsubo T. Hasobe T. Yamada H. Imahori H. Fukuzumi S. Sakata Y. J. Am. Chem. Soc. 2002;124:532–533. doi: 10.1021/ja016703d. PubMed DOI

Otsubo T. Aso Y. Takimiya K. J. Mater. Chem. 2002;12:2565–2575. doi: 10.1039/B203780G. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...