Functionalization of boron-doped diamond with a push-pull chromophore via Sonogashira and CuAAC chemistry
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
35548149
PubMed Central
PMC9086440
DOI
10.1039/c8ra07545j
PII: c8ra07545j
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Improving the performance of p-type photoelectrodes represents a key challenge toward significant advancement in the field of tandem dye-sensitized solar cells. Herein, we demonstrate the application of boron-doped nanocrystalline diamond (B:NCD) thin films, covalently functionalized with a dithienopyrrole-benzothiadiazole push-pull chromophore, as alternative photocathodes. First, a primary functional handle is introduced on H-terminated diamond via electrochemical diazonium grafting. Afterwards, Sonogashira cross-coupling and Cu(i) catalyzed azide-alkyne cycloaddition (CuAAC) reactions are employed to attach the chromophore, enabling the comparison of the degree of surface functionalization and the importance of the employed linker at the diamond-dye interface. X-ray photoelectron spectroscopy shows that surface functionalization via CuAAC results in a slightly higher chromophore coverage compared to the Sonogashira cross-coupling. However, photocurrents and photovoltages, obtained by photoelectrochemical and Kelvin probe measurements, are approximately three times larger on photocathodes functionalized via Sonogashira cross-coupling. Surface functionalization via Sonogashira cross-coupling is thus considered the preferential method for the development of diamond-based hybrid photovoltaics.
See more in PubMed
O'Regan B. Grätzel M. Nature. 1991;353:737–740. doi: 10.1038/353737a0. DOI
Kakiage K. Aoyama Y. Yano T. Oya K. Fujisawa J. Hanaya M. Chem. Commun. 2015;51:15894–15897. doi: 10.1039/C5CC06759F. PubMed DOI
Mathew S. Yella A. Gao P. Humphry-Baker R. Curchod B. F. Ashari-Astani N. Tavernelli I. Rothlisberger U. Nazeeruddin M. K. Gratzel M. Nat. Chem. 2014;6:242–247. doi: 10.1038/nchem.1861. PubMed DOI
Kavan L. Curr. Opin. Electrochem. 2017;2:88–96. doi: 10.1016/j.coelec.2017.03.008. DOI
Wood C. J. Summers G. H. Gibson E. A. Chem. Commun. 2015;51:3915–3918. doi: 10.1039/C4CC10230D. PubMed DOI
Nattestad A. Mozer A. J. Fischer M. K. Cheng Y. B. Mishra A. Bauerle P. Bach U. Nat. Mater. 2010;9:31–35. doi: 10.1038/nmat2588. PubMed DOI
Nattestad A. Perera I. Spiccia L. J. Photochem. Photobiol., C. 2016;28:44–71. doi: 10.1016/j.jphotochemrev.2016.06.003. DOI
Farre Y. Raissi M. Fihey A. Pellegrin Y. Blart E. Jacquemin D. Odobel F. ChemSusChem. 2017;10:2618–2625. doi: 10.1002/cssc.201700468. PubMed DOI
Perera I. R. Daeneke T. Makuta S. Yu Z. Tachibana Y. Mishra A. Bauerle P. Ohlin C. A. Bach U. Spiccia L. Angew. Chem., Int. Ed. Engl. 2015;54:3758–3762. doi: 10.1002/anie.201409877. PubMed DOI
Kobashi K. Nishimura K. Kawate Y. Horiuchi T. Phys. Rev. B: Condens. Matter Mater. Phys. 1988;38:4067–4084. doi: 10.1103/PhysRevB.38.4067. PubMed DOI
Nemanich R. J. Carlisle J. A. Hirata A. Haenen K. MRS Bull. 2014;39:490–494. doi: 10.1557/mrs.2014.97. DOI
Macpherson J. V. Phys. Chem. Chem. Phys. 2015;17:2935–2949. doi: 10.1039/C4CP04022H. PubMed DOI
Lim C. H. Y. X. Zhong Y. L. Janssens S. Nesladek M. Loh K. P. Adv. Funct. Mater. 2010;20:1313–1318. doi: 10.1002/adfm.200902204. DOI
Stotter J. Show Y. Wang S. Swain G. Chem. Mater. 2005;17:4880–4888. doi: 10.1021/cm050762z. DOI
Volpe P.-N. Pernot J. Muret P. Omnès F. Appl. Phys. Lett. 2009;94:092102. doi: 10.1063/1.3086397. DOI
Leroux Y. R. Fei H. Noel J. M. Roux C. Hapiot P. J. Am. Chem. Soc. 2010;132:14039–14041. doi: 10.1021/ja106971x. PubMed DOI
Pinson J. Podvorica F. Chem. Soc. Rev. 2005;34:429–439. doi: 10.1039/B406228K. PubMed DOI
Wang J. Firestone M. A. Auciello O. Carlisle J. A. Langmuir. 2004;20:11450–11456. doi: 10.1021/la048740z. PubMed DOI
Wang X. Colavita P. E. Streifer J. A. Butler J. E. Hamers R. J. J. Phys. Chem. C. 2010;114:4067–4074. doi: 10.1021/jp911264n. DOI
Wang X. Landis E. C. Franking R. Hamers R. J. Acc. Chem. Res. 2010;43:1205–1215. doi: 10.1021/ar100011f. PubMed DOI
Bogdanowicz R. Sawczak M. Niedzialkowski P. Zieba P. Finke B. Ryl J. Karczewski J. Ossowski T. J. Phys. Chem. C. 2014;118:8014–8025. doi: 10.1021/jp5003947. DOI
Nakamura T. Ohana T. Jpn. J. Appl. Phys. 2012;51:085201. doi: 10.7567/JJAP.51.085201. DOI
Zhong Y. L. Loh K. P. Chem.–Asian J. 2010;5:1532–1540. doi: 10.1002/asia.201000027. PubMed DOI
Meziane D. Barras A. Kromka A. Houdkova J. Boukherroub R. Szunerits S. Anal. Chem. 2012;84:194–200. doi: 10.1021/ac202350c. PubMed DOI
Yeap W. S. Murib M. S. Cuypers W. Liu X. van Grinsven B. Ameloot M. Fahlman M. Wagner P. Maes W. Haenen K. ChemElectroChem. 2014;1:1145–1154. doi: 10.1002/celc.201402068. DOI
Natsui K. Yamamoto T. Akahori M. Einaga Y. ACS Appl. Mater. Interfaces. 2015;7:887–894. doi: 10.1021/am5074613. PubMed DOI
Nakabayashi S. Ohta N. Fujishima A. Phys. Chem. Chem. Phys. 1999;1:3993–3997. doi: 10.1039/A905237B. DOI
Zhong Y. L. Loh K. P. Midya A. Chen Z.-K. Chem. Mater. 2008;20:3137–3144. doi: 10.1021/cm703686w. DOI
Zhong Y. L. Midya A. Ng Z. Chen Z. K. Daenen M. Nesladek M. Loh K. P. J. Am. Chem. Soc. 2008;130:17218–17219. doi: 10.1021/ja805977f. PubMed DOI
Yeap W. S. Liu X. Bevk D. Pasquarelli A. Lutsen L. Fahlman M. Maes W. Haenen K. ACS Appl. Mater. Interfaces. 2014;6:10322–10329. doi: 10.1021/am501783b. PubMed DOI
Yeap W. S. Bevk D. Liu X. Krysova H. Pasquarelli A. Vanderzande D. Lutsen L. Kavan L. Fahlman M. Maes W. Haenen K. RSC Adv. 2014;4:42044–42053. doi: 10.1039/C4RA04740K. DOI
Krysova H. Kavan L. Zivcova Z. V. Yeap W. S. Verstappen P. Maes W. Haenen K. Gao F. Nebel C. E. RSC Adv. 2015;5:81069–81077. doi: 10.1039/C5RA12413A. DOI
Krysova H. Vlckova-Zivcova Z. Barton J. Petrak V. Nesladek M. Cigler P. Kavan L. Phys. Chem. Chem. Phys. 2015;17:1165–1172. doi: 10.1039/C4CP04148H. PubMed DOI
Krysova H. Barton J. Petrak V. Jurok R. Kuchar M. Cigler P. Kavan L. Phys. Chem. Chem. Phys. 2016;18:16444–16450. doi: 10.1039/C6CP02209J. PubMed DOI
Chinchilla R. Najera C. Chem. Soc. Rev. 2011;40:5084–5121. doi: 10.1039/C1CS15071E. PubMed DOI
Raymakers J. Artemenko A. Nicley S. S. Štenclová P. Kromka A. Haenen K. Maes W. Rezek B. J. Phys. Chem. C. 2017;121:23446–23454. doi: 10.1021/acs.jpcc.7b06426. DOI
Meldal M. Tornoe C. W. Chem. Rev. 2008;108:2952–3015. doi: 10.1021/cr0783479. PubMed DOI
Wang M. Das M. R. Li M. Boukherroub R. Szunerits S. J. Phys. Chem. C. 2009;113:17082–17086. doi: 10.1021/jp904501q. DOI
Ghodbane S. Ballutaud D. Omnès F. Agnès C. Diamond Relat. Mater. 2010;19:630–636. doi: 10.1016/j.diamond.2010.01.014. DOI
Gupta A. Kelson M. M. A. Armel V. Bilic A. Bhosale S. V. Tetrahedron. 2014;70:2141–2150. doi: 10.1016/j.tet.2014.02.002. DOI
Janssens S. D. Pobedinskas P. Vacik J. Petráková V. Ruttens B. D'Haen J. Nesládek M. Haenen K. Wagner P. New J. Phys. 2011;13:083008. doi: 10.1088/1367-2630/13/8/083008. DOI
Drijkoningen S. Janssens S. D. Pobedinskas P. Koizumi S. Van Bael M. K. Haenen K. Sci. Rep. 2016;6:35667. doi: 10.1038/srep35667. PubMed DOI PMC
Polander L. E. Pandey L. Barlow S. Tiwari S. P. Risko C. Kippelen B. Brédas J.-L. Marder S. R. J. Phys. Chem. C. 2011;115:23149–23163. doi: 10.1021/jp208643k. DOI
Zhou H. Yang L. You W. Macromolecules. 2012;45:607–632. doi: 10.1021/ma201648t. DOI
Rohde R. D. Agnew H. D. Yeo W. S. Bailey R. C. Heath J. R. J. Am. Chem. Soc. 2006;128:9518–9525. doi: 10.1021/ja062012b. PubMed DOI PMC
Gouget-Laemmel A. C. Yang J. Lodhi M. A. Siriwardena A. Aureau D. Boukherroub R. Chazalviel J. N. Ozanam F. Szunerits S. J. Phys. Chem. C. 2012;117:368–375. doi: 10.1021/jp309866d. DOI
Heinrich T. Traulsen C. H. H. Darlatt E. Richter S. Poppenberg J. Traulsen N. L. Linder I. Lippitz A. Dietrich P. M. Dib B. Unger W. E. S. Schalley C. A. RSC Adv. 2014;4:17694–17702. doi: 10.1039/C4RA01730G. DOI
Gallagher W. P. Vo A. Org. Process Res. Dev. 2014;19:1369–1373. doi: 10.1021/op500336h. DOI
Cumpson P. J. Seah M. P. Surf. Interface Anal. 1997;25:430–446. doi: 10.1002/(SICI)1096-9918(199706)25:6<430::AID-SIA254>3.0.CO;2-7. DOI
Meinhardt T. Lang D. Dill H. Krueger A. Adv. Funct. Mater. 2011;21:494–500. doi: 10.1002/adfm.201001219. DOI
Das M. R. Wang M. Szunerits S. Gengembre L. Boukherroub R. Chem. Commun. 2009;25:2753–2755. doi: 10.1039/B901481K. PubMed DOI
Díez-González S. Catal. Sci. Technol. 2011;1:166–178. doi: 10.1039/C0CY00064G. DOI
Sako E. O. Kondoh H. Nakai I. Nambu A. Nakamura T. Ohta T. Chem. Phys. Lett. 2005;413:267–271. doi: 10.1016/j.cplett.2005.07.086. DOI
Chen X. Peng Y. Bradshaw D. Int. J. Miner. Process. 2013;125:129–136. doi: 10.1016/j.minpro.2013.08.007. DOI
Čermák J. Koide Y. Takeuchi D. Rezek B. J. Appl. Phys. 2014;115:053105. doi: 10.1063/1.4864420. DOI
Rezek B. Čermák J. Kromka A. Ledinský M. Kočka J. Diamond Relat. Mater. 2009;18:249–252. doi: 10.1016/j.diamond.2008.07.019. DOI
Hirayama D. Takimiya K. Aso Y. Otsubo T. Hasobe T. Yamada H. Imahori H. Fukuzumi S. Sakata Y. J. Am. Chem. Soc. 2002;124:532–533. doi: 10.1021/ja016703d. PubMed DOI
Otsubo T. Aso Y. Takimiya K. J. Mater. Chem. 2002;12:2565–2575. doi: 10.1039/B203780G. DOI