One-pot method for the synthesis of 1-aryl-2-aminoalkanol derivatives from the corresponding amides or nitriles
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
35557503
PubMed Central
PMC9092634
DOI
10.1039/d0ra04359a
PII: d0ra04359a
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
We have identified a novel one-pot method for the synthesis of β-amino alcohols, which is based on C-H bond hydroxylation at the benzylic α-carbon atom with a subsequent nitrile or amide functional group reduction. This cascade process uses molecular oxygen as an oxidant and sodium bis(2-methoxyethoxy)aluminum hydride as a reductant. The substrate scope was examined on 30 entries and, although the respective products were provided in moderate yields only, the above simple protocol may serve as a direct and powerful entry to the sterically congested 1,2-amino alcohols that are difficult to prepare by other routes. The plausible mechanistic rationale for the observed results is given and the reaction was applied to a synthesis of a potentially bioactive target.
See more in PubMed
Nguyen L. A. He H. Pham-Huy C. Int. J. Biomed. Sci. 2006;2:85. PubMed PMC
Smith S. W. Toxicol. Sci. 2009;110:4. doi: 10.1093/toxsci/kfp097. PubMed DOI
Brooks W. H. Guida W. C. Daniel K. G. Curr. Top. Med. Chem. 2011;11:760. doi: 10.2174/156802611795165098. PubMed DOI PMC
Hyneck M., Dent J., Hook J. B., Ariens E. J. and Davies D. S., in Chirality in Drug Design and Synthesis, ed. C. Brown, Academic Press, San Diego, 1st edn, 2013, pp. 1–51
Ager D. J. Prakash I. Schaad D. R. Chem. Rev. 1996;96:835. doi: 10.1021/cr9500038. PubMed DOI
Bergmeier S. C. Tetrahedron. 2000;56:2561. doi: 10.1016/S0040-4020(00)00149-6. DOI
Lee H.-S. Kang S. H. Synlett. 2004:1673. doi: 10.1055/s-2004-829578. DOI
Giorgio Della S. Alessio R. Alessandra L. Curr. Org. Chem. 2011;15:2147. doi: 10.2174/138527211796150741. DOI
Nakano H. Owolabi I. A. Chennapuram M. Okuyama Y. Kwon E. Seki S. Tokiwa M. Takeshita M. Heterocycles. 2018;97:647. doi: 10.3987/REV-18-SR(T)3. PubMed DOI PMC
Karjalainen O. K. Koskinen A. M. P. Org. Biomol. Chem. 2012;10:4311. doi: 10.1039/C2OB25357G. PubMed DOI
Sehl T. Maugeri Z. Rother D. J. Mol. Catal. B: Enzym. 2015;114:65. doi: 10.1016/j.molcatb.2014.12.005. DOI
Gupta P. Mahajan N. New J. Chem. 2018;42:12296. doi: 10.1039/C8NJ00485D. DOI
Vol. 8: Reduction, in Comprehensive Organic Synthesis , ed. J. Clayden, Elsevier Science, Amsterdam, 2nd edn, 2014
Cossy J. Gomez Pardo D. Dumas C. Mirguet O. Déchamps I. Métro T.-X. Burger B. Roudeau R. Appenzeller J. Cochi A. Chirality. 2009;21:856. doi: 10.1002/chir.20716. PubMed DOI
Métro T.-X. Duthion B. Gomez Pardo D. Cossy J. Chem. Soc. Rev. 2010;39:89. doi: 10.1039/B806985A. PubMed DOI
Weng C. Zhang H. Xiong X. Lu X. Zhou Y. Asian J. Chem. 2014;26:3761. doi: 10.14233/ajchem.2014.16015. DOI
Bhagavathula D. S. Boddeti G. Venu R. J. Chem. 2017;6:27.
Donohoe T. J. Callens C. K. A. Flores A. Lacy A. R. Rathi A. H. Chem.–Eur. J. 2011;17:58. doi: 10.1002/chem.201002323. PubMed DOI
Taniguchi T. Yajima A. Ishibashi H. Adv. Synth. Catal. 2011;353:2643. doi: 10.1002/adsc.201100315. DOI
Hofmann D. de Salas C. Heinrich M. R. ChemSusChem. 2015;8:3167. doi: 10.1002/cssc.201500188. PubMed DOI
Heravi M. M. Lashaki T. B. Fattahi B. Zadsirjan V. RSC Adv. 2018;8:6634. doi: 10.1039/C7RA12625E. PubMed DOI PMC
Burchak O. N. Py S. Tetrahedron. 2009;65:7333. doi: 10.1016/j.tet.2009.06.003. DOI
Fisher G. B. Goralski C. T. Nicholson L. W. Hasha D. L. Zakett D. Singaram B. J. Org. Chem. 1995;60:2026. doi: 10.1021/jo00112a026. DOI
Kamimura A. Ono N. Tetrahedron Lett. 1989;30:731. doi: 10.1016/S0040-4039(01)80295-1. DOI
Tsay S.-C. Patel H. V. Hwu J. R. Synlett. 1998:939. doi: 10.1055/s-1998-1827. DOI
Diner P. Nielsen M. Bertelsen S. Niess B. Jørgensen K. A. Chem. Commun. 2007:3646. doi: 10.1039/B707844G. PubMed DOI
Russo A. Lattanzi A. Adv. Synth. Catal. 2008;350:1991. doi: 10.1002/adsc.200800387. DOI
Brunker H.-G. Adam W. J. Am. Chem. Soc. 1995;117:3976. doi: 10.1021/ja00119a012. DOI
Adam W. Brunker H.-G. Synthesis. 1995:1066. doi: 10.1055/s-1995-4071. DOI
Otevrel J. Bobal P. Synthesis. 2017;49:593.
Otevrel J. Bobal P. J. Org. Chem. 2017;82:8342. doi: 10.1021/acs.joc.7b00079. PubMed DOI
Otevrel J. Svestka D. Bobal P. Org. Biomol. Chem. 2019;17:5244. doi: 10.1039/C9OB00884E. PubMed DOI
Vit J., Casensky B. and Machacek J., Patent FR 1515582, Czechoslovak Academy of Sciences, 1968; Chem. Abstr., 1969, 70, 115009
Strouf O., Casensky B. and Kubanek V., Sodium Dihydrido-bis(2-methoxyethoxo)-aluminate (SDMA): A Versatile Organometallic Hydride, Elsevier, Amsterdam, 1985
Malek J. Org. React. 1985;34:1.
Malek J. Org. React. 1988;36:249.
Gugelchuk M., Silva III L. F., Vasconcelos R. S. and Quintiliano S. A. P., Bis(2-methoxyethoxy)aluminum Hydride, in Encyclopedia of Reagents for Organic Synthesis, ed. P. Fuchs, J. Bode, A. Charette and T. Rovis, John Wiley, New York, 2007
Rathi A. Synlett. 2010:1140. doi: 10.1055/s-0029-1219578. DOI
Smith M. B., Organic Synthesis, Elsevier Science, Cambridge, 2016, pp. 339–344
Bajwa N. Jennings M. P. J. Org. Chem. 2008;73:3638. doi: 10.1021/jo800150x. PubMed DOI
von Kieseritzky F. Lindstrom J. Tetrahedron Lett. 2011;52:4558. doi: 10.1016/j.tetlet.2011.06.092. DOI
Miyamoto K. Hoque M. M. Ogasa S. J. Org. Chem. 2012;77:8317. doi: 10.1021/jo300947h. PubMed DOI
Wu J. Xiao J. Dai W. Cao S. RSC Adv. 2015;5:34498. doi: 10.1039/C5RA04221F. DOI
Sun R. Liu J. Yang S. Chen M. Sun N. Chen H. Xie X. You X. Li S. Liu Y. Chem. Commun. 2015;51:6426. doi: 10.1039/C5CC00950B. PubMed DOI
Jeon H. H. Son J. B. Choi J. H. Jeong I. H. Tetrahedron Lett. 2007;48:627. doi: 10.1016/j.tetlet.2006.11.111. DOI
Konno T. Kishi M. Ishihara T. Yamada S. J. Fluorine Chem. 2013;156:144. doi: 10.1016/j.jfluchem.2013.09.010. DOI
Jin G. Zhang J. Wu W. Cao S. J. Fluorine Chem. 2014;168:240. doi: 10.1016/j.jfluchem.2014.10.010. DOI
Kraus M. Collect. Czech. Chem. Commun. 1972;37:3052. doi: 10.1135/cccc19723052. DOI
Czakoova M. Hetflejs J. Vcelak J. React. Kinet. Catal. Lett. 2001;72:277. doi: 10.1023/A:1010590812641. DOI
Bazant V. Capka M. Cerny M. Chvalovsky V. Kochloefl K. Kraus M. Malek J. Tetrahedron Lett. 1968;9:3303. doi: 10.1016/S0040-4039(00)89552-0. DOI
Cerny M. Malek J. Capka M. Chvalovsky V. Collect. Czech. Chem. Commun. 1969;34:1033. doi: 10.1135/cccc19691033. DOI
Kharasch M. S. Sosnovsky G. Tetrahedron. 1958;3:97. doi: 10.1016/0040-4020(58)80001-0. DOI
Kharasch M. S. Sosnovsky G. Tetrahedron. 1958;3:105. doi: 10.1016/0040-4020(58)80002-2. DOI
Selikson J. S. Watt D. S. J. Org. Chem. 1975;40:267. doi: 10.1021/jo00890a032. DOI
Walling C., Autoxidation in Active Oxygen in Chemistry, ed. C. S. Foote, J. S. Valentine, A. Greenberg and J. F. Liebman, Springer, Dordrecht, 1995, pp. 24–65
Bergstrasser U., Collier S. J., Ito Y., Kanemasa S. and Murahashi S. I., Three Carbon–Heteroatom Bonds: Nitriles, Isocyanides, and Derivatives in Science of Synthesis: Houben-Weyl Methods of Molecular Transformations, ed. S. I. Murahashi, Georg Thieme, Stuttgart, 2004, vol. 19
Moller M. Husemann M. Boche G. J. Organomet. Chem. 2001;624:47. doi: 10.1016/S0022-328X(00)00596-9. DOI
Bender D. M., Cantrell B. E., Fray A. H., Jones W. D., Miller W. D., Mitchell D., Simon R. L., Zarrinmayeh H. and Zimmerman D. M., Patent WO 2000066546, Eli Lilly, 2000Chem. Abstr., 2000, 133, 350055
Clemens J. A. and Lodge D., Patent WO 2002032389, Eli Lilly, 2002Chem. Abstr., 2002, 136, 340487
Sommer L. H. Frye C. L. Parker G. A. Michael K. W. J. Am. Chem. Soc. 1964;86:3271. doi: 10.1021/ja01070a014. DOI
Amir M. Kumar H. Javed S. A. Arch. Pharm. 2007;340:577. doi: 10.1002/ardp.200700065. PubMed DOI
Ohtsuka N. Okuno M. Hoshino Y. Honda K. A. Org. Biomol. Chem. 2016;14:9046. doi: 10.1039/C6OB01178K. PubMed DOI
Kerdesky F. A. J. Brooks C. D. W. Hulkower K. I. Bouska J. B. Bell R. L. Bioorg. Med. Chem. 1997;5:393. doi: 10.1016/S0968-0896(96)00255-6. PubMed DOI
Tu T. Wang Z. Liu Z. Feng X. Wang Q. Green Chem. 2012;14:921. doi: 10.1039/C2GC16637B. DOI
Kanda T. Naraoka A. Naka H. J. Am. Chem. Soc. 2019;141:825. doi: 10.1021/jacs.8b12877. PubMed DOI
Mecca T. Superchi S. Giorgio E. Rosini C. Tetrahedron: Asymmetry. 2001;12:1225. doi: 10.1016/S0957-4166(01)00199-9. DOI
Kimura M. Kuboki A. Sugai T. Tetrahedron: Asymmetry. 2002;13:1059. doi: 10.1016/S0957-4166(02)00242-2. DOI
Bonner W. A. J. Am. Chem. Soc. 1954;76:6350. doi: 10.1021/ja01653a031. DOI
Iqbal N. Cho E. J. Adv. Synth. Catal. 2015;357:2187. doi: 10.1002/adsc.201500257. DOI
Bellale E. V. Bhalerao D. S. Akamanchi K. G. J. Org. Chem. 2008;73:9473. doi: 10.1021/jo801580g. PubMed DOI
Nemeth G. Rakoczy E. Simig G. J. Fluorine Chem. 1996;76:91. doi: 10.1016/0022-1139(95)03338-6. DOI
Dale J. A. Dull D. L. Mosher S. H. J. Org. Chem. 1969;34:2543. doi: 10.1021/jo01261a013. DOI
Li F. Zou X. Wang N. Adv. Synth. Catal. 2015;357:1405. doi: 10.1002/adsc.201401013. DOI
Guo B. de Vries J. G. Otten E. Chem. Sci. 2019;10:10647. doi: 10.1039/C9SC04624K. PubMed DOI PMC
Xia H.-M. Zhang F.-L. Ye T. Wang Y.-F. Angew. Chem., Int. Ed. 2018;57:11770. doi: 10.1002/anie.201804794. PubMed DOI
Khan N. H. Agrawal S. Kureshy R. I. Abdi S. H. R. Singh S. Jasra R. V. J. Organomet. Chem. 2007;692:4361. doi: 10.1016/j.jorganchem.2007.07.011. DOI
Gassman P. G. Talley J. J. Org. Synth. 1981;60:14. doi: 10.15227/orgsyn.060.0014. DOI
Hiyama T. Inoue M. Saito K. Synthesis. 1986:645. doi: 10.1055/s-1986-31732. DOI
Shang R. Ji D.-S. Chu L. Fu Y. Liu L. Angew. Chem., Int. Ed. 2011;50:4470. doi: 10.1002/anie.201006763. PubMed DOI
Xiao J. Wong Z. Z. Lu Y. P. Loh T. P. Adv. Synth. Catal. 2010;352:1107. doi: 10.1002/adsc.200900908. DOI
Dornow A. Sassenberg W. Justus Liebigs Ann. Chem. 1955;594:185. doi: 10.1002/jlac.19555940303. DOI
Balaramnavar V. M. Srivastava R. Rahuja N. Gupta S. Rawat A. K. Varshney S. Chandasana H. Chhonker Y. S. Doharey P. K. Kumar S. Gautam S. Srivastava S. P. Bhatta R. S. Saxena J. K. Gaikwad A. N. Srivastava A. K. Saxena A. K. Eur. J. Med. Chem. 2014;87:578. doi: 10.1016/j.ejmech.2014.09.097. PubMed DOI
Casey C. P. Guan H. J. Am. Chem. Soc. 2007;129:5816. doi: 10.1021/ja071159f. PubMed DOI
Castell J. V. Gomez-Lechon M. J. Miranda M. A. Morera I. M. J. Photochem. Photobiol., B. 1992;13:71. doi: 10.1016/1011-1344(92)80041-S. PubMed DOI
Riley D. P. Getman D. P. Beck G. R. Heintz R. M. J. Org. Chem. 1987;52:287. doi: 10.1021/jo00378a027. DOI