Cyclic Octapeptides Composed of Two Glutathione Units Outperform the Monomer in Lead Detoxification
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35560783
PubMed Central
PMC9544108
DOI
10.1002/cmdc.202200152
Knihovny.cz E-resources
- Keywords
- Bioinorganic chemistry, Chelates, Glutathione, Lead, Peptides,
- MeSH
- Antioxidants MeSH
- Chelating Agents MeSH
- Glutathione * MeSH
- Humans MeSH
- Lead * toxicity MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antioxidants MeSH
- Chelating Agents MeSH
- Glutathione * MeSH
- Lead * MeSH
A rationally-designed scaffold of cyclic octapeptides composed of two units of the natural tripeptide glutathione (GSH) was optimized to strongly and selectively capture toxic lead ions (Pb(II)). Using state-of-the-art computational tools, a list of eleven plausible peptides was shortened to five analogs based on their calculated affinity to Pb(II) ions. We then synthesized and investigated them for their abilities to recover Pb-poisoned human cells. A clear pattern was observed from the in vitro detoxification results, indicating the importance of cavity size and polar moieties to enhance metal capturing. These, together with the apparent benefit of cyclizing the peptides, improved the detoxification of the two lead peptides by approximately two folds compared to GSH and the benchmark chelating agents against Pb poisoning. Moreover, the two peptides did not show any toxicity and, therefore, were thoroughly investigated to determine their potential as next-generation remedies for Pb poisoning.
See more in PubMed
World Health Organization, Lead Poisoning and Health, 2019.
Skerfving S., Bergdahl I. A. Handbook on the Toxicology of Metals, Elsevier, 2012, 911–956.
Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile of Lead, 2007. PubMed
Mason L. H., Harp J. P., Han D. Y., BioMed Res. Int. 2014, 2014, 840547. PubMed PMC
Tangahu B. V., Sheikh Abdullah S. R., Basri H., Idris M., Anuar N., Mukhlisin M., Int. J. Chem. Eng. 2011, 2011, 939161.
Flora S. J. S., Al Ameen J. Med. Sci. 2009, 2, 4–26.
P. B. Tchounwou, C. G. Yedjou, A. K. Patlolla, D. J. Sutton, Molecular, Clinical and Environmental Toxicology. 2012.
Dudev T., Grauffel C., Lim C., Inorg. Chem. 2018, 57, 14798–14809. PubMed
Flora S. J. S., Pachauri V., Int. J. Environ. Res. Public Health 2010, 7, 2745–2788. PubMed PMC
Flora G., Gupta D., Tiwari A., Interdiscip. Toxicol. 2012, 5, 47–58. PubMed PMC
Engwa G. A., Ferdinand P. U., Nwalo F. N., Unachukwu M. N., Poisoning in the Modern World - New Tricks for an Old Dog?, IntechOpen, 2019, 1–128.
Lowry J. A., The Children's Mercy Hospitals and Clinics, Kansas City, 2010.
Kaličanin B., Rašić M. T., J. Heavy. Met. Toxicity. Dis. 2019, 4, 2 : 5.
Sears M. E., Sci. World J. 2013, 2013, 219840. PubMed
Kim J. J., Kim Y. S., Kumar V., J. Trace Elem. Med. Biol. 2019, 54, 226–231. PubMed
Ellis M. R., Kane K. Y., Am. Fam. Physician 2000, 62, 545–554. PubMed
Mohammed T. A., Meier C. M., Kalvoda T., Kalt M., Rulíšek L., Shoshan M. S., Angew. Chem. Int. Ed. 2021, 60, 12381–12385. PubMed
Sauser L., Mohammed T. A., Kalvoda T., Feng S. J., Spingler B., Rulíšek L., Shoshan M. S., Inorg. Chem. 2021, 60, 18620–18624. PubMed
Alcaro M. C., Sabatino G., Uziel J., Chelli M., Ginanneschi M., Rovero P., Papini A. M., J. Pept. Sci. 2004, 10, 218–228. PubMed
Jensen K. J., Peptide and Protein Design for Biopharmaceutical Applications 2009.
Gutten O., Rulíšek L., Inorg. Chem. 2013, 52, 10347–10355. PubMed
See Supporting Information.
Mah V., Jalilehvand F., Inorg. Chem. 2012, 51, 6285–6298. PubMed PMC
Jacquart A., Brayner R., El Hage Chahine J. M., Ha-Duong N. T., Chem.-Biol. Interact. 2017, 267, 2–10. PubMed
Savjani K. T., Gajjar A. K., Savjani J. K., ISRN Pharmcol. 2012, 2012, 195727. PubMed PMC
V. Cangelosi, L. Ruckthong, V. L. Pecoraro, Lead: It's Effects on Environment and Health 2017
All but 2 and 9 were fully cyclized (see Supporting Information). The reactions were monitored by LCMS.
Peptides 2, 5, and 8 were added as tetrasodium salts to improve their solubility.
Feoktistova M., Geserick P., Leverkus M., Cold Spring Harb. Protoc. 2016, 2016, 343–346. PubMed
Chang C. A., Liu Y. L., Chen C. Y., Chou X. M., Inorg. Chem. 2001, 40, 3448–3455. PubMed
Buist D., Williams N. J., Reibenspies J. H., Hancock R. D., Inorg. Chem. 2010, 49, 5033–5039. PubMed
Brechbiel M. W., J. Nucl. Med. 2008, 52, 166–173. PubMed PMC
Shoshan M. S., Tshuva E. Y., Chem. Eur. J. 2016, 22, 9077–9081. PubMed
Shoshan M. S., Lehman Y., Goch W., Bal W., Tshuva E. Y., Metanis N., Org. Biomol. Chem. 2016, 14, 6979–6984. PubMed
Wu D., Yotnda P., J. Visualization 2011, 57, 3357.
Rousselot-Pailley P., Sénèque O., Lebrun C., Crouzy S., Boturyn D., Dumy P., Ferrand M., Delangle P., Inorg. Chem. 2006, 45, 5510–5520. PubMed
A shift in the absorption maximum of the LMCT band is associated with a change in coordination around the Pb(II) ion.
Jalilehvand F., Sisombath N. S., Schell A. C., Facey G. A., Inorg. Chem. 2015, 54, 2160–2170. PubMed PMC
Bracaglia, Physiol. Behav. 2017, 176, 139–148. PubMed PMC
Duan L., Kong J. J., Wang T. Q., Sun Y., BioMetals 2018, 31, 539–550. PubMed
Sisombath N. S., Jalilehvand F., Schell A. C., Wu Q., Inorg. Chem. 2014, 53, 12459–12468. PubMed PMC
J. Aaseth, O. Andersen, Chelation Therapy in the Treatment of Metal Intoxication 2016.
Riener C. K., Kada G., Gruber H. J., Anal. Bioanal. Chem. 2002, 373, 266–276. PubMed