• This record comes from PubMed

Bioluminescent Zebrafish Transplantation Model for Drug Discovery

. 2022 ; 13 () : 893655. [epub] 20220427

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Grant support
DP2 CA186572 NCI NIH HHS - United States
P30 CA008748 NCI NIH HHS - United States

In the last decade, zebrafish have accompanied the mouse as a robust animal model for cancer research. The possibility of screening small-molecule inhibitors in a large number of zebrafish embryos makes this model particularly valuable. However, the dynamic visualization of fluorescently labeled tumor cells needs to be complemented by a more sensitive, easy, and rapid mode for evaluating tumor growth in vivo to enable high-throughput screening of clinically relevant drugs. In this study we proposed and validated a pre-clinical screening model for drug discovery by utilizing bioluminescence as our readout for the determination of transplanted cancer cell growth and inhibition in zebrafish embryos. For this purpose, we used NanoLuc luciferase, which ensured rapid cancer cell growth quantification in vivo with high sensitivity and low background when compared to conventional fluorescence measurements. This allowed us large-scale evaluation of in vivo drug responses of 180 kinase inhibitors in zebrafish. Our bioluminescent screening platform could facilitate identification of new small-molecules for targeted cancer therapy as well as for drug repurposing.

See more in PubMed

Ablain J., Liu S., Moriceau G., Lo R. S., Zon L. I. (2021). SPRED1 Deletion Confers Resistance to MAPK Inhibition in Melanoma. J. Exp. Med. 218 (3). 10.1084/jem.20201097 PubMed DOI PMC

Aleström P., D'Angelo L., Midtlyng P. J., Schorderet D. F., Schulte-Merker S., Sohm F., et al. (2020). Zebrafish: Housing and Husbandry Recommendations. Lab. Anim. 54 (3), 213–224. 10.1177/0023677219869037 PubMed DOI PMC

Almstedt E., Rosén E., Gloger M., Stockgard R., Hekmati N., Koltowska K., et al. (2021). Real-time Evaluation of Glioblastoma Growth in Patient-specific Zebrafish Xenografts. Neuro-Oncology, noab264. 10.1093/neuonc/noab264 PubMed DOI PMC

Andreu N., Zelmer A., Fletcher T., Elkington P. T., Ward T. H., Ripoll J., et al. (2010). Optimisation of Bioluminescent Reporters for Use with Mycobacteria. PLoS One 5 (5), e10777. 10.1371/journal.pone.0010777 PubMed DOI PMC

Arrowsmith C. H., Audia J. E., Austin C., Baell J., Bennett J., Blagg J., et al. (2015). The Promise and Peril of Chemical Probes. Nat. Chem. Biol. 11 (8), 536–541. 10.1038/nchembio.1867 PubMed DOI PMC

Astuti Y., Kramer A. C., Blake A. L., Blazar B. R., Tolar J., Taisto M. E., et al. (2017). A Functional Bioluminescent Zebrafish Screen for Enhancing Hematopoietic Cell Homing. Stem Cel Rep. 8 (1), 177–190. 10.1016/j.stemcr.2016.12.004 PubMed DOI PMC

Baeten J. T., Waarts M. R., Pruitt M. M., Chan W. C., Andrade J., de Jong J. L. O. (2019). The Side Population Enriches for Leukemia-Propagating Cell Activity and Wnt Pathway Expression in Zebrafish Acute Lymphoblastic Leukemia. Haematologica 104 (7), 1388–1395. 10.3324/haematol.2018.206417 PubMed DOI PMC

Berestjuk I., Lecacheur M., Carminati A., Diazzi S., Rovera C., Prod’homme V., et al. (2022). Targeting Discoidin Domain Receptors DDR1 and DDR2 Overcomes Matrix‐mediated Tumor Cell Adaptation and Tolerance to BRAF‐targeted Therapy in Melanoma. EMBO Mol. Med. 14 (2), e11814. 10.15252/emmm.201911814 PubMed DOI PMC

Bhullar K. S., Lagarón N. O., McGowan E. M., Parmar I., Jha A., Hubbard B. P., et al. (2018). Kinase-targeted Cancer Therapies: Progress, Challenges and Future Directions. Mol. Cancer 17 (1), 48. 10.1186/s12943-018-0804-2 PubMed DOI PMC

Bowman T. V., Zon L. I. (2010). Swimming into the Future of Drug Discovery: In Vivo Chemical Screens in Zebrafish. ACS Chem. Biol. 5 (2), 159–161. 10.1021/cb100029t PubMed DOI PMC

Cagan R. L., Zon L. I., White R. M. (2019). Modeling Cancer with Flies and Fish. Dev. Cel 49 (3), 317–324. 10.1016/j.devcel.2019.04.013 PubMed DOI PMC

Capasso A., Lang J., Pitts T. M., Jordan K. R., Lieu C. H., Davis S. L., et al. (2019). Characterization of Immune Responses to Anti-PD-1 Mono and Combination Immunotherapy in Hematopoietic Humanized Mice Implanted with Tumor Xenografts. J. Immunother. Cancer 7 (1), 37. 10.1186/s40425-019-0518-z PubMed DOI PMC

Chappell W. H., Steelman L. S., Long J. M., Kempf R. C., Abrams S. L., Franklin R. A., et al. (2011). Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Inhibitors: Rationale and Importance to Inhibiting These Pathways in Human Health. Oncotarget 2 (3), 135–164. 10.18632/oncotarget.240 PubMed DOI PMC

Cohen P., Cross D., Jänne P. A. (2021). Kinase Drug Discovery 20 Years after Imatinib: Progress and Future Directions. Nat. Rev. Drug Discov. 20 (7), 551–569. 10.1038/s41573-021-00195-4 PubMed DOI PMC

Colanesi S., Taylor K. L., Temperley N. D., Lundegaard P. R., Liu D., North T. E., et al. (2012). Small Molecule Screening Identifies Targetable Zebrafish Pigmentation Pathways. Pigment Cel Melanoma Res 25 (2), 131–143. 10.1111/j.1755-148X.2012.00977.x PubMed DOI

Corkery D. P., Dellaire G., Berman J. N. (2011). Leukaemia Xenotransplantation in Zebrafish-Cchemotherapy Response Assay In Vivo . Br. J. Haematol. 153 (6), 786–789. 10.1111/j.1365-2141.2011.08661.x PubMed DOI

Dar A. C., Das T. K., Shokat K. M., Cagan R. L. (2012). Chemical Genetic Discovery of Targets and Anti-targets for Cancer Polypharmacology. Nature 486 (7401), 80–84. 10.1038/nature11127 PubMed DOI PMC

de Latouliere L., Manni I., Ferrari L., Pisati F., Totaro M. G., Gurtner A., et al. (2021). MITO-Luc/GFP Zebrafish Model to Assess Spatial and Temporal Evolution of Cell Proliferation In Vivo . Sci. Rep. 11 (1), 671. 10.1038/s41598-020-79530-5 PubMed DOI PMC

de Sena Brandine G., Smith A. D. (2019). Falco: High-Speed FastQC Emulation for Quality Control of Sequencing Data. F1000Res 8, 1874. 10.12688/f1000research.21142.2 PubMed DOI PMC

Easty D. J., Gray S. G., O'Byrne K. J., O'Donnell D., Bennett D. C. (2011). Receptor Tyrosine Kinases and Their Activation in Melanoma. Pigment Cel Melanoma Res 24 (3), 446–461. 10.1111/j.1755-148X.2011.00836.x PubMed DOI

Edwards D. K., Watanabe-Smith K., Rofelty A., Damnernsawad A., Laderas T., Lamble A., et al. (2019). CSF1R Inhibitors Exhibit Antitumor Activity in Acute Myeloid Leukemia by Blocking Paracrine Signals from Support Cells. Blood 133 (6), 588–599. 10.1182/blood-2018-03-838946 PubMed DOI PMC

Elkamhawy A., Lu Q., Nada H., Woo J., Quan G., Lee K. (2021). The Journey of DDR1 and DDR2 Kinase Inhibitors as Rising Stars in the Fight against Cancer. Int. J. Mol. Sci. 22 (12), 6535. 10.3390/ijms22126535 PubMed DOI PMC

Ewels P., Magnusson M., Lundin S., Käller M. (2016). MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report. Bioinformatics 32 (19), 3047–3048. 10.1093/bioinformatics/btw354 PubMed DOI PMC

Fazio M., Ablain J., Chuan Y., Langenau D. M., Zon L. I. (2020). Zebrafish Patient Avatars in Cancer Biology and Precision Cancer Therapy. Nat. Rev. Cancer 20 (5), 263–273. 10.1038/s41568-020-0252-3 PubMed DOI PMC

Fior R., Póvoa V., Mendes R. V., Carvalho T., Gomes A., Figueiredo N., et al. (2017). Single-cell Functional and Chemosensitive Profiling of Combinatorial Colorectal Therapy in Zebrafish Xenografts. Proc. Natl. Acad. Sci. U S A. 114 (39), E8234–E8243. 10.1073/pnas.1618389114 PubMed DOI PMC

Flaherty K. T., Infante J. R., Daud A., Gonzalez R., Kefford R. F., Sosman J., et al. (2012). Combined BRAF and MEK Inhibition in Melanoma with BRAF V600 Mutations. N. Engl. J. Med. 367 (18), 1694–1703. 10.1056/NEJMoa1210093 PubMed DOI PMC

Germann U. A., Furey B. F., Markland W., Hoover R. R., Aronov A. M., Roix J. J., et al. (2017). Targeting the MAPK Signaling Pathway in Cancer: Promising Preclinical Activity with the Novel Selective ERK1/2 Inhibitor BVD-523 (Ulixertinib). Mol. Cancer Ther. 16 (11), 2351–2363. 10.1158/1535-7163.MCT-17-0456 PubMed DOI

Ghotra V. P., He S., de Bont H., van der Ent W., Spaink H. P., van de Water B., et al. (2012). Automated Whole Animal Bio-Imaging Assay for Human Cancer Dissemination. PLoS One 7 (2), e31281. 10.1371/journal.pone.0031281 PubMed DOI PMC

Gutierrez A., Pan L., Groen R. W., Baleydier F., Kentsis A., Marineau J., et al. (2014). Phenothiazines Induce PP2A-Mediated Apoptosis in T Cell Acute Lymphoblastic Leukemia. J. Clin. Invest. 124 (2), 644–655. 10.1172/JCI65093 PubMed DOI PMC

Gutteridge R. E., Ndiaye M. A., Liu X., Ahmad N. (2016). Plk1 Inhibitors in Cancer Therapy: From Laboratory to Clinics. Mol. Cancer Ther. 15 (7), 1427–1435. 10.1158/1535-7163.MCT-15-0897 PubMed DOI PMC

Hall M. P., Unch J., Binkowski B. F., Valley M. P., Butler B. L., Wood M. G., et al. (2012). Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate. ACS Chem. Biol. 7 (11), 1848–1857. 10.1021/cb3002478 PubMed DOI PMC

Hanahan D., Weinberg R. A. (2011). Hallmarks of Cancer: the Next Generation. Cell 144 (5), 646–674. 10.1016/j.cell.2011.02.013 PubMed DOI

Hanahan D., Weinberg R. A. (2000). The Hallmarks of Cancer. Cell 100 (1), 57–70. 10.1016/S0092-8674(00)81683-9 PubMed DOI

Haney M. G., Wimsett M., Liu C., Blackburn J. S. (2021). Protocol for Rapid Assessment of the Efficacy of Novel Wnt Inhibitors Using Zebrafish Models. STAR Protoc. 2 (2), 100433. 10.1016/j.xpro.2021.100433 PubMed DOI PMC

Hason M., Bartůněk P. (2019). Zebrafish Models of Cancer-New Insights on Modeling Human Cancer in a Non-mammalian Vertebrate. Genes (Basel) 10 (11), 935. 10.3390/genes10110935 PubMed DOI PMC

Heilmann S., Ratnakumar K., Langdon E., Kansler E., Kim I., Campbell N. R., et al. (2015). A Quantitative System for Studying Metastasis Using Transparent Zebrafish. Cancer Res. 75 (20), 4272–4282. 10.1158/0008-5472.can-14-3319 PubMed DOI PMC

Howe K., Clark M. D., Torroja C. F., Torrance J., Berthelot C., Muffato M., et al. (2013). The Zebrafish Reference Genome Sequence and its Relationship to the Human Genome. Nature 496 (7446), 498–503. 10.1038/nature12111 PubMed DOI PMC

Ibáñez G., Calder P. A., Radu C., Bhinder B., Shum D., Antczak C., et al. (2018). Evaluation of Compound Optical Interference in High-Content Screening. SLAS Discov. 23 (4), 321–329. 10.1177/2472555217707725 PubMed DOI

Kansler E. R., Verma A., Langdon E. M., Simon-Vermot T., Yin A., Lee W., et al. (2017). Melanoma Genome Evolution across Species. BMC Genomics 18 (1), 136. 10.1186/s12864-017-3518-8 PubMed DOI PMC

Kirchberger S., Sturtzel C., Pascoal S., Distel M. (2017). Quo Natas, Danio?-Recent Progress in Modeling Cancer in Zebrafish. Front. Oncol. 7, 186. 10.3389/fonc.2017.00186 PubMed DOI PMC

Konantz M., Balci T. B., Hartwig U. F., Dellaire G., André M. C., Berman J. N., et al. (2012). Zebrafish Xenografts as a Tool for In Vivo Studies on Human Cancer. Ann. N. Y Acad. Sci. 1266, 124–137. 10.1111/j.1749-6632.2012.06575.x PubMed DOI

Konířová J., Oltová J., Corlett A., Kopycińska J., Kolář M., Bartůněk P., et al. (2017). Modulated DISP3/PTCHD2 Expression Influences Neural Stem Cell Fate Decisions. Sci. Rep. 7, 41597. 10.1038/srep41597 PubMed DOI PMC

Lam S. H., Wu Y. L., Vega V. B., Miller L. D., Spitsbergen J., Tong Y., et al. (2006). Conservation of Gene Expression Signatures between Zebrafish and Human Liver Tumors and Tumor Progression. Nat. Biotechnol. 24 (1), 73–75. 10.1038/nbt1169 PubMed DOI

Love M. I., Huber W., Anders S. (2014). Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 15 (12), 550. 10.1186/s13059-014-0550-8 PubMed DOI PMC

MacRae C. A., Peterson R. T. (2015). Zebrafish as Tools for Drug Discovery. Nat. Rev. Drug Discov. 14 (10), 721–731. 10.1038/nrd4627 PubMed DOI

Manni I., de Latouliere L., Gurtner A., Piaggio G. (2019). Transgenic Animal Models to Visualize Cancer-Related Cellular Processes by Bioluminescence Imaging. Front. Pharmacol. 10, 235. 10.3389/fphar.2019.00235 PubMed DOI PMC

McCune J. M., Namikawa R., Kaneshima H., Shultz L. D., Lieberman M., Weissman I. L. (1988). The SCID-Hu Mouse: Murine Model for the Analysis of Human Hematolymphoid Differentiation and Function. Science 241 (4873), 1632–1639. 10.1126/science.2971269 PubMed DOI

Miwatashi S., Arikawa Y., Kotani E., Miyamoto M., Naruo K., Kimura H., et al. (2005). Novel Inhibitor of P38 MAP Kinase as an Anti-TNF-alpha Drug: Discovery of N-[4-[2-ethyl-4-(3-methylphenyl)-1,3-thiazol-5-yl]-2-pyridyl]benzamide (TAK-715) as a Potent and Orally Active Anti-rheumatoid Arthritis Agent. J. Med. Chem. 48 (19), 5966–5979. 10.1021/jm050165o PubMed DOI

Moore J. C., Tang Q., Yordán N. T., Moore F. E., Garcia E. G., Lobbardi R., et al. (2016). Single-cell Imaging of normal and Malignant Cell Engraftment into Optically clear Prkdc-Null SCID Zebrafish. J. Exp. Med. 213 (12), 2575–2589. 10.1084/jem.20160378 PubMed DOI PMC

Mosimann C., Kaufman C. K., Li P., Pugach E. K., Tamplin O. J., Zon L. I. (2011). Ubiquitous Transgene Expression and Cre-Based Recombination Driven by the Ubiquitin Promoter in Zebrafish. Development 138 (1), 169–177. 10.1242/dev.059345 PubMed DOI PMC

Oltova J., Jindrich J., Skuta C., Svoboda O., Machonova O., Bartunek P. (2018). Zebrabase: An Intuitive Tracking Solution for Aquatic Model Organisms. Zebrafish 15 (6), 642–647. 10.1089/zeb.2018.1609 PubMed DOI PMC

Oprişoreanu A. M., Smith H. L., Krix S., Chaytow H., Carragher N. O., Gillingwater T. H., et al. (2021). Automated In Vivo Drug Screen in Zebrafish Identifies Synapse-Stabilising Drugs with Relevance to Spinal Muscular Atrophy. Dis. Model. Mech. 14 (4), 047761. 10.1242/dmm.047761 PubMed DOI PMC

Patro R., Duggal G., Love M. I., Irizarry R. A., Kingsford C. (2017). Salmon Provides Fast and Bias-Aware Quantification of Transcript Expression. Nat. Methods 14 (4), 417–419. 10.1038/nmeth.4197 PubMed DOI PMC

Patton E. E., Widlund H. R., Kutok J. L., Kopani K. R., Amatruda J. F., Murphey R. D., et al. (2005). BRAF Mutations Are Sufficient to Promote Nevi Formation and Cooperate with P53 in the Genesis of Melanoma. Curr. Biol. 15 (3), 249–254. 10.1016/j.cub.2005.01.031 PubMed DOI

Patton E. E., Mueller K. L., Adams D. J., Anandasabapathy N., Aplin A. E., Bertolotto C., et al. (2021a). Melanoma Models for the Next Generation of Therapies. Cancer Cell 39, 610–631. 10.1016/j.ccell.2021.01.011 PubMed DOI PMC

Patton E. E., Zon L. I., Langenau D. M. (2021b). Zebrafish Disease Models in Drug Discovery: from Preclinical Modelling to Clinical Trials. Nat. Rev. Drug Discov. 20, 611–628. 10.1038/s41573-021-00210-8 PubMed DOI PMC

Potts K. S., Bowman T. V. (2017). Modeling Myeloid Malignancies Using Zebrafish. Front. Oncol. 7, 297. 10.3389/fonc.2017.00297 PubMed DOI PMC

Póvoa V., Rebelo de Almeida C., Maia-Gil M., Sobral D., Domingues M., Martinez-Lopez M., et al. (2021). Innate Immune Evasion Revealed in a Colorectal Zebrafish Xenograft Model. Nat. Commun. 12 (1), 1156. 10.1038/s41467-021-21421-y PubMed DOI PMC

Precazzini F., Pancher M., Gatto P., Tushe A., Adami V., Anelli V., et al. (2020). Automated In Vivo Screen in Zebrafish Identifies Clotrimazole as Targeting a Metabolic Vulnerability in a Melanoma Model. Dev. Biol. 457 (2), 215–225. 10.1016/j.ydbio.2019.04.005 PubMed DOI

Pruitt M. M., Marin W., Waarts M. R., de Jong J. L. O. (2017). Isolation of the Side Population in Myc-Induced T-Cell Acute Lymphoblastic Leukemia in Zebrafish. J. Vis. Exp. 123, 55711. 10.3791/55711 PubMed DOI PMC

Pruvot B., Jacquel A., Droin N., Auberger P., Bouscary D., Tamburini J., et al. (2011). Leukemic Cell Xenograft in Zebrafish Embryo for Investigating Drug Efficacy. Haematologica 96 (4), 612–616. 10.3324/haematol.2010.031401 PubMed DOI PMC

Rheault T. R., Donaldson K. H., Badiang-Alberti J. G., Davis-Ward R. G., Andrews C. W., Bambal R., et al. (2010). Heteroaryl-linked 5-(1h-Benzimidazol-1-Yl)-2-Thiophenecarboxamides: Potent Inhibitors of polo-like Kinase 1 (PLK1) with Improved Drug-like Properties. Bioorg. Med. Chem. Lett. 20 (15), 4587–4592. 10.1016/j.bmcl.2010.06.009 PubMed DOI

Ribas A., Lawrence D., Atkinson V., Agarwal S., Miller W. H., Carlino M. S., et al. (2019). Combined BRAF and MEK Inhibition with PD-1 Blockade Immunotherapy in BRAF-Mutant Melanoma. Nat. Med. 25 (6), 936–940. 10.1038/s41591-019-0476-5 PubMed DOI PMC

Richter S., Schulze U., Tomançak P., Oates A. C. (2017). Small Molecule Screen in Embryonic Zebrafish Using Modular Variations to Target Segmentation. Nat. Commun. 8 (1), 1901. 10.1038/s41467-017-01469-5 PubMed DOI PMC

Ridges S., Heaton W. L., Joshi D., Choi H., Eiring A., Batchelor L., et al. (2012). Zebrafish Screen Identifies Novel Compound with Selective Toxicity against Leukemia. Blood 119 (24), 5621–5631. 10.1182/blood-2011-12-398818 PubMed DOI PMC

Robert C., Grob J. J., Stroyakovskiy D., Karaszewska B., Hauschild A., Levchenko E., et al. (2019). Five-Year Outcomes with Dabrafenib Plus Trametinib in Metastatic Melanoma. N. Engl. J. Med. 381 (7), 626–636. 10.1056/NEJMoa1904059 PubMed DOI

Rocca S., Carrà G., Poggio P., Morotti A., Brancaccio M. (2018). Targeting Few to Help Hundreds: JAK, MAPK and ROCK Pathways as Druggable Targets in Atypical Chronic Myeloid Leukemia. Mol. Cancer 17 (1), 40. 10.1186/s12943-018-0774-4 PubMed DOI PMC

Sabbah M., Najem A., Krayem M., Awada A., Journe F., Ghanem G. E. (2021). RTK Inhibitors in Melanoma: From Bench to Bedside. Cancers 13 (7), 1685. 10.3390/cancers13071685 PubMed DOI PMC

Schaub F. X., Reza M. S., Flaveny C. A., Li W., Musicant A. M., Hoxha S., et al. (2015). Fluorophore-NanoLuc BRET Reporters Enable Sensitive In Vivo Optical Imaging and Flow Cytometry for Monitoring Tumorigenesis. Cancer Res. 75 (23), 5023–5033. 10.1158/0008-5472.can-14-3538 PubMed DOI PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: an Open-Source Platform for Biological-Image Analysis. Nat. Methods 9 (7), 676–682. 10.1038/nmeth.2019 PubMed DOI PMC

Shi X., Teo L. S., Pan X., Chong S. W., Kraut R., Korzh V., et al. (2009). Probing Events with Single Molecule Sensitivity in Zebrafish and Drosophila Embryos by Fluorescence Correlation Spectroscopy. Dev. Dyn. 238 (12), 3156–3167. 10.1002/dvdy.22140 PubMed DOI

Skuta C., Popr M., Muller T., Jindrich J., Kahle M., Sedlak D., et al. (2017). Probes &Drugs portal: an Interactive, Open Data Resource for Chemical Biology. Nat. Methods 14 (8), 759–760. 10.1038/nmeth.4365 PubMed DOI

Somasagara R. R., Huang X., Xu C., Haider J., Serody J. S., Armistead P. M., et al. (2021). Targeted Therapy of Human Leukemia Xenografts in Immunodeficient Zebrafish. Sci. Rep. 11 (1), 5715. 10.1038/s41598-021-85141-5 PubMed DOI PMC

Sonoshita M., Scopton A. P., Ung P. M. U., Murray M. A., Silber L., Maldonado A. Y., et al. (2018). A Whole-Animal Platform to advance a Clinical Kinase Inhibitor into New Disease Space. Nat. Chem. Biol. 14 (3), 291–298. 10.1038/nchembio.2556 PubMed DOI PMC

Stacer A. C., Nyati S., Moudgil P., Iyengar R., Luker K. E., Rehemtulla A., et al. (2013). NanoLuc Reporter for Dual Luciferase Imaging in Living Animals. Mol. Imaging 12 (7), 1–13. 10.2310/7290.2013.00062 PubMed DOI PMC

Takai N., Hamanaka R., Yoshimatsu J., Miyakawa I. (2005). Polo-like Kinases (Plks) and Cancer. Oncogene 24 (2), 287–291. 10.1038/sj.onc.1208272 PubMed DOI

Tambe M., Karjalainen E., Vähä-Koskela M., Bulanova D., Gjertsen B. T., Kontro M., et al. (2020). Pan-RAF Inhibition Induces Apoptosis in Acute Myeloid Leukemia Cells and Synergizes with BCL2 Inhibition. Leukemia 34 (12), 3186–3196. 10.1038/s41375-020-0972-0 PubMed DOI

Tang Q., Abdelfattah N. S., Blackburn J. S., Moore J. C., Martinez S. A., Moore F. E., et al. (2014). Optimized Cell Transplantation Using Adult Rag2 Mutant Zebrafish. Nat. Methods 11 (8), 821–824. 10.1038/nmeth.3031 PubMed DOI PMC

Tang Q., Moore J. C., Ignatius M. S., Tenente I. M., Hayes M. N., Garcia E. G., et al. (2016). Imaging Tumour Cell Heterogeneity Following Cell Transplantation into Optically clear Immune-Deficient Zebrafish. Nat. Commun. 7, 10358. 10.1038/ncomms10358 PubMed DOI PMC

Tobia C., Coltrini D., Ronca R., Loda A., Guerra J., Scalvini E., et al. (2021). An Orthotopic Model of Uveal Melanoma in Zebrafish Embryo: A Novel Platform for Drug Evaluation. Biomedicines 9 (12). 912873. 10.3390/biomedicines9121873 PubMed DOI PMC

Topczewska J. M., Postovit L. M., Margaryan N. V., Sam A., Hess A. R., Wheaton W. W., et al. (2006). Embryonic and Tumorigenic Pathways Converge via Nodal Signaling: Role in Melanoma Aggressiveness. Nat. Med. 12 (8), 925–932. 10.1038/nm1448 PubMed DOI

Troy T., Jekic-McMullen D., Sambucetti L., Rice B. (2004). Quantitative Comparison of the Sensitivity of Detection of Fluorescent and Bioluminescent Reporters in Animal Models. Mol. Imaging 3 (1), 9–23. 10.1162/153535004773861688 PubMed DOI

Tulotta C., Stefanescu C., Beletkaia E., Bussmann J., Tarbashevich K., Schmidt T., et al. (2016). Inhibition of Signaling between Human CXCR4 and Zebrafish Ligands by the Small Molecule IT1t Impairs the Formation of Triple-Negative Breast Cancer Early Metastases in a Zebrafish Xenograft Model. Dis. Model. Mech. 9 (2), 141–153. 10.1242/dmm.023275 PubMed DOI PMC

Tulotta C., Stefanescu C., Chen Q., Torraca V., Meijer A. H., Snaar-Jagalska B. E. (2019). CXCR4 Signaling Regulates Metastatic Onset by Controlling Neutrophil Motility and Response to Malignant Cells. Sci. Rep. 9 (1), 2399. 10.1038/s41598-019-38643-2 PubMed DOI PMC

Vetrie D., Helgason G. V., Copland M. (2020). The Leukaemia Stem Cell: Similarities, Differences and Clinical Prospects in CML and AML. Nat. Rev. Cancer 20 (3), 158–173. 10.1038/s41568-019-0230-9 PubMed DOI

Wertman J., Veinotte C. J., Dellaire G., Berman J. N. (2016). The Zebrafish Xenograft Platform: Evolution of a Novel Cancer Model and Preclinical Screening Tool. Adv. Exp. Med. Biol. 916, 289–314. 10.1007/978-3-319-30654-4_13 PubMed DOI

Westerfield M. (2007). THE ZEBRAFISH BOOK: A Guide for the Laboratory Use of Zebrafish (Danio rerio). 5th Edition. Eugene: University of Oregon Press.

White R., Rose K., Zon L. (2013). Zebrafish Cancer: the State of the Art and the Path Forward. Nat. Rev. Cancer 13 (9), 624–636. 10.1038/nrc3589 PubMed DOI PMC

White R. M., Cech J., Ratanasirintrawoot S., Lin C. Y., Rahl P. B., Burke C. J., et al. (2011). DHODH Modulates Transcriptional Elongation in the Neural Crest and Melanoma. Nature 471 (7339), 518–522. 10.1038/nature09882 PubMed DOI PMC

White R. M., Sessa A., Burke C., Bowman T., LeBlanc J., Ceol C., et al. (2008). Transparent Adult Zebrafish as a Tool for In Vivo Transplantation Analysis. Cell Stem Cell 2 (2), 183–189. 10.1016/j.stem.2007.11.002 PubMed DOI PMC

Wickham H., Averick M., Bryan J., Chang W., McGowan L., François R., et al. (2019). Welcome to the Tidyverse. Joss 4 (43), 1686. 10.21105/joss.01686 DOI

Yan C., Do D., Yang Q., Brunson D. C., Rawls J. F., Langenau D. M. (2020). Single-cell Imaging of Human Cancer Xenografts Using Adult Immunodeficient Zebrafish. Nat. Protoc. 15 (9), 3105–3128. 10.1038/s41596-020-0372-y PubMed DOI PMC

Yan C., Brunson D. C., Tang Q., Do D., Iftimia N. A., Moore J. C., et al. (2019). Visualizing Engrafted Human Cancer and Therapy Responses in Immunodeficient Zebrafish. Cell 177, 1903–1914. 10.1016/j.cell.2019.04.004 PubMed DOI PMC

Yen J. H., Lin C. Y., Chuang C. H., Chin H. K., Wu M. J., Chen P. Y. (2020). Nobiletin Promotes Megakaryocytic Differentiation through the MAPK/ERK-Dependent EGR1 Expression and Exerts Anti-leukemic Effects in Human Chronic Myeloid Leukemia (CML) K562 Cells. Cells 9 (4). 10.3390/cells9040877 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...