The use of tensiomyography in older adults: a systematic review

. 2023 ; 14 () : 1213993. [epub] 20230616

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu systematický přehled, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37398907

Introduction: Aging of skeletal muscles results in a cascade of events negatively affecting muscle mass, strength, and function, leading to reduced mobility, increased risk of falls, disability, and loss of independence. To date, different methods are used to assess muscle mechanical function, tensiomyography (TMG) being one of them. The aim of this review was twofold: to summarize the evidence-based usefulness of tensiomyography in older adults and to establish reference values for the main tensiomyography parameters in older adults. Methods: The PubMed, Web of Science, SPORTDiscus, and tensiomyography databases were searched from inception until 25 December 2022. Studies investigating older adults (aged 60+ years) that reported tensiomyography-derived parameters such as contraction time (Tc) and/or maximal displacement (Dm) were included. Methodological quality was assessed using the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Results: In total, eight studies satisfied the inclusion criteria. Tensiomyography has been used on different groups of older adults, including asymptomatic, master athletes, patients with peripheral arterial disease, and patients with end-stage knee osteoarthritis with a mean age of 71.5 ± 5.38 (55.7% male subjects). The most evaluated were leg muscles such as vastus lateralis (VL), gastrocnemius medialis (GM), and biceps femoris (BF). The present review demonstrates that tensiomyography is used to assess neuromuscular function in asymptomatic and diseased older adults. When compared to asymptomatic individuals, power master athletes, knee osteoarthritis patients, and patients diagnosed with peripheral arterial disease have the shortest Tc in BF, VL, and GM muscles, respectively. On the other hand, endurance master athletes showed the longest Tc in all three evaluated muscles. Less mobile, nursing-home residents showed higher Dm in VL and BF, while lower Dm in GM than the asymptomatic group. The knee osteoarthritis group showed the largest Dm in BF and VL while having the smallest Dm in GM. Conclusion: Tensiomyography can serve as a valuable tool for assessing neuromuscular function in older adults. The method is sensitive to muscle composition, architecture, and (pre) atrophic changes of the skeletal muscles and might be responsive to muscle quality changes in aging and diseased populations. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=402345, identifier CRD42023402345.

Zobrazit více v PubMed

Ambrosio G. B., Scannapieco G., Vescovo G., Ravara B., Parisi R., Bortoluzzi C., et al. (2000). Improvement in walking distance after rehabilitation in patients with peripheral arterial disease is associated with changes in skeletal muscle myosin heavy chains. Basic Appl. Myol. 10, 231–235.

Callahan D. M., Tourville T. W., Miller M. S., Hackett S. B., Sharma H., Cruickshank N. C., et al. (2015). Chronic disuse and skeletal muscle structure in older adults: Sex-specific differences and relationships to contractile function. Am. J. Physiology-Cell Physiology 308, C932–C943. 10.1152/ajpcell.00014.2015 PubMed DOI PMC

Conroy M. B., Kwoh C. K., Krishnan E., Nevitt M. C., Boudreau R., Carbone L. D., et al. (2012). Muscle strength, mass, and quality in older men and women with knee osteoarthritis. Arthritis Care Res. Hob. 64, 15–21. 10.1002/acr.20588 PubMed DOI PMC

Cruz-Jentoft A. J., Baeyens J. P., Bauer J. M., Boirie Y., Cederholm T., Landi F., et al. (2010). Sarcopenia: European consensus on definition and diagnosis: Report of the European working group on sarcopenia in older people. Age Ageing 39, 412–423. 10.1093/ageing/afq034 PubMed DOI PMC

Cruz-Jentoft A. J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., et al. (2019). Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 48, 16–31. 10.1093/ageing/afy169 PubMed DOI PMC

Dahmane R., Valencic I. V., Knez N., Erzen I. (2001). Evaluation of the ability to make non-invasive estimation of muscle contractile properties on the basis of the muscle belly response. Med. Biol. Eng. Comput. 39, 51–55. 10.1007/BF02345266 PubMed DOI

De Rezende L. F. M., Rey-López J. P., Matsudo V. K. R., Luiz O. D. C. (2014). Sedentary behavior and health outcomes among older adults: A systematic review. BMC Public Health 14, 333. 10.1186/1471-2458-14-333 PubMed DOI PMC

Di Girolamo F. G., Fiotti N., Milanović Z., Situlin R., Mearelli F., Vinci P., et al. (2021). The aging muscle in experimental bed rest: A systematic review and meta-analysis. Front. Nutr. 8, 633987. 10.3389/fnut.2021.633987 PubMed DOI PMC

Edwén C. E., Thorlund J. B., Magnusson S. P., Slinde F., Svantesson U., Hulthén L., et al. (2014). Stretch-shortening cycle muscle power in women and men aged 18-81 years: Influence of age and gender. Scand. J. Med. Sci. Sports 24, 717–726. 10.1111/sms.12066 PubMed DOI

Fabiani E., Herc M., Šimunič B., Brix B., Löffler K., Weidinger L., et al. (2021). Correlation between timed up and go test and skeletal muscle tensiomyography in female nursing home residents. J. Musculoskelet. Neuronal Interact. 21, 247–254. Available at: http://www.ismni.org . PubMed PMC

Fink B., Egl M., Singer J., Fuerst M., Bubenheim M., Neuen-Jacob E. (2007). Morphologic changes in the vastus medialis muscle in patients with osteoarthritis of the knee. Arthritis Rheum. 56, 3626–3633. 10.1002/art.22960 PubMed DOI

Franchi M. V., Sarto F., Šimunič B., Pišot R., Narici M. V. (2022). Early changes of hamstrings morphology and contractile properties during 10 d of complete inactivity. Med. Sci. Sports Exerc 54, 1346–1354. 10.1249/MSS.0000000000002922 PubMed DOI

Gasparini M., Sabovic M., Gregoric I. D., Simunic B., Pisot R. (2012). Increased fatigability of the gastrocnemius medialis muscle in individuals with intermittent claudication. Eur. J. Vasc. Endovascular Surg. 44, 170–176. 10.1016/j.ejvs.2012.04.024 PubMed DOI

Ghazwan A., Wilson C., Holt C. A., Whatling G. M. (2022). Knee osteoarthritis alters peri-articular knee muscle strategies during gait. PLoS One 17, 0262798. 10.1371/journal.pone.0262798 PubMed DOI PMC

Goodpaster B. H., He J., Watkins S., Kelley D. E. (2001). Skeletal muscle lipid content and insulin resistance: Evidence for a paradox in endurance-trained athletes. J. Clin. Endocrinol. Metabolism 86, 5755–5761. 10.1210/jcem.86.12.8075 PubMed DOI

Harvey J. A., Chastin S. F. M., Skelton D. A. (2015). How sedentary are older people? A systematic review of the amount of sedentary behavior. J. Aging Phys. Act. 23, 471–487. 10.1123/japa.2014-0164 PubMed DOI

Hawkins S. A., Wiswell R. A., Marcell T. J. (2003). Exercise and the master athlete--a model of successful aging? J. Gerontol. A Biol. Sci. Med. Sci. 58, 1009–1011. 10.1093/gerona/58.11.m1009 PubMed DOI

Holloszy J. O. (2000). The biology of aging. Mayo Clin. Proc. 75, S3–S9. 10.1016/s0025-6196(19)30634-2 PubMed DOI

Inouye S. K., Studenski S., Tinetti M. E., Kuchel G. A. (2007). Geriatric syndromes: Clinical, research, and policy implications of a core geriatric concept. J. Am. Geriatr. Soc. 55, 780–791. 10.1111/j.1532-5415.2007.01156.x PubMed DOI PMC

Jacob I., Johnson M. I., Jones G., Jones A., Francis P. (2022). Age-related differences of vastus lateralis muscle morphology, contractile properties, upper body grip strength and lower extremity functional capability in healthy adults aged 18 to 70 years. BMC Geriatr. 22, 538. 10.1186/s12877-022-03183-4 PubMed DOI PMC

Kettunen J. A., Kujala U. M., Kaprio J., Sarna S. (2006). Health of master track and field athletes: A 16-year follow-up study. Clin. J. Sport Med. 16, 142–148. 10.1097/00042752-200603000-00010 PubMed DOI

Korhonen M. T., Cristea A., Alén M., Häkkinen K., Sipilä S., Mero A., et al. (2006). Aging, muscle fiber type, and contractile function in sprint-trained athletes. J. Appl. Physiol. 101, 906–917. 10.1152/japplphysiol.00299.2006 PubMed DOI

Leong D. P., Teo K. K., Rangarajan S., Lopez-Jaramillo P., Avezum A., Orlandini A., et al. (2015). Prognostic value of grip strength: Findings from the prospective urban rural epidemiology (PURE) study. Lancet 386, 266–273. 10.1016/S0140-6736(14)62000-6 PubMed DOI

Liu Y., Schlumberger A., Wirth K., Schmidtbleicher D., Steinacker J. M. (2003). Different effects on human skeletal myosin heavy chain isoform expression: Strength vs. combination training. J. Appl. Physiol. 94, 2282–2288. 10.1152/japplphysiol.00830.2002 PubMed DOI

McDermott M. M., Ferrucci L., Gonzalez-Freire M., Kosmac K., Leeuwenburgh C., Peterson C. A., et al. (2020). Skeletal muscle pathology in peripheral artery disease: A brief review. Arterioscler. Thromb. Vasc. Biol. 40, 2577–2585. 10.1161/ATVBAHA.120.313831 PubMed DOI PMC

McGuigan M. R., Bronks R., Newton R. U., Sharman M. J., Graham J. C., Cody D. V., et al. (2001). Muscle fiber characteristics in patients with peripheral arterial disease. Med. Sci. Sports Exerc 33, 2016–2021. 10.1097/00005768-200112000-00007 PubMed DOI

Mckendry J., Breen L., Shad B. J., Greig C. A. (2018). Muscle morphology and performance in master athletes: A systematic review and meta-analyses. Ageing Res. Rev. 45, 62–82. 10.1016/j.arr.2018.04.007 PubMed DOI

Melton L. J., Khosla S., Crowson C. S., O’Connor M. K., O’Fallon W. M., Riggs B. L. (2000). Epidemiology of sarcopenia. J. Am. Geriatr. Soc. 48, 625–630. 10.1111/j.1532-5415.2000.tb04719.x PubMed DOI

Müller D. C., Boeno F. P., Izquierdo M., Aagaard P., Teodoro J. L., Grazioli R., et al. (2021). Effects of high-intensity interval training combined with traditional strength or power training on functionality and physical fitness in healthy older men: A randomized controlled trial. Exp. Gerontol. 149, 111321. 10.1016/j.exger.2021.111321 PubMed DOI

Mutungi G., Ranatunga K. W. (1996). The viscous, viscoelastic and elastic characteristics of resting fast and slow mammalian (rat) muscle fibres. J. Physiol. 496, 827–836. 10.1113/jphysiol.1996.sp021730 PubMed DOI PMC

Nilwik R., Snijders T., Leenders M., Groen B. B. L., van Kranenburg J., Verdijk L. B., et al. (2013). The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp. Gerontol. 48, 492–498. 10.1016/j.exger.2013.02.012 PubMed DOI

NLHBI (2021). NHLBI. Quality assessment tool for observational cohort and cross-sectional studies. Available at: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (Accessed April 8, 2023).

Noehren B., Andersen A., Hardy P., Johnson D. L., Ireland M. L., Thompson K. L., et al. (2016). Cellular and morphological alterations in the vastus lateralis muscle as the result of ACL injury and reconstruction. J. Bone Jt. Surg. 98, 1541–1547. 10.2106/JBJS.16.00035 PubMed DOI PMC

Noehren B., Kosmac K., Walton R. G., Murach K. A., Lyles M. F., Loeser R. F., et al. (2018). Alterations in quadriceps muscle cellular and molecular properties in adults with moderate knee osteoarthritis. Osteoarthr. Cartil. 26, 1359–1368. 10.1016/j.joca.2018.05.011 PubMed DOI PMC

Ochala J., Frontera W. R., Dorer D. J., Hoecke J. V., Krivickas L. S. (2007). Single skeletal muscle fiber elastic and contractile characteristics in young and older men. J. Gerontol. A Biol. Sci. Med. Sci. 62, 375–381. 10.1093/gerona/62.4.375 PubMed DOI

Page M. J., McKenzie J. E., Bossuyt P. M., Boutron I., Hoffmann T. C., Mulrow C. D., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 10, 89. 10.1186/s13643-021-01626-4 PubMed DOI PMC

Paravlic A. H., Pisot R., Simunic B. (2020). Muscle-specific changes of lower extremities in the early period after total knee arthroplasty: Insight from tensiomyography. J. Musculoskelet. Neuronal Interact. 20, 390–397. Available at: http://www.ismni.org . PubMed PMC

Paschal K. A., Oswald A. R., Siegmund R. W., Siegmund S. E., Joseph Threlkeld A. (2006). Test-retest reliability of the physical performance test for persons with Parkinson disease. J. Geriatric Phys. Ther. 29, 82–86. 10.1519/00139143-200612000-00001 PubMed DOI

Pette D., Staron R. S. (1997). Mammalian skeletal muscle fiber type transitions. Int. Rev. Cytol. 170, 143–223. 10.1016/S0074-7696(08)61622-8 PubMed DOI

Piasecki J., Ireland A., Piasecki M., Deere K., Hannam K., Tobias J., et al. (2019). Comparison of muscle function, bone mineral density and body composition of early starting and later starting older masters athletes. Front. Physiol. 10, 1050. 10.3389/fphys.2019.01050 PubMed DOI PMC

Pišot R., Marusic U., Biolo G., Mazzucco S., Lazzer S., Grassi B., et al. (2016). Greater loss in muscle mass and function but smaller metabolic alterations in older compared with younger men following 2 wk of bed rest and recovery. J. Appl. Physiol. 120, 922–929. 10.1152/japplphysiol.00858.2015 PubMed DOI

Pišot R., Narici M. V., Šimunič B., De Boer M., Seynnes O., Jurdana M., et al. (2008). Whole muscle contractile parameters and thickness loss during 35-day bed rest. Eur. J. Appl. Physiol. 104, 409–414. 10.1007/s00421-008-0698-6 PubMed DOI

Pollock R. D., O’Brien K. A., Daniels L. J., Nielsen K. B., Rowlerson A., Duggal N. A., et al. (2018). Properties of the vastus lateralis muscle in relation to age and physiological function in master cyclists aged 55-79 years. Aging Cell. 17, e12735. 10.1111/acel.12735 PubMed DOI PMC

Rejc E., Floreani M., Taboga P., Botter A., Toniolo L., Cancellara L., et al. (2018). Loss of maximal explosive power of lower limbs after 2 weeks of disuse and incomplete recovery after retraining in older adults. J. Physiology 596, 647–665. 10.1113/JP274772 PubMed DOI PMC

Rittweger J., Kwiet A., Felsenberg D. (2004). Physical performance in aging elite athletes--challenging the limits of physiology. J. Musculoskelet. Neuronal Interact. 4, 159–160. PubMed

Rodríguez-Ruiz D., García-Manso J. M., Rodríguez-Matoso D., Sarmiento S., Da Silva-Grigoletto M., Pisot R. (2013). Effects of age and physical activity on response speed in knee flexor and extensor muscles. Eur. Rev. Aging Phys. Activity 10, 127–132. 10.1007/s11556-013-0127-7 DOI

Schaap L. A., Koster A., Visser M. (2013). Adiposity, muscle mass, and muscle strength in relation to functional decline in older persons. Epidemiol. Rev. 35, 51–65. 10.1093/epirev/mxs006 PubMed DOI

Schaap L. A., van Schoor N. M., Lips P., Visser M. (2018). Associations of sarcopenia definitions, and their components, with the incidence of recurrent falling and fractures: The longitudinal aging study amsterdam. Journals Gerontology Ser. A 73, 1199–1204. 10.1093/gerona/glx245 PubMed DOI

Schieber M. N., Hasenkamp R. M., Pipinos I. I., Johanning J. M., Stergiou N., DeSpiegelaere H. K., et al. (2017). Muscle strength and control characteristics are altered by peripheral artery disease. J. Vasc. Surg. 66, 178–186. 10.1016/j.jvs.2017.01.051 PubMed DOI PMC

Shafrin J., Sullivan J., Goldman D. P., Gill T. M. (2017). The association between observed mobility and quality of life in the near elderly. PLoS One 12, 0182920. 10.1371/journal.pone.0182920 PubMed DOI PMC

Sharman M. J., Newton R. U., Triplett-McBride T., McGuigan M. R. M., McBride J. M., Häkkinen A., et al. (2001). Changes in myosin heavy chain composition with heavy resistance training in 60- to 75-year-old men and women. Eur. J. Appl. Physiol. 84, 127–132. 10.1007/s004210000334 PubMed DOI

Šimunič B., Degens H., Rittweger J., Narici M., Mekjavić I. B., Pišot R. (2011). Noninvasive estimation of myosin heavy chain composition in human skeletal muscle. Med. Sci. Sports Exerc 43, 1619–1625. 10.1249/mss.0b013e31821522d0 PubMed DOI

Šimunič B., Degens H., Zavrsnik J., Koren K., Volmut T., Pišot R. (2017). Tensiomyographic assessment of muscle contractile properties in 9- to 14-year old children. Int. J. Sports Med. 38, 659–665. 10.1055/s-0043-110679 PubMed DOI

Šimunič B., Koren K., Rittweger J., Lazzer S., Reggiani C., Rejc E., et al. (2019). Tensiomyography detects early hallmarks of bed-rest-induced atrophy before changes in muscle architecture. J. Appl. Physiol. 126, 815–822. 10.1152/japplphysiol.00880.2018 PubMed DOI

Šimunič B., Pišot R., Rittweger J., Degens H. (2018). Age-related slowing of contractile properties differs between power, endurance, and nonathletes: A tensiomyographic assessment. Journals Gerontology Ser. A 73, 1602–1608. 10.1093/gerona/gly069 PubMed DOI

Suominen H., Korhonen M. (2010). “Sport performance in master athletes: Age‐associated changes and underlying neuromuscular factors,” in Neuromuscular aspects of sport performance (Wiley; ), 270–282. 10.1002/9781444324822.ch15 DOI

Tanner C. J., Barakat H. A., Dohm G. L., Pories W. J., MacDonald K. G., Cunningham P. R. G., et al. (2002). Muscle fiber type is associated with obesity and weight loss. Am. J. Physiology-Endocrinology Metabolism 282, E1191–E1196. 10.1152/ajpendo.00416.2001 PubMed DOI

Tieland M., Trouwborst I., Clark B. C. (2018). Skeletal muscle performance and ageing. J. Cachexia Sarcopenia Muscle 9, 3–19. 10.1002/jcsm.12238 PubMed DOI PMC

TMG-BMC Ltd (2022). TMG publications. Available at: https://www.tmg-bodyevolution.com/research/tmg-list-of-publications-3/ (Accessed December 26, 2022).

Verdijk L. B., Gleeson B. G., Jonkers R. A. M., Meijer K., Savelberg H. H. C. M., Dendale P., et al. (2009). Skeletal muscle hypertrophy following resistance training is accompanied by a fiber type-specific increase in satellite cell content in elderly men. J. Gerontol. A Biol. Sci. Med. Sci. 64A, 332–339. 10.1093/gerona/gln050 PubMed DOI PMC

Wilkinson D. J., Piasecki M., Atherton P. J. (2018). The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res. Rev. 47, 123–132. 10.1016/j.arr.2018.07.005 PubMed DOI PMC

Woo T., Yu S., Visvanathan R. (2016). Systematic literature review on the relationship between biomarkers of sarcopenia and quality of life in older people. J. Frailty Aging 5, 88–99. 10.14283/jfa.2016.93 PubMed DOI

Ziegl A., Hayn D., Kastner P., Fabiani E., Šimunič B., Löffler K., et al. (2021). Quantification of the link between timed up-and-go test subtasks and contractile muscle properties. Sensors 21, 6539. 10.3390/s21196539 PubMed DOI PMC

Zubac D., Paravlić A., Koren K., Felicita U., Šimunič B. (2019). Plyometric exercise improves jumping performance and skeletal muscle contractile properties in seniors. J. Musculoskelet. Neuronal Interact. 19, 38–49. Available at: http://www.ismni.org . PubMed PMC

Zubac D., Šimunič B. (2017). Skeletal muscle contraction time and tone decrease after 8 Weeks of plyometric training. J. Strength Cond. Res. 31, 1610–1619. 10.1519/JSC.0000000000001626 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...