Bioluminescent Zebrafish Transplantation Model for Drug Discovery
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
Grant support
DP2 CA186572
NCI NIH HHS - United States
P30 CA008748
NCI NIH HHS - United States
PubMed
35559262
PubMed Central
PMC9086674
DOI
10.3389/fphar.2022.893655
PII: 893655
Knihovny.cz E-resources
- Keywords
- bioluminescence, cancer, high-throughput screening, inhibitor, xenotransplantation, zebrafish,
- Publication type
- Journal Article MeSH
In the last decade, zebrafish have accompanied the mouse as a robust animal model for cancer research. The possibility of screening small-molecule inhibitors in a large number of zebrafish embryos makes this model particularly valuable. However, the dynamic visualization of fluorescently labeled tumor cells needs to be complemented by a more sensitive, easy, and rapid mode for evaluating tumor growth in vivo to enable high-throughput screening of clinically relevant drugs. In this study we proposed and validated a pre-clinical screening model for drug discovery by utilizing bioluminescence as our readout for the determination of transplanted cancer cell growth and inhibition in zebrafish embryos. For this purpose, we used NanoLuc luciferase, which ensured rapid cancer cell growth quantification in vivo with high sensitivity and low background when compared to conventional fluorescence measurements. This allowed us large-scale evaluation of in vivo drug responses of 180 kinase inhibitors in zebrafish. Our bioluminescent screening platform could facilitate identification of new small-molecules for targeted cancer therapy as well as for drug repurposing.
CZ OPENSCREEN Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czechia
Department of Medicine Memorial Sloan Kettering Cancer Center New York NY United States
See more in PubMed
Ablain J., Liu S., Moriceau G., Lo R. S., Zon L. I. (2021). SPRED1 Deletion Confers Resistance to MAPK Inhibition in Melanoma. J. Exp. Med. 218 (3). 10.1084/jem.20201097 PubMed DOI PMC
Aleström P., D'Angelo L., Midtlyng P. J., Schorderet D. F., Schulte-Merker S., Sohm F., et al. (2020). Zebrafish: Housing and Husbandry Recommendations. Lab. Anim. 54 (3), 213–224. 10.1177/0023677219869037 PubMed DOI PMC
Almstedt E., Rosén E., Gloger M., Stockgard R., Hekmati N., Koltowska K., et al. (2021). Real-time Evaluation of Glioblastoma Growth in Patient-specific Zebrafish Xenografts. Neuro-Oncology, noab264. 10.1093/neuonc/noab264 PubMed DOI PMC
Andreu N., Zelmer A., Fletcher T., Elkington P. T., Ward T. H., Ripoll J., et al. (2010). Optimisation of Bioluminescent Reporters for Use with Mycobacteria. PLoS One 5 (5), e10777. 10.1371/journal.pone.0010777 PubMed DOI PMC
Arrowsmith C. H., Audia J. E., Austin C., Baell J., Bennett J., Blagg J., et al. (2015). The Promise and Peril of Chemical Probes. Nat. Chem. Biol. 11 (8), 536–541. 10.1038/nchembio.1867 PubMed DOI PMC
Astuti Y., Kramer A. C., Blake A. L., Blazar B. R., Tolar J., Taisto M. E., et al. (2017). A Functional Bioluminescent Zebrafish Screen for Enhancing Hematopoietic Cell Homing. Stem Cel Rep. 8 (1), 177–190. 10.1016/j.stemcr.2016.12.004 PubMed DOI PMC
Baeten J. T., Waarts M. R., Pruitt M. M., Chan W. C., Andrade J., de Jong J. L. O. (2019). The Side Population Enriches for Leukemia-Propagating Cell Activity and Wnt Pathway Expression in Zebrafish Acute Lymphoblastic Leukemia. Haematologica 104 (7), 1388–1395. 10.3324/haematol.2018.206417 PubMed DOI PMC
Berestjuk I., Lecacheur M., Carminati A., Diazzi S., Rovera C., Prod’homme V., et al. (2022). Targeting Discoidin Domain Receptors DDR1 and DDR2 Overcomes Matrix‐mediated Tumor Cell Adaptation and Tolerance to BRAF‐targeted Therapy in Melanoma. EMBO Mol. Med. 14 (2), e11814. 10.15252/emmm.201911814 PubMed DOI PMC
Bhullar K. S., Lagarón N. O., McGowan E. M., Parmar I., Jha A., Hubbard B. P., et al. (2018). Kinase-targeted Cancer Therapies: Progress, Challenges and Future Directions. Mol. Cancer 17 (1), 48. 10.1186/s12943-018-0804-2 PubMed DOI PMC
Bowman T. V., Zon L. I. (2010). Swimming into the Future of Drug Discovery: In Vivo Chemical Screens in Zebrafish. ACS Chem. Biol. 5 (2), 159–161. 10.1021/cb100029t PubMed DOI PMC
Cagan R. L., Zon L. I., White R. M. (2019). Modeling Cancer with Flies and Fish. Dev. Cel 49 (3), 317–324. 10.1016/j.devcel.2019.04.013 PubMed DOI PMC
Capasso A., Lang J., Pitts T. M., Jordan K. R., Lieu C. H., Davis S. L., et al. (2019). Characterization of Immune Responses to Anti-PD-1 Mono and Combination Immunotherapy in Hematopoietic Humanized Mice Implanted with Tumor Xenografts. J. Immunother. Cancer 7 (1), 37. 10.1186/s40425-019-0518-z PubMed DOI PMC
Chappell W. H., Steelman L. S., Long J. M., Kempf R. C., Abrams S. L., Franklin R. A., et al. (2011). Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Inhibitors: Rationale and Importance to Inhibiting These Pathways in Human Health. Oncotarget 2 (3), 135–164. 10.18632/oncotarget.240 PubMed DOI PMC
Cohen P., Cross D., Jänne P. A. (2021). Kinase Drug Discovery 20 Years after Imatinib: Progress and Future Directions. Nat. Rev. Drug Discov. 20 (7), 551–569. 10.1038/s41573-021-00195-4 PubMed DOI PMC
Colanesi S., Taylor K. L., Temperley N. D., Lundegaard P. R., Liu D., North T. E., et al. (2012). Small Molecule Screening Identifies Targetable Zebrafish Pigmentation Pathways. Pigment Cel Melanoma Res 25 (2), 131–143. 10.1111/j.1755-148X.2012.00977.x PubMed DOI
Corkery D. P., Dellaire G., Berman J. N. (2011). Leukaemia Xenotransplantation in Zebrafish-Cchemotherapy Response Assay In Vivo . Br. J. Haematol. 153 (6), 786–789. 10.1111/j.1365-2141.2011.08661.x PubMed DOI
Dar A. C., Das T. K., Shokat K. M., Cagan R. L. (2012). Chemical Genetic Discovery of Targets and Anti-targets for Cancer Polypharmacology. Nature 486 (7401), 80–84. 10.1038/nature11127 PubMed DOI PMC
de Latouliere L., Manni I., Ferrari L., Pisati F., Totaro M. G., Gurtner A., et al. (2021). MITO-Luc/GFP Zebrafish Model to Assess Spatial and Temporal Evolution of Cell Proliferation In Vivo . Sci. Rep. 11 (1), 671. 10.1038/s41598-020-79530-5 PubMed DOI PMC
de Sena Brandine G., Smith A. D. (2019). Falco: High-Speed FastQC Emulation for Quality Control of Sequencing Data. F1000Res 8, 1874. 10.12688/f1000research.21142.2 PubMed DOI PMC
Easty D. J., Gray S. G., O'Byrne K. J., O'Donnell D., Bennett D. C. (2011). Receptor Tyrosine Kinases and Their Activation in Melanoma. Pigment Cel Melanoma Res 24 (3), 446–461. 10.1111/j.1755-148X.2011.00836.x PubMed DOI
Edwards D. K., Watanabe-Smith K., Rofelty A., Damnernsawad A., Laderas T., Lamble A., et al. (2019). CSF1R Inhibitors Exhibit Antitumor Activity in Acute Myeloid Leukemia by Blocking Paracrine Signals from Support Cells. Blood 133 (6), 588–599. 10.1182/blood-2018-03-838946 PubMed DOI PMC
Elkamhawy A., Lu Q., Nada H., Woo J., Quan G., Lee K. (2021). The Journey of DDR1 and DDR2 Kinase Inhibitors as Rising Stars in the Fight against Cancer. Int. J. Mol. Sci. 22 (12), 6535. 10.3390/ijms22126535 PubMed DOI PMC
Ewels P., Magnusson M., Lundin S., Käller M. (2016). MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report. Bioinformatics 32 (19), 3047–3048. 10.1093/bioinformatics/btw354 PubMed DOI PMC
Fazio M., Ablain J., Chuan Y., Langenau D. M., Zon L. I. (2020). Zebrafish Patient Avatars in Cancer Biology and Precision Cancer Therapy. Nat. Rev. Cancer 20 (5), 263–273. 10.1038/s41568-020-0252-3 PubMed DOI PMC
Fior R., Póvoa V., Mendes R. V., Carvalho T., Gomes A., Figueiredo N., et al. (2017). Single-cell Functional and Chemosensitive Profiling of Combinatorial Colorectal Therapy in Zebrafish Xenografts. Proc. Natl. Acad. Sci. U S A. 114 (39), E8234–E8243. 10.1073/pnas.1618389114 PubMed DOI PMC
Flaherty K. T., Infante J. R., Daud A., Gonzalez R., Kefford R. F., Sosman J., et al. (2012). Combined BRAF and MEK Inhibition in Melanoma with BRAF V600 Mutations. N. Engl. J. Med. 367 (18), 1694–1703. 10.1056/NEJMoa1210093 PubMed DOI PMC
Germann U. A., Furey B. F., Markland W., Hoover R. R., Aronov A. M., Roix J. J., et al. (2017). Targeting the MAPK Signaling Pathway in Cancer: Promising Preclinical Activity with the Novel Selective ERK1/2 Inhibitor BVD-523 (Ulixertinib). Mol. Cancer Ther. 16 (11), 2351–2363. 10.1158/1535-7163.MCT-17-0456 PubMed DOI
Ghotra V. P., He S., de Bont H., van der Ent W., Spaink H. P., van de Water B., et al. (2012). Automated Whole Animal Bio-Imaging Assay for Human Cancer Dissemination. PLoS One 7 (2), e31281. 10.1371/journal.pone.0031281 PubMed DOI PMC
Gutierrez A., Pan L., Groen R. W., Baleydier F., Kentsis A., Marineau J., et al. (2014). Phenothiazines Induce PP2A-Mediated Apoptosis in T Cell Acute Lymphoblastic Leukemia. J. Clin. Invest. 124 (2), 644–655. 10.1172/JCI65093 PubMed DOI PMC
Gutteridge R. E., Ndiaye M. A., Liu X., Ahmad N. (2016). Plk1 Inhibitors in Cancer Therapy: From Laboratory to Clinics. Mol. Cancer Ther. 15 (7), 1427–1435. 10.1158/1535-7163.MCT-15-0897 PubMed DOI PMC
Hall M. P., Unch J., Binkowski B. F., Valley M. P., Butler B. L., Wood M. G., et al. (2012). Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate. ACS Chem. Biol. 7 (11), 1848–1857. 10.1021/cb3002478 PubMed DOI PMC
Hanahan D., Weinberg R. A. (2011). Hallmarks of Cancer: the Next Generation. Cell 144 (5), 646–674. 10.1016/j.cell.2011.02.013 PubMed DOI
Hanahan D., Weinberg R. A. (2000). The Hallmarks of Cancer. Cell 100 (1), 57–70. 10.1016/S0092-8674(00)81683-9 PubMed DOI
Haney M. G., Wimsett M., Liu C., Blackburn J. S. (2021). Protocol for Rapid Assessment of the Efficacy of Novel Wnt Inhibitors Using Zebrafish Models. STAR Protoc. 2 (2), 100433. 10.1016/j.xpro.2021.100433 PubMed DOI PMC
Hason M., Bartůněk P. (2019). Zebrafish Models of Cancer-New Insights on Modeling Human Cancer in a Non-mammalian Vertebrate. Genes (Basel) 10 (11), 935. 10.3390/genes10110935 PubMed DOI PMC
Heilmann S., Ratnakumar K., Langdon E., Kansler E., Kim I., Campbell N. R., et al. (2015). A Quantitative System for Studying Metastasis Using Transparent Zebrafish. Cancer Res. 75 (20), 4272–4282. 10.1158/0008-5472.can-14-3319 PubMed DOI PMC
Howe K., Clark M. D., Torroja C. F., Torrance J., Berthelot C., Muffato M., et al. (2013). The Zebrafish Reference Genome Sequence and its Relationship to the Human Genome. Nature 496 (7446), 498–503. 10.1038/nature12111 PubMed DOI PMC
Ibáñez G., Calder P. A., Radu C., Bhinder B., Shum D., Antczak C., et al. (2018). Evaluation of Compound Optical Interference in High-Content Screening. SLAS Discov. 23 (4), 321–329. 10.1177/2472555217707725 PubMed DOI
Kansler E. R., Verma A., Langdon E. M., Simon-Vermot T., Yin A., Lee W., et al. (2017). Melanoma Genome Evolution across Species. BMC Genomics 18 (1), 136. 10.1186/s12864-017-3518-8 PubMed DOI PMC
Kirchberger S., Sturtzel C., Pascoal S., Distel M. (2017). Quo Natas, Danio?-Recent Progress in Modeling Cancer in Zebrafish. Front. Oncol. 7, 186. 10.3389/fonc.2017.00186 PubMed DOI PMC
Konantz M., Balci T. B., Hartwig U. F., Dellaire G., André M. C., Berman J. N., et al. (2012). Zebrafish Xenografts as a Tool for In Vivo Studies on Human Cancer. Ann. N. Y Acad. Sci. 1266, 124–137. 10.1111/j.1749-6632.2012.06575.x PubMed DOI
Konířová J., Oltová J., Corlett A., Kopycińska J., Kolář M., Bartůněk P., et al. (2017). Modulated DISP3/PTCHD2 Expression Influences Neural Stem Cell Fate Decisions. Sci. Rep. 7, 41597. 10.1038/srep41597 PubMed DOI PMC
Lam S. H., Wu Y. L., Vega V. B., Miller L. D., Spitsbergen J., Tong Y., et al. (2006). Conservation of Gene Expression Signatures between Zebrafish and Human Liver Tumors and Tumor Progression. Nat. Biotechnol. 24 (1), 73–75. 10.1038/nbt1169 PubMed DOI
Love M. I., Huber W., Anders S. (2014). Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 15 (12), 550. 10.1186/s13059-014-0550-8 PubMed DOI PMC
MacRae C. A., Peterson R. T. (2015). Zebrafish as Tools for Drug Discovery. Nat. Rev. Drug Discov. 14 (10), 721–731. 10.1038/nrd4627 PubMed DOI
Manni I., de Latouliere L., Gurtner A., Piaggio G. (2019). Transgenic Animal Models to Visualize Cancer-Related Cellular Processes by Bioluminescence Imaging. Front. Pharmacol. 10, 235. 10.3389/fphar.2019.00235 PubMed DOI PMC
McCune J. M., Namikawa R., Kaneshima H., Shultz L. D., Lieberman M., Weissman I. L. (1988). The SCID-Hu Mouse: Murine Model for the Analysis of Human Hematolymphoid Differentiation and Function. Science 241 (4873), 1632–1639. 10.1126/science.2971269 PubMed DOI
Miwatashi S., Arikawa Y., Kotani E., Miyamoto M., Naruo K., Kimura H., et al. (2005). Novel Inhibitor of P38 MAP Kinase as an Anti-TNF-alpha Drug: Discovery of N-[4-[2-ethyl-4-(3-methylphenyl)-1,3-thiazol-5-yl]-2-pyridyl]benzamide (TAK-715) as a Potent and Orally Active Anti-rheumatoid Arthritis Agent. J. Med. Chem. 48 (19), 5966–5979. 10.1021/jm050165o PubMed DOI
Moore J. C., Tang Q., Yordán N. T., Moore F. E., Garcia E. G., Lobbardi R., et al. (2016). Single-cell Imaging of normal and Malignant Cell Engraftment into Optically clear Prkdc-Null SCID Zebrafish. J. Exp. Med. 213 (12), 2575–2589. 10.1084/jem.20160378 PubMed DOI PMC
Mosimann C., Kaufman C. K., Li P., Pugach E. K., Tamplin O. J., Zon L. I. (2011). Ubiquitous Transgene Expression and Cre-Based Recombination Driven by the Ubiquitin Promoter in Zebrafish. Development 138 (1), 169–177. 10.1242/dev.059345 PubMed DOI PMC
Oltova J., Jindrich J., Skuta C., Svoboda O., Machonova O., Bartunek P. (2018). Zebrabase: An Intuitive Tracking Solution for Aquatic Model Organisms. Zebrafish 15 (6), 642–647. 10.1089/zeb.2018.1609 PubMed DOI PMC
Oprişoreanu A. M., Smith H. L., Krix S., Chaytow H., Carragher N. O., Gillingwater T. H., et al. (2021). Automated In Vivo Drug Screen in Zebrafish Identifies Synapse-Stabilising Drugs with Relevance to Spinal Muscular Atrophy. Dis. Model. Mech. 14 (4), 047761. 10.1242/dmm.047761 PubMed DOI PMC
Patro R., Duggal G., Love M. I., Irizarry R. A., Kingsford C. (2017). Salmon Provides Fast and Bias-Aware Quantification of Transcript Expression. Nat. Methods 14 (4), 417–419. 10.1038/nmeth.4197 PubMed DOI PMC
Patton E. E., Widlund H. R., Kutok J. L., Kopani K. R., Amatruda J. F., Murphey R. D., et al. (2005). BRAF Mutations Are Sufficient to Promote Nevi Formation and Cooperate with P53 in the Genesis of Melanoma. Curr. Biol. 15 (3), 249–254. 10.1016/j.cub.2005.01.031 PubMed DOI
Patton E. E., Mueller K. L., Adams D. J., Anandasabapathy N., Aplin A. E., Bertolotto C., et al. (2021a). Melanoma Models for the Next Generation of Therapies. Cancer Cell 39, 610–631. 10.1016/j.ccell.2021.01.011 PubMed DOI PMC
Patton E. E., Zon L. I., Langenau D. M. (2021b). Zebrafish Disease Models in Drug Discovery: from Preclinical Modelling to Clinical Trials. Nat. Rev. Drug Discov. 20, 611–628. 10.1038/s41573-021-00210-8 PubMed DOI PMC
Potts K. S., Bowman T. V. (2017). Modeling Myeloid Malignancies Using Zebrafish. Front. Oncol. 7, 297. 10.3389/fonc.2017.00297 PubMed DOI PMC
Póvoa V., Rebelo de Almeida C., Maia-Gil M., Sobral D., Domingues M., Martinez-Lopez M., et al. (2021). Innate Immune Evasion Revealed in a Colorectal Zebrafish Xenograft Model. Nat. Commun. 12 (1), 1156. 10.1038/s41467-021-21421-y PubMed DOI PMC
Precazzini F., Pancher M., Gatto P., Tushe A., Adami V., Anelli V., et al. (2020). Automated In Vivo Screen in Zebrafish Identifies Clotrimazole as Targeting a Metabolic Vulnerability in a Melanoma Model. Dev. Biol. 457 (2), 215–225. 10.1016/j.ydbio.2019.04.005 PubMed DOI
Pruitt M. M., Marin W., Waarts M. R., de Jong J. L. O. (2017). Isolation of the Side Population in Myc-Induced T-Cell Acute Lymphoblastic Leukemia in Zebrafish. J. Vis. Exp. 123, 55711. 10.3791/55711 PubMed DOI PMC
Pruvot B., Jacquel A., Droin N., Auberger P., Bouscary D., Tamburini J., et al. (2011). Leukemic Cell Xenograft in Zebrafish Embryo for Investigating Drug Efficacy. Haematologica 96 (4), 612–616. 10.3324/haematol.2010.031401 PubMed DOI PMC
Rheault T. R., Donaldson K. H., Badiang-Alberti J. G., Davis-Ward R. G., Andrews C. W., Bambal R., et al. (2010). Heteroaryl-linked 5-(1h-Benzimidazol-1-Yl)-2-Thiophenecarboxamides: Potent Inhibitors of polo-like Kinase 1 (PLK1) with Improved Drug-like Properties. Bioorg. Med. Chem. Lett. 20 (15), 4587–4592. 10.1016/j.bmcl.2010.06.009 PubMed DOI
Ribas A., Lawrence D., Atkinson V., Agarwal S., Miller W. H., Carlino M. S., et al. (2019). Combined BRAF and MEK Inhibition with PD-1 Blockade Immunotherapy in BRAF-Mutant Melanoma. Nat. Med. 25 (6), 936–940. 10.1038/s41591-019-0476-5 PubMed DOI PMC
Richter S., Schulze U., Tomançak P., Oates A. C. (2017). Small Molecule Screen in Embryonic Zebrafish Using Modular Variations to Target Segmentation. Nat. Commun. 8 (1), 1901. 10.1038/s41467-017-01469-5 PubMed DOI PMC
Ridges S., Heaton W. L., Joshi D., Choi H., Eiring A., Batchelor L., et al. (2012). Zebrafish Screen Identifies Novel Compound with Selective Toxicity against Leukemia. Blood 119 (24), 5621–5631. 10.1182/blood-2011-12-398818 PubMed DOI PMC
Robert C., Grob J. J., Stroyakovskiy D., Karaszewska B., Hauschild A., Levchenko E., et al. (2019). Five-Year Outcomes with Dabrafenib Plus Trametinib in Metastatic Melanoma. N. Engl. J. Med. 381 (7), 626–636. 10.1056/NEJMoa1904059 PubMed DOI
Rocca S., Carrà G., Poggio P., Morotti A., Brancaccio M. (2018). Targeting Few to Help Hundreds: JAK, MAPK and ROCK Pathways as Druggable Targets in Atypical Chronic Myeloid Leukemia. Mol. Cancer 17 (1), 40. 10.1186/s12943-018-0774-4 PubMed DOI PMC
Sabbah M., Najem A., Krayem M., Awada A., Journe F., Ghanem G. E. (2021). RTK Inhibitors in Melanoma: From Bench to Bedside. Cancers 13 (7), 1685. 10.3390/cancers13071685 PubMed DOI PMC
Schaub F. X., Reza M. S., Flaveny C. A., Li W., Musicant A. M., Hoxha S., et al. (2015). Fluorophore-NanoLuc BRET Reporters Enable Sensitive In Vivo Optical Imaging and Flow Cytometry for Monitoring Tumorigenesis. Cancer Res. 75 (23), 5023–5033. 10.1158/0008-5472.can-14-3538 PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: an Open-Source Platform for Biological-Image Analysis. Nat. Methods 9 (7), 676–682. 10.1038/nmeth.2019 PubMed DOI PMC
Shi X., Teo L. S., Pan X., Chong S. W., Kraut R., Korzh V., et al. (2009). Probing Events with Single Molecule Sensitivity in Zebrafish and Drosophila Embryos by Fluorescence Correlation Spectroscopy. Dev. Dyn. 238 (12), 3156–3167. 10.1002/dvdy.22140 PubMed DOI
Skuta C., Popr M., Muller T., Jindrich J., Kahle M., Sedlak D., et al. (2017). Probes &Drugs portal: an Interactive, Open Data Resource for Chemical Biology. Nat. Methods 14 (8), 759–760. 10.1038/nmeth.4365 PubMed DOI
Somasagara R. R., Huang X., Xu C., Haider J., Serody J. S., Armistead P. M., et al. (2021). Targeted Therapy of Human Leukemia Xenografts in Immunodeficient Zebrafish. Sci. Rep. 11 (1), 5715. 10.1038/s41598-021-85141-5 PubMed DOI PMC
Sonoshita M., Scopton A. P., Ung P. M. U., Murray M. A., Silber L., Maldonado A. Y., et al. (2018). A Whole-Animal Platform to advance a Clinical Kinase Inhibitor into New Disease Space. Nat. Chem. Biol. 14 (3), 291–298. 10.1038/nchembio.2556 PubMed DOI PMC
Stacer A. C., Nyati S., Moudgil P., Iyengar R., Luker K. E., Rehemtulla A., et al. (2013). NanoLuc Reporter for Dual Luciferase Imaging in Living Animals. Mol. Imaging 12 (7), 1–13. 10.2310/7290.2013.00062 PubMed DOI PMC
Takai N., Hamanaka R., Yoshimatsu J., Miyakawa I. (2005). Polo-like Kinases (Plks) and Cancer. Oncogene 24 (2), 287–291. 10.1038/sj.onc.1208272 PubMed DOI
Tambe M., Karjalainen E., Vähä-Koskela M., Bulanova D., Gjertsen B. T., Kontro M., et al. (2020). Pan-RAF Inhibition Induces Apoptosis in Acute Myeloid Leukemia Cells and Synergizes with BCL2 Inhibition. Leukemia 34 (12), 3186–3196. 10.1038/s41375-020-0972-0 PubMed DOI
Tang Q., Abdelfattah N. S., Blackburn J. S., Moore J. C., Martinez S. A., Moore F. E., et al. (2014). Optimized Cell Transplantation Using Adult Rag2 Mutant Zebrafish. Nat. Methods 11 (8), 821–824. 10.1038/nmeth.3031 PubMed DOI PMC
Tang Q., Moore J. C., Ignatius M. S., Tenente I. M., Hayes M. N., Garcia E. G., et al. (2016). Imaging Tumour Cell Heterogeneity Following Cell Transplantation into Optically clear Immune-Deficient Zebrafish. Nat. Commun. 7, 10358. 10.1038/ncomms10358 PubMed DOI PMC
Tobia C., Coltrini D., Ronca R., Loda A., Guerra J., Scalvini E., et al. (2021). An Orthotopic Model of Uveal Melanoma in Zebrafish Embryo: A Novel Platform for Drug Evaluation. Biomedicines 9 (12). 912873. 10.3390/biomedicines9121873 PubMed DOI PMC
Topczewska J. M., Postovit L. M., Margaryan N. V., Sam A., Hess A. R., Wheaton W. W., et al. (2006). Embryonic and Tumorigenic Pathways Converge via Nodal Signaling: Role in Melanoma Aggressiveness. Nat. Med. 12 (8), 925–932. 10.1038/nm1448 PubMed DOI
Troy T., Jekic-McMullen D., Sambucetti L., Rice B. (2004). Quantitative Comparison of the Sensitivity of Detection of Fluorescent and Bioluminescent Reporters in Animal Models. Mol. Imaging 3 (1), 9–23. 10.1162/153535004773861688 PubMed DOI
Tulotta C., Stefanescu C., Beletkaia E., Bussmann J., Tarbashevich K., Schmidt T., et al. (2016). Inhibition of Signaling between Human CXCR4 and Zebrafish Ligands by the Small Molecule IT1t Impairs the Formation of Triple-Negative Breast Cancer Early Metastases in a Zebrafish Xenograft Model. Dis. Model. Mech. 9 (2), 141–153. 10.1242/dmm.023275 PubMed DOI PMC
Tulotta C., Stefanescu C., Chen Q., Torraca V., Meijer A. H., Snaar-Jagalska B. E. (2019). CXCR4 Signaling Regulates Metastatic Onset by Controlling Neutrophil Motility and Response to Malignant Cells. Sci. Rep. 9 (1), 2399. 10.1038/s41598-019-38643-2 PubMed DOI PMC
Vetrie D., Helgason G. V., Copland M. (2020). The Leukaemia Stem Cell: Similarities, Differences and Clinical Prospects in CML and AML. Nat. Rev. Cancer 20 (3), 158–173. 10.1038/s41568-019-0230-9 PubMed DOI
Wertman J., Veinotte C. J., Dellaire G., Berman J. N. (2016). The Zebrafish Xenograft Platform: Evolution of a Novel Cancer Model and Preclinical Screening Tool. Adv. Exp. Med. Biol. 916, 289–314. 10.1007/978-3-319-30654-4_13 PubMed DOI
Westerfield M. (2007). THE ZEBRAFISH BOOK: A Guide for the Laboratory Use of Zebrafish (Danio rerio). 5th Edition. Eugene: University of Oregon Press.
White R., Rose K., Zon L. (2013). Zebrafish Cancer: the State of the Art and the Path Forward. Nat. Rev. Cancer 13 (9), 624–636. 10.1038/nrc3589 PubMed DOI PMC
White R. M., Cech J., Ratanasirintrawoot S., Lin C. Y., Rahl P. B., Burke C. J., et al. (2011). DHODH Modulates Transcriptional Elongation in the Neural Crest and Melanoma. Nature 471 (7339), 518–522. 10.1038/nature09882 PubMed DOI PMC
White R. M., Sessa A., Burke C., Bowman T., LeBlanc J., Ceol C., et al. (2008). Transparent Adult Zebrafish as a Tool for In Vivo Transplantation Analysis. Cell Stem Cell 2 (2), 183–189. 10.1016/j.stem.2007.11.002 PubMed DOI PMC
Wickham H., Averick M., Bryan J., Chang W., McGowan L., François R., et al. (2019). Welcome to the Tidyverse. Joss 4 (43), 1686. 10.21105/joss.01686 DOI
Yan C., Do D., Yang Q., Brunson D. C., Rawls J. F., Langenau D. M. (2020). Single-cell Imaging of Human Cancer Xenografts Using Adult Immunodeficient Zebrafish. Nat. Protoc. 15 (9), 3105–3128. 10.1038/s41596-020-0372-y PubMed DOI PMC
Yan C., Brunson D. C., Tang Q., Do D., Iftimia N. A., Moore J. C., et al. (2019). Visualizing Engrafted Human Cancer and Therapy Responses in Immunodeficient Zebrafish. Cell 177, 1903–1914. 10.1016/j.cell.2019.04.004 PubMed DOI PMC
Yen J. H., Lin C. Y., Chuang C. H., Chin H. K., Wu M. J., Chen P. Y. (2020). Nobiletin Promotes Megakaryocytic Differentiation through the MAPK/ERK-Dependent EGR1 Expression and Exerts Anti-leukemic Effects in Human Chronic Myeloid Leukemia (CML) K562 Cells. Cells 9 (4). 10.3390/cells9040877 PubMed DOI PMC