Bile Acids Transporters of Enterohepatic Circulation for Targeted Drug Delivery

. 2022 May 05 ; 27 (9) : . [epub] 20220505

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, systematický přehled

Perzistentní odkaz   https://www.medvik.cz/link/pmid35566302

Grantová podpora
665860 Horizon 2020 and innovation programme Marie Sklodowska-Curie, South Moravian Region
LM2018127 CIISB, Instruct-CZ Centre, supported by MEYS CR
2020 Central European Institute of Technology
LM2018121 RECETOX RI, MEYS CR
CZ.02.1.01/0.0/0.0/17_043/0009632 CETOCOEN EXCELLENCE, Operational Programme Research, Development and Innovation
857560 European Union's Horizon 2020 research and innovation programme

Bile acids (BAs) are important steroidal molecules with a rapidly growing span of applications across a variety of fields such as supramolecular chemistry, pharmacy, and biomedicine. This work provides a systematic review on their transport processes within the enterohepatic circulation and related processes. The focus is laid on the description of specific or less-specific BA transport proteins and their localization. Initially, the reader is provided with essential information about BAs' properties, their systemic flow, metabolism, and functions. Later, the transport processes are described in detail and schematically illustrated, moving step by step from the liver via bile ducts to the gallbladder, small intestine, and colon; this description is accompanied by descriptions of major proteins known to be involved in BA transport. Spillage of BAs into systemic circulation and urine excretion are also discussed. Finally, the review also points out some of the less-studied areas of the enterohepatic circulation, which can be crucial for the development of BA-related drugs, prodrugs, and drug carrier systems.

Zobrazit více v PubMed

Jenkins G., Hardie L.J. Bile Acids: Toxicology and Bioactivity. Royal Society of Chemistry; Cambridge, UK: 2008.

Hofmann A.F., Hagey L.R. Bile Acids: Chemistry, Pathochemistry, Biology, Pathobiology, and Therapeutics. Cell. Mol. Life Sci. 2008;65:2461–2483. doi: 10.1007/s00018-008-7568-6. PubMed DOI PMC

Molinaro A., Wahlström A., Marschall H.-U. Role of Bile Acids in Metabolic Control. Trends Endocrinol. Metab. 2018;29:31–41. doi: 10.1016/j.tem.2017.11.002. PubMed DOI

Macierzanka A., Torcello-Gómez A., Jungnickel C., Maldonado-Valderrama J. Bile Salts in Digestion and Transport of Lipids. Adv. Colloid Interface Sci. 2019;274:102045. doi: 10.1016/j.cis.2019.102045. PubMed DOI

Hofmann A.F., Hagey L.R., Krasowski M.D. Bile Salts of Vertebrates: Structural Variation and Possible Evolutionary Significance. J. Lipid Res. 2010;51:226–246. doi: 10.1194/jlr.R000042. PubMed DOI PMC

Jurček O., Bonakdarzadeh P., Kalenius E., Linnanto J.M., Groessl M., Knochenmuss R., Ihalainen J.A., Rissanen K. Superchiral Pd3L6 Coordination Complex and Its Reversible Structural Conversion into Pd3L3Cl6 Metallocycles. Angew. Chem. Int. Ed. 2015;54:15462–15467. doi: 10.1002/anie.201506539. PubMed DOI

Nonappa , Maitra U. Unlocking the Potential of Bile Acids in Synthesis, Supramolecular/Materials Chemistry and Nanoscience. Org. Biomol. Chem. 2008;6:657. doi: 10.1039/b714475j. PubMed DOI

Jurček O., Ikonen S., Buřičová L., Wimmerová M., Wimmer Z., Drašar P., Horníček J., Galandáková A., Ulrichová J., Kolehmainen E.T. Succinobucol’s New Coat — Conjugation with Steroids to Alter Its Drug Effect and Bioavailability. Molecules. 2011;16:9404–9420. doi: 10.3390/molecules16119404. PubMed DOI PMC

Jurček O., Wimmer Z., Svobodová H., Bennettová B., Kolehmainen E., Drašar P. Preparation and Preliminary Biological Screening of Cholic Acid–Juvenoid Conjugates. Steroids. 2009;74:779–785. doi: 10.1016/j.steroids.2009.04.006. PubMed DOI

Jurček O., Nonappa , Kalenius E., Jurček P., Linnanto J.M., Puttreddy R., Valkenier H., Houbenov N., Babiak M., Peterek M., et al. Hexagonal Microparticles from Hierarchical Self-Organization of Chiral Trigonal Pd3L6 Macrotetracycles. Cell Rep. Phys. Sci. 2021;2:100303. doi: 10.1016/j.xcrp.2020.100303. DOI

Davis A. Bile Acid Scaffolds in Supramolecular Chemistry: The Interplay of Design and Synthesis. Molecules. 2007;12:2106–2122. doi: 10.3390/12082106. PubMed DOI PMC

Jurček O., Cametti M., Pontini M., Kolehmainen E., Rissanen K. A Zinc–Salophen/Bile-Acid Conjugate Receptor Solubilized by CTABr Micelles Binds Phosphate in Water. Org. Biomol. Chem. 2013;11:4585. doi: 10.1039/c3ob40724a. PubMed DOI

Sievänen E. Exploitation of Bile Acid Transport Systems in Prodrug Design. Molecules. 2007;12:1859–1889. doi: 10.3390/12081859. PubMed DOI PMC

Tamminen J., Kolehmainen E. Bile Acids as Building Blocks of Supramolecular Hosts. Molecules. 2001;6:21–46. doi: 10.3390/60100021. DOI

Gonzalez F.J. Nuclear Receptor Control of Enterohepatic Circulation. In: Terjung R., editor. Comprehensive Physiology. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2012. p. c120007. PubMed PMC

Hofmann A.F. Biliary Secretion and Excretion in Health and Disease: Current Concepts. Ann. Hepatol. 2007;6:15–27. doi: 10.1016/S1665-2681(19)31949-0. PubMed DOI

Hofmann A.F. The Continuing Importance of Bile Acids in Liver and Intestinal Disease. Arch. Intern. Med. 1999;159:2647. doi: 10.1001/archinte.159.22.2647. PubMed DOI

Zwicker B.L., Agellon L.B. Transport and Biological Activities of Bile Acids. Int. J. Biochem. Cell Biol. 2013;45:1389–1398. doi: 10.1016/j.biocel.2013.04.012. PubMed DOI

Matsubara T., Li F., Gonzalez F.J. FXR Signaling in the Enterohepatic System. Mol. Cell. Endocrinol. 2013;368:17–29. doi: 10.1016/j.mce.2012.05.004. PubMed DOI PMC

Lefebvre P., Cariou B., Lien F., Kuipers F., Staels B. Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation. Physiol. Rev. 2009;89:147–191. doi: 10.1152/physrev.00010.2008. PubMed DOI

Houten S.M., Watanabe M., Auwerx J. Endocrine Functions of Bile Acids. EMBO J. 2006;25:1419–1425. doi: 10.1038/sj.emboj.7601049. PubMed DOI PMC

Kaczmarczyk M.M., Miller M.J., Freund G.G. The Health Benefits of Dietary Fiber: Beyond the Usual Suspects of Type 2 Diabetes Mellitus, Cardiovascular Disease and Colon Cancer. Metabolism. 2012;61:1058–1066. doi: 10.1016/j.metabol.2012.01.017. PubMed DOI PMC

Brownlee I.A. The Physiological Roles of Dietary Fibre. Food Hydrocoll. 2011;25:238–250. doi: 10.1016/j.foodhyd.2009.11.013. DOI

Lecerf J.-M., de Lorgeril M. Dietary Cholesterol: From Physiology to Cardiovascular Risk. Br. J. Nutr. 2011;106:6–14. doi: 10.1017/S0007114511000237. PubMed DOI

Copple B.L., Li T. Pharmacology of Bile Acid Receptors: Evolution of Bile Acids from Simple Detergents to Complex Signaling Molecules. Pharmacol. Res. 2016;104:9–21. doi: 10.1016/j.phrs.2015.12.007. PubMed DOI PMC

Ma H., Patti M.E. Bile Acids, Obesity, and the Metabolic Syndrome. Best Pract. Res. Clin. Gastroenterol. 2014;28:573–583. doi: 10.1016/j.bpg.2014.07.004. PubMed DOI PMC

Abu-Hayyeh S., Papacleovoulou G., Williamson C. Nuclear Receptors, Bile Acids and Cholesterol Homeostasis Series – Bile Acids and Pregnancy. Mol. Cell. Endocrinol. 2013;368:120–128. doi: 10.1016/j.mce.2012.10.027. PubMed DOI

Mangelsdorf D.J., Evans R.M. The RXR Heterodimers and Orphan Receptors. Cell. 1995;83:841–850. doi: 10.1016/0092-8674(95)90200-7. PubMed DOI

Zhao P., Furness S.G.B. The Nature of Efficacy at G Protein-Coupled Receptors. Biochem. Pharmacol. 2019;170:113647. doi: 10.1016/j.bcp.2019.113647. PubMed DOI

Trabelsi M.-S., Lestavel S., Staels B., Collet X. Intestinal Bile Acid Receptors Are Key Regulators of Glucose Homeostasis. Proc. Nutr. Soc. 2017;76:192–202. doi: 10.1017/S0029665116002834. PubMed DOI

Ma K. Farnesoid X Receptor Is Essential for Normal Glucose Homeostasis. J. Clin. Investig. 2006;116:1102–1109. doi: 10.1172/JCI25604. PubMed DOI PMC

Wang H., Chen J., Hollister K., Sowers L.C., Forman B.M. Endogenous Bile Acids Are Ligands for the Nuclear Receptor FXR/BAR. Mol. Cell. 1999;3:543–553. doi: 10.1016/S1097-2765(00)80348-2. PubMed DOI

Mueller M., Thorell A., Claudel T., Jha P., Koefeler H., Lackner C., Hoesel B., Fauler G., Stojakovic T., Einarsson C., et al. Ursodeoxycholic Acid Exerts Farnesoid X Receptor-Antagonistic Effects on Bile Acid and Lipid Metabolism in Morbid Obesity. J. Hepatol. 2015;62:1398–1404. doi: 10.1016/j.jhep.2014.12.034. PubMed DOI PMC

Paton C.M., Ntambi J.M. Biochemical and Physiological Function of Stearoyl-CoA Desaturase. Am. J. Physiol. Endocrinol. Metab. 2009;297:E28–E37. doi: 10.1152/ajpendo.90897.2008. PubMed DOI PMC

Rudling M. Understanding Mouse Bile Acid Formation: Is It Time to Unwind Why Mice and Rats Make Unique Bile Acids? J. Lipid Res. 2016;57:2097–2098. doi: 10.1194/jlr.C072876. PubMed DOI PMC

Li J., Dawson P.A. Animal Models to Study Bile Acid Metabolism. Biochim. Et Biophys. Acta (BBA) Mol. Basis Dis. 2019;1865:895–911. doi: 10.1016/j.bbadis.2018.05.011. PubMed DOI PMC

Phelps T., Snyder E., Rodriguez E., Child H., Harvey P. The Influence of Biological Sex and Sex Hormones on Bile Acid Synthesis and Cholesterol Homeostasis. Biol. Sex Differ. 2019;10:52. doi: 10.1186/s13293-019-0265-3. PubMed DOI PMC

Takahashi S., Fukami T., Masuo Y., Brocker C.N., Xie C., Krausz K.W., Wolf C.R., Henderson C.J., Gonzalez F.J. Cyp2c70 Is Responsible for the Species Difference in Bile Acid Metabolism between Mice and Humans. J. Lipid Res. 2016;57:2130–2137. doi: 10.1194/jlr.M071183. PubMed DOI PMC

Selwyn F.P., Csanaky I.L., Zhang Y., Klaassen C.D. Importance of Large Intestine in Regulating Bile Acids and Glucagon-Like Peptide-1 in Germ-Free Mice. Drug Metab Dispos. 2015;43:1544–1556. doi: 10.1124/dmd.115.065276. PubMed DOI PMC

Dawson P.A., Karpen S.J. Intestinal Transport and Metabolism of Bile Acids. J. Lipid Res. 2015;56:1085–1099. doi: 10.1194/jlr.R054114. PubMed DOI PMC

Klaassen C.D., Aleksunes L.M. Xenobiotic, Bile Acid, and Cholesterol Transporters: Function and Regulation. Pharmacol. Rev. 2010;62:1–96. doi: 10.1124/pr.109.002014. PubMed DOI PMC

Scheer N., Wilson I.D. A Comparison between Genetically Humanized and Chimeric Liver Humanized Mouse Models for Studies in Drug Metabolism and Toxicity. Drug Discov. Today. 2016;21:250–263. doi: 10.1016/j.drudis.2015.09.002. PubMed DOI

Kunst R.F., Niemeijer M., van der Laan L.J.W., Spee B., van de Graaf S.F.J. From Fatty Hepatocytes to Impaired Bile Flow: Matching Model Systems for Liver Biology and Disease. Biochem. Pharmacol. 2020;180:114173. doi: 10.1016/j.bcp.2020.114173. PubMed DOI

Hegade V.S., Jones D.E.J. Complications of Cholestasis. Medicine. 2019;47:818–821. doi: 10.1016/j.mpmed.2019.09.009. DOI

Cattley R.C., Cullen J.M. Haschek and Rousseaux’s Handbook of Toxicologic Pathology. Elsevier; Amsterdam, The Netherlands: 2013. Liver and Gall Bladder.

Chiang J.Y.L., Ferrell J.M. Bile Acids as Metabolic Regulators and Nutrient Sensors. Annu. Rev. Nutr. 2019;39:175–200. doi: 10.1146/annurev-nutr-082018-124344. PubMed DOI PMC

Bertram T.A., Ludlow J.W., Basu J., Muthupalani S. Haschek and Rousseaux’s Handbook of Toxicologic Pathology. Elsevier; Amsterdam, The Netherlands: 2013. Digestive Tract; pp. 2277–2359.

Lanzini A. Encyclopedia of Food Sciences and Nutrition. Elsevier; Amsterdam, The Netherlands: 2003. Liver Enterohepatic Circulation; pp. 3597–3603.

Wang R., Salem M., Yousef I.M., Tuchweber B., Lam P., Childs S.J., Helgason C.D., Ackerley C., Phillips M.J., Ling V. Targeted Inactivation of Sister of P-Glycoprotein Gene (Spgp) in Mice Results in Nonprogressive but Persistent Intrahepatic Cholestasis. Proc. Natl. Acad. Sci. USA. 2001;98:2011–2016. doi: 10.1073/pnas.98.4.2011. PubMed DOI PMC

Carey M.C. Micelle Formation by Bile Salts: Physical-Chemical and Thermodynamic Considerations. Arch. Intern. Med. 1972;130:506. doi: 10.1001/archinte.1972.03650040040005. PubMed DOI

Hofmann A. The Function of Bile Salts in Fat Absorption. The Solvent Properties of Dilute Micellar Solutions of Conjugated Bile Salts. Biochem. J. 1963;89:57–68. doi: 10.1042/bj0890057. PubMed DOI PMC

Alrefai W.A., Gill R.K. Bile Acid Transporters: Structure, Function, Regulation and Pathophysiological Implications. Pharm. Res. 2007;24:1803–1823. doi: 10.1007/s11095-007-9289-1. PubMed DOI

Li S., Li C., Wang W. Bile Acid Signaling in Renal Water Regulation. Am. J. Physiol. Ren. Physiol. 2019;317:F73–F76. doi: 10.1152/ajprenal.00563.2018. PubMed DOI

Vasavan T., Ferraro E., Ibrahim E., Dixon P., Gorelik J., Williamson C. Heart and Bile Acids – Clinical Consequences of Altered Bile Acid Metabolism. Biochim. Et Biophys. Acta (BBA) Mol. Basis Dis. 2018;1864:1345–1355. doi: 10.1016/j.bbadis.2017.12.039. PubMed DOI

Venglovecz V., Rakonczay Z., Hegyi P. The Effects of Bile Acids on Pancreatic Ductal Cells. Pancreapedia Exocrine Pancreas Knowl. Base. 2016:1–10. doi: 10.3998/panc.2016.5. DOI

Makishima M., Okamoto A.Y., Repa J.J., Tu H., Learned R.M., Luk A., Hull M.V., Lustig K.D., Mangelsdorf D.J., Shan B. Identification of a Nuclear Receptor for Bile Acids. Science. 1999;284:1362–1365. doi: 10.1126/science.284.5418.1362. PubMed DOI

Staudinger J.L., Goodwin B., Jones S.A., Hawkins-Brown D., MacKenzie K.I., LaTour A., Liu Y., Klaassen C.D., Brown K.K., Reinhard J., et al. The Nuclear Receptor PXR Is a Lithocholic Acid Sensor That Protects against Liver Toxicity. Proc. Natl. Acad. Sci. USA. 2001;98:3369–3374. doi: 10.1073/pnas.051551698. PubMed DOI PMC

Woolbright B.L., Dorko K., Antoine D.J., Clarke J.I., Gholami P., Li F., Kumer S.C., Schmitt T.M., Forster J., Fan F., et al. Bile Acid-Induced Necrosis in Primary Human Hepatocytes and in Patients with Obstructive Cholestasis. Toxicol. Appl. Pharmacol. 2015;283:168–177. doi: 10.1016/j.taap.2015.01.015. PubMed DOI PMC

Makishima M. Vitamin D Receptor As an Intestinal Bile Acid Sensor. Science. 2002;296:1313–1316. doi: 10.1126/science.1070477. PubMed DOI

Nishida S., Ishizawa M., Kato S., Makishima M. Vitamin D Receptor Deletion Changes Bile Acid Composition in Mice Orally Administered Chenodeoxycholic Acid. J. Nutr. Sci. Vitaminol. 2020;66:370–374. doi: 10.3177/jnsv.66.370. PubMed DOI

Meier P.J., Stieger B. Bile Salt Transporters. Annu. Rev. Physiol. 2002;64:635–661. doi: 10.1146/annurev.physiol.64.082201.100300. PubMed DOI

Wolkoff A.W. Organic Anion Uptake by Hepatocytes. In: Terjung R., editor. Comprehensive Physiology. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2014. pp. 1715–1735. PubMed PMC

Horie T., Mizuma T., Kasai S., Awazu S. Conformational Change in Plasma Albumin Due to Interaction with Isolated Rat Hepatocyte. Am. J. Physiol. Gastrointest. Liver Physiol. 1988;254:G465–G470. doi: 10.1152/ajpgi.1988.254.4.G465. PubMed DOI

Trauner M., Boyer J.L. Bile Salt Transporters: Molecular Characterization, Function, and Regulation. Physiol. Rev. 2003;83:633–671. doi: 10.1152/physrev.00027.2002. PubMed DOI

Raedsch R., Lauterburg B.H., Hofmann A.F. Altered Bile Acid Metabolism in Primary Biliary Cirrhosis. Digest Dis. Sci. 1981;26:394–401. doi: 10.1007/BF01313580. PubMed DOI

Pizzagalli M.D., Bensimon A., Superti-Furga G. A Guide to Plasma Membrane Solute Carrier Proteins. FEBS J. 2021;288:2784–2835. doi: 10.1111/febs.15531. PubMed DOI PMC

Claro da Silva T., Polli J.E., Swaan P.W. The Solute Carrier Family 10 (SLC10): Beyond Bile Acid Transport. Mol. Asp. Med. 2013;34:252–269. doi: 10.1016/j.mam.2012.07.004. PubMed DOI PMC

Kullak-Ublick G.A., Stieger B., Hagenbuch B., Meier P.J. Hepatic Transport of Bile Salts. Semin. Liver Dis. 2000;20:273–292. doi: 10.1055/s-2000-9426. PubMed DOI

Hagenbuch B., Dawson P. The Sodium Bile Salt Cotransport Family SLC10. Pflügers Arch. Eur. J. Physiol. 2004;447:566–570. doi: 10.1007/s00424-003-1130-z. PubMed DOI

Kim J.Y., Kim K.H., Lee J.A., Namkung W., Sun A., Ananthanarayanan M., Suchy F.J., Shin D.M., Muallem S., Lee M.G. Transporter-Mediated Bile Acid Uptake Causes Ca2+-Dependent Cell Death in Rat Pancreatic Acinar Cells. Gastroenterology. 2002;122:1941–1953. doi: 10.1053/gast.2002.33617. PubMed DOI

Erlinger S. NTCP Deficiency: A New Inherited Disease of Bile Acid Transport. Clin. Res. Hepatol. Gastroenterol. 2015;39:7–8. doi: 10.1016/j.clinre.2014.07.011. PubMed DOI

Vaz F.M., Paulusma C.C., Huidekoper H., de Ru M., Lim C., Koster J., Ho-Mok K., Bootsma A.H., Groen A.K., Schaap F.G., et al. Sodium Taurocholate Cotransporting Polypeptide (SLC10A1) Deficiency: Conjugated Hypercholanemia without a Clear Clinical Phenotype: VAZ, PAULUSMA, ET AL. Hepatology. 2015;61:260–267. doi: 10.1002/hep.27240. PubMed DOI

Hagenbuch B., Meier P.J. The Superfamily of Organic Anion Transporting Polypeptides. Biochim. Et Biophys. Acta (BBA) Biomembr. 2003;1609:1–18. doi: 10.1016/S0005-2736(02)00633-8. PubMed DOI

Roth M., Obaidat A., Hagenbuch B. OATPs, OATs and OCTs: The Organic Anion and Cation Transporters of the SLCO and SLC22A Gene Superfamilies: OATPs, OATs and OCTs. Br. J. Pharmacol. 2012;165:1260–1287. doi: 10.1111/j.1476-5381.2011.01724.x. PubMed DOI PMC

Tamai I., Nezu J., Uchino H., Sai Y., Oku A., Shimane M., Tsuji A. Molecular Identification and Characterization of Novel Members of the Human Organic Anion Transporter (OATP) Family. Biochem. Biophys. Res. Commun. 2000;273:251–260. doi: 10.1006/bbrc.2000.2922. PubMed DOI

Suga T., Yamaguchi H., Sato T., Maekawa M., Goto J., Mano N. Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3. PLoS ONE. 2017;12:e0169719. doi: 10.1371/journal.pone.0169719. PubMed DOI PMC

Kramer W., Stengelin S., Baringhaus K.H., Enhsen A., Heuer H., Becker W., Corsiero D., Girbig F., Noll R., Weyland C. Substrate Specificity of the Ileal and the Hepatic Na(+)/Bile Acid Cotransporters of the Rabbit. I. Transport Studies with Membrane Vesicles and Cell Lines Expressing the Cloned Transporters. J. Lipid Res. 1999;40:1604–1617. doi: 10.1016/S0022-2275(20)33406-4. PubMed DOI

Jetter A., Kullak-Ublick G.A. Drugs and Hepatic Transporters: A Review. Pharmacol. Res. 2020;154:104234. doi: 10.1016/j.phrs.2019.04.018. PubMed DOI

Deeley R.G., Westlake C., Cole S.P.C. Transmembrane Transport of Endo- and Xenobiotics by Mammalian ATP-Binding Cassette Multidrug Resistance Proteins. Physiol. Rev. 2006;86:849–899. doi: 10.1152/physrev.00035.2005. PubMed DOI

Sodani K., Patel A., Kathawala R.J., Chen Z.-S. Multidrug Resistance Associated Proteins in Multidrug Resistance. Chin. J. Cancer. 2012;31:58–72. doi: 10.5732/cjc.011.10329. PubMed DOI PMC

Kubitz R., Dröge C., Stindt J., Weissenberger K., Häussinger D. The Bile Salt Export Pump (BSEP) in Health and Disease. Clin. Res. Hepatol. Gastroenterol. 2012;36:536–553. doi: 10.1016/j.clinre.2012.06.006. PubMed DOI

Jacquemin E. Progressive Familial Intrahepatic Cholestasis. Clin. Res. Hepatol. Gastroenterol. 2012;36:S26–S35. doi: 10.1016/S2210-7401(12)70018-9. PubMed DOI

Song P., Zhang Y., Klaassen C.D. Dose-Response of Five Bile Acids on Serum and Liver Bile Acid Concentrations and Hepatotoxicty in Mice. Toxicol. Sci. 2011;123:359–367. doi: 10.1093/toxsci/kfr177. PubMed DOI PMC

Cheng Y., Woolf T.F., Gan J., He K. In Vitro Model Systems to Investigate Bile Salt Export Pump (BSEP) Activity and Drug Interactions: A Review. Chem. Biol. Interact. 2016;255:23–30. doi: 10.1016/j.cbi.2015.11.029. PubMed DOI

Stieger B. The Role of the Sodium-Taurocholate Cotransporting Polypeptide (NTCP) and of the Bile Salt Export Pump (BSEP) in Physiology and Pathophysiology of Bile Formation. In: Fromm M.F., Kim R.B., editors. Drug Transporters. Volume 201. Springer; Berlin/Heidelberg, Germany: 2011. pp. 205–259. Handbook of Experimental Pharmacology. PubMed

Funk C., Ponelle C., Scheuermann G., Pantze M. Cholestatic Potential of Troglitazone as a Possible Factor Contributing to Troglitazone-Induced Hepatotoxicity: In Vivo and in Vitro Interaction at the Canalicular Bile Salt Export Pump (Bsep) in the Rat. Mol. Pharmacol. 2001;59:627–635. doi: 10.1124/mol.59.3.627. PubMed DOI

Stieger B. Role of the bile salt export pump, BSEP, in acquired forms of cholestasis. Drug Metab. Rev. 2010:437–445. doi: 10.3109/03602530903492004. PubMed DOI

Geenes V., Williamson C. Intrahepatic Cholestasis of Pregnancy. WJG. 2009;15:2049. doi: 10.3748/wjg.15.2049. PubMed DOI PMC

Hooiveld G.J.E.J., van Montfoort J.E., Meijer D.K.F., Müller M. Function and Regulation of ATP-Binding Cassette Transport Proteins Involved in Hepatobiliary Transport. Eur. J. Pharm. Sci. 2001;12:525–543. doi: 10.1016/S0928-0987(01)00101-4. PubMed DOI

Mahdi Z.M., Synal-Hermanns U., Yoker A., Locher K.P., Stieger B. Role of Multidrug Resistance Protein 3 in Antifungal-Induced Cholestasis. Mol. Pharmacol. 2016;90:23–34. doi: 10.1124/mol.116.103390. PubMed DOI

Marinelli R.A., Gradilone S.A., Carreras F.I., Calamita G., Lehmann G.L. Liver Aquaporins: Significance in Canalicular and Ductal Bile Formation. Ann. Hepatol. 2004;3:130–136. doi: 10.1016/S1665-2681(19)32090-3. PubMed DOI

Xia X. Bile Acid Interactions with Cholangiocytes. WJG. 2006;12:3553. doi: 10.3748/wjg.v12.i22.3553. PubMed DOI PMC

Jones H., Alpini G., Francis H. Bile Acid Signaling and Biliary Functions. Acta Pharm. Sin. B. 2015;5:123–128. doi: 10.1016/j.apsb.2015.01.009. PubMed DOI PMC

Chignard N. Bile Acid Transport and Regulating Functions in the Human Biliary Epithelium. Hepatology. 2001;33:496–503. doi: 10.1053/jhep.2001.22345. PubMed DOI

Baiocchi L., LeSage G., Glaser S., Alpini G. Regulation of Cholangiocyte Bile Secretion. J. Hepatol. 1999;31:179–191. doi: 10.1016/S0168-8278(99)80180-9. PubMed DOI

Said H., editor. Physiology of the Gastrointestinal Tract. Elsevier; Amsterdam, The Netherlands: 2012.

Alpini G., Glaser S., Baiocchi L., Francis H., Xia X., LeSage G. Secretin Activation of the Apical Na+-Dependent Bile Acid Transporter Is Associated with Cholehepatic Shunting in Rats. Hepatology. 2005;41:1037–1045. doi: 10.1002/hep.20653. PubMed DOI

de Buy Wenniger L.M., Beuers U. Bile Salts and Cholestasis. Dig. Liver Dis. 2010;42:409–418. doi: 10.1016/j.dld.2010.03.015. PubMed DOI

Banales J.M. Cholangiocyte Anion Exchange and Biliary Bicarbonate Excretion. WJG. 2006;12:3496. doi: 10.3748/wjg.v12.i22.3496. PubMed DOI PMC

Craddock A.L., Love M.W., Daniel R.W., Kirby L.C., Walters H.C., Wong M.H., Dawson P.A. Expression and Transport Properties of the Human Ileal and Renal Sodium-Dependent Bile Acid Transporter. Am. J. Physiol. Gastrointest. Liver Physiol. 1998;274:G157–G169. doi: 10.1152/ajpgi.1998.274.1.G157. PubMed DOI

van Niekerk J., Tolenaars D., María Banales J., Elferink R.O., van de Graaf S., Beuers U. THU-027-The Human Apical Sodium Dependent Bile Salt Transporter (ASBT) Activates a Bile Salt-Induced Defense in Human Cholangiocytes. J. Hepatol. 2019;70:e172. doi: 10.1016/S0618-8278(19)30311-1. DOI

Poling H.M., Mohanty S.K., Tiao G.M., Huppert S.S. A Comprehensive Analysis of Aquaporin and Secretory Related Gene Expression in Neonate and Adult Cholangiocytes. Gene Expr. Patterns. 2014;15:96–103. doi: 10.1016/j.gep.2014.05.003. PubMed DOI PMC

Tabibian J.H., Masyuk A.I., Masyuk T.V., O’Hara S.P., LaRusso N.F. Physiology of Cholangiocytes. In: Terjung R., editor. Comprehensive Physiology. Wiley; Hoboken, NJ, USA: 2013. pp. 541–565. PubMed PMC

Hohenester S., de Buy Wenniger L.M., Jefferson D.M., Oude Elferink R.P., Beuers U. Biliary Bicarbonate Secretion Constitutes a Protective Mechanism against Bile Acid- Induced Injury in Man. Dig. Dis. 2011;29:62–65. doi: 10.1159/000324687. PubMed DOI

Hohenester S., de Buy Wenniger L.M., Paulusma C.C., van Vliet S.J., Jefferson D.M., Oude Elferink R.P., Beuers U. A Biliary HCO3− Umbrella Constitutes a Protective Mechanism against Bile Acid-Induced Injury in Human Cholangiocytes. Hepatology. 2012;55:173–183. doi: 10.1002/hep.24691. PubMed DOI

Scheffer G.L., Kool M., de Haas M., de Vree J.M.L., Pijnenborg A.C.L.M., Bosman D.K., Oude Elferink R.P.J., van der Valk P., Borst P., Scheper R.J. Tissue Distribution and Induction of Human Multidrug Resistant Protein 3. Lab. Invest. 2002;82:193–201. doi: 10.1038/labinvest.3780411. PubMed DOI

Soroka C., Ballatori N., Boyer J. Organic Solute Transporter, OSTα-OSTβ: Its Role in Bile Acid Transport and Cholestasis. Semin. Liver Dis. 2010;30:178–185. doi: 10.1055/s-0030-1253226. PubMed DOI PMC

Ballatori N., Christian W.V., Lee J.Y., Dawson P.A., Soroka C.J., Boyer J.L., Madejczyk M.S., Li N. OSTα-OSTβ: A Major Basolateral Bile Acid and Steroid Transporter in Human Intestinal, Renal, and Biliary Epithelia. Hepatology. 2005;42:1270–1279. doi: 10.1002/hep.20961. PubMed DOI

Suga T., Yamaguchi H., Ogura J., Mano N. Characterization of Conjugated and Unconjugated Bile Acid Transport via Human Organic Solute Transporter α/β. Biochim. Et Biophys. Acta (BBA) Biomembr. 2019;1861:1023–1029. doi: 10.1016/j.bbamem.2019.03.003. PubMed DOI

Lazaridis K.N., Tietz P., Wu T., Kip S., Dawson P.A., LaRusso N.F. Alternative Splicing of the Rat Sodium/Bile Acid Transporter Changes Its Cellular Localization and Transport Properties. Proc. Natl. Acad. Sci. USA. 2000;97:11092–11097. doi: 10.1073/pnas.200325297. PubMed DOI PMC

Rost D., König J., Weiss G., Klar E., Stremmel W., Keppler D. Expression and Localization of the Multidrug Resistance Proteins MRP2 and MRP3 in Human Gallbladder Epithelia. Gastroenterology. 2001;121:1203–1208. doi: 10.1053/gast.2001.28648. PubMed DOI

Deng F., Bae Y.H. Bile Acid Transporter-Mediated Oral Drug Delivery. J. Control. Release. 2020;327:100–116. doi: 10.1016/j.jconrel.2020.07.034. PubMed DOI PMC

Birru W.A., Warren D.B., Ibrahim A., Williams H.D., Benameur H., Porter C.J.H., Chalmers D.K., Pouton C.W. Digestion of Phospholipids after Secretion of Bile into the Duodenum Changes the Phase Behavior of Bile Components. Mol. Pharm. 2014;11:2825–2834. doi: 10.1021/mp500193g. PubMed DOI

Hussain M.M. Intestinal Lipid Absorption and Lipoprotein Formation. Curr. Opin. Lipidol. 2014;25:200–206. doi: 10.1097/MOL.0000000000000084. PubMed DOI PMC

Hofmann A.F. Bile Acids: The Good, the Bad, and the Ugly. Physiology. 1999;14:24–29. doi: 10.1152/physiologyonline.1999.14.1.24. PubMed DOI

Porter H.P., Saunders D.R., Tytgat G., Brunser O., Rubin C.E. Fat Absorption in Bile Fistula Man. Gastroenterology. 1971;60:1008–1019. doi: 10.1016/S0016-5085(71)80028-8. PubMed DOI

Iqbal J., Hussain M.M. Intestinal Lipid Absorption. Am. J. Physiol. Endocrinol. Metab. 2009;296:E1183–E1194. doi: 10.1152/ajpendo.90899.2008. PubMed DOI PMC

Abumrad N.A., Davidson N.O. Role of the Gut in Lipid Homeostasis. Physiol. Rev. 2012;92:1061–1085. doi: 10.1152/physrev.00019.2011. PubMed DOI PMC

Dawson P.A., Lan T., Rao A. Bile Acid Transporters. J. Lipid Res. 2009;50:2340–2357. doi: 10.1194/jlr.R900012-JLR200. PubMed DOI PMC

Aldini R., Montagnani M., Roda A., Hrelia S., Biagi P., Roda E. Intestinal Absorption of Bile Acids in the Rabbit: Different Transport Rates in Jejunum and Ileum. Gastroenterology. 1996;110:459–468. doi: 10.1053/gast.1996.v110.pm8566593. PubMed DOI

Onishi T., Sano N., Takikawa H. Effect of Colestimide on Absorption of Unconjugated Bile Acids in the Rat Jejunum. J. Gastroenterol. Hepatol. 2002;17:697–701. doi: 10.1046/j.1440-1746.2002.02765.x. PubMed DOI

Amelsberg A., Jochims C., Richter C.P., Nitsche R., Fölsch U.R. Evidence for an Anion Exchange Mechanism for Uptake of Conjugated Bile Acid from the Rat Jejunum. Am. J. Physiol. Gastrointest. Liver Physiol. 1999;276:G737–G742. doi: 10.1152/ajpgi.1999.276.3.G737. PubMed DOI

Kramer W., Girbig F., Gutjahr U., Kowalewski S., Jouvenal K., Müller G., Tripier D., Wess G. Intestinal Bile Acid Absorption. Na(+)-Dependent Bile Acid Transport Activity in Rabbit Small Intestine Correlates with the Coexpression of an Integral 93-KDa and a Peripheral 14-KDa Bile Acid-Binding Membrane Protein along the Duodenum-Ileum Axis. J. Biol. Chem. 1993;268:18035–18046. doi: 10.1016/S0021-9258(17)46808-6. PubMed DOI

Xiao L., Pan G. An Important Intestinal Transporter That Regulates the Enterohepatic Circulation of Bile Acids and Cholesterol Homeostasis: The Apical Sodium-Dependent Bile Acid Transporter (SLC10A2/ASBT) Clin. Res. Hepatol. Gastroenterol. 2017;41:509–515. doi: 10.1016/j.clinre.2017.02.001. PubMed DOI

Balakrishnan A., Polli J.E. Apical Sodium Dependent Bile Acid Transporter (ASBT, SLC10A2): A Potential Prodrug Target. Mol. Pharm. 2006;3:223–230. doi: 10.1021/mp060022d. PubMed DOI PMC

Li M., Wang Q., Li Y., Cao S., Zhang Y., Wang Z., Liu G., Li J., Gu B. Apical Sodium-Dependent Bile Acid Transporter, Drug Target for Bile Acid Related Diseases and Delivery Target for Prodrugs: Current and Future Challenges. Pharmacol. Ther. 2020;212:107539. doi: 10.1016/j.pharmthera.2020.107539. PubMed DOI

Al-Hilal T.A., Chung S.W., Alam F., Park J., Lee K.E., Jeon H., Kim K., Kwon I.C., Kim I.-S., Kim S.Y., et al. Functional Transformations of Bile Acid Transporters Induced by High-Affinity Macromolecules. Sci. Rep. 2014;4:4163. doi: 10.1038/srep04163. PubMed DOI PMC

Hu N.-J., Iwata S., Cameron A.D., Drew D. Crystal Structure of a Bacterial Homologue of the Bile Acid Sodium Symporter ASBT. Nature. 2011;478:408–411. doi: 10.1038/nature10450. PubMed DOI PMC

Al-Hilal T.A., Alam F., Byun Y. Oral Drug Delivery Systems Using Chemical Conjugates or Physical Complexes. Adv. Drug Deliv. Rev. 2013;65:845–864. doi: 10.1016/j.addr.2012.11.002. PubMed DOI

Pavlović N., Goločorbin-Kon S., Ðanić M., Stanimirov B., Al-Salami H., Stankov K., Mikov M. Bile Acids and Their Derivatives as Potential Modifiers of Drug Release and Pharmacokinetic Profiles. Front. Pharmacol. 2018;9:1283. doi: 10.3389/fphar.2018.01283. PubMed DOI PMC

Zhang D., Li D., Shang L., He Z., Sun J. Transporter-Targeted Cholic Acid-Cytarabine Conjugates for Improved Oral Absorption. Int. J. Pharm. 2016;511:161–169. doi: 10.1016/j.ijpharm.2016.06.139. PubMed DOI

Rudling M., Camilleri M., Graffner H., Holst J.J., Rikner L. Specific Inhibition of Bile Acid Transport Alters Plasma Lipids and GLP-1. BMC Cardiovasc. Disord. 2015;15:75. doi: 10.1186/s12872-015-0070-9. PubMed DOI PMC

Dawson P.A., Haywood J., Craddock A.L., Wilson M., Tietjen M., Kluckman K., Maeda N., Parks J.S. Targeted Deletion of the Ileal Bile Acid Transporter Eliminates Enterohepatic Cycling of Bile Acids in Mice. J. Biol. Chem. 2003;278:33920–33927. doi: 10.1074/jbc.M306370200. PubMed DOI

Xie G., Wang X., Jiang R., Zhao A., Yan J., Zheng X., Huang F., Liu X., Panee J., Rajani C., et al. Dysregulated Bile Acid Signaling Contributes to the Neurological Impairment in Murine Models of Acute and Chronic Liver Failure. EBioMedicine. 2018;37:294–306. doi: 10.1016/j.ebiom.2018.10.030. PubMed DOI PMC

Toke O., Monsey J.D., DeKoster G.T., Tochtrop G.P., Tang C., Cistola D.P. Determinants of Cooperativity and Site Selectivity in Human Ileal Bile Acid Binding Protein. Biochemistry. 2006;45:727–737. doi: 10.1021/bi051781p. PubMed DOI

Park J., Choi J.U., Kim K., Byun Y. Bile Acid Transporter Mediated Endocytosis of Oral Bile Acid Conjugated Nanocomplex. Biomaterials. 2017;147:145–154. doi: 10.1016/j.biomaterials.2017.09.022. PubMed DOI

Ballatori N., Christian W.V., Wheeler S.G., Hammond C.L. The Heteromeric Organic Solute Transporter, OSTα–OSTβ/SLC51: A Transporter for Steroid-Derived Molecules. Mol. Asp. Med. 2013;34:683–692. doi: 10.1016/j.mam.2012.11.005. PubMed DOI PMC

Rao A., Haywood J., Craddock A.L., Belinsky M.G., Kruh G.D., Dawson P.A. The Organic Solute Transporter α-β, Ostα-Ostβ, Is Essential for Intestinal Bile Acid Transport and Homeostasis. Proc. Natl. Acad. Sci. USA. 2008;105:3891–3896. doi: 10.1073/pnas.0712328105. PubMed DOI PMC

Dawson P.A., Hubbert M., Haywood J., Craddock A.L., Zerangue N., Christian W.V., Ballatori N. The Heteromeric Organic Solute Transporter α-β, Ostα-Ostβ, Is an Ileal Basolateral Bile Acid Transporter. J. Biol. Chem. 2005;280:6960–6968. doi: 10.1074/jbc.M412752200. PubMed DOI PMC

Balesaria S., Pell R.J., Abbott L.J., Tasleem A., Chavele K.-M., Barley N.F., Khair U., Simon A., Moriarty K.J., Brydon W.G., et al. Exploring Possible Mechanisms for Primary Bile Acid Malabsorption: Evidence for Different Regulation of Ileal Bile Acid Transporter Transcripts in Chronic Diarrhoea. Eur. J. Gastroenterol. Hepatol. 2008;20:413–422. doi: 10.1097/MEG.0b013e3282f41b82. PubMed DOI

Kitamura Y., Kusuhara H., Sugiyama Y. Basolateral Efflux Mediated by Multidrug Resistance-Associated Protein 3 (Mrp3/Abcc3) Facilitates Intestinal Absorption of Folates in Mouse. Pharm. Res. 2010;27:665–672. doi: 10.1007/s11095-009-0047-4. PubMed DOI

Zelcer N., van de Wetering K., de Waart R., Scheffer G.L., Marschall H.-U., Wielinga P.R., Kuil A., Kunne C., Smith A., van der Valk M., et al. Mice Lacking Mrp3 (Abcc3) Have Normal Bile Salt Transport, but Altered Hepatic Transport of Endogenous Glucuronides. J. Hepatol. 2006;44:768–775. doi: 10.1016/j.jhep.2005.07.022. PubMed DOI

Sakamoto S., Suzuki H., Kusuhara H., Sugiyama Y. Efflux Mechanism of Taurocholate across the Rat Intestinal Basolateral Membrane. Mol. Pharm. 2006;3:275–281. doi: 10.1021/mp050101+. PubMed DOI

Ballatori N., Fang F., Christian W.V., Li N., Hammond C.L. Ostα-Ostβ Is Required for Bile Acid and Conjugated Steroid Disposition in the Intestine, Kidney, and Liver. Am. J. Physiol. Gastrointest. Liver Physiol. 2008;295:G179–G186. doi: 10.1152/ajpgi.90319.2008. PubMed DOI PMC

Ridlon J.M., Kang D.-J., Hylemon P.B. Bile Salt Biotransformations by Human Intestinal Bacteria. J. Lipid Res. 2006;47:241–259. doi: 10.1194/jlr.R500013-JLR200. PubMed DOI

Eckburg P.B. Diversity of the Human Intestinal Microbial Flora. Science. 2005;308:1635–1638. doi: 10.1126/science.1110591. PubMed DOI PMC

Mekhjian H.S., Phillips S.F., Hofmann A.F. Colonic Absorption of Unconjugated Bile Acids: Perfusion Studies in Man. Digest. Dis. Sci. 1979;24:545–550. doi: 10.1007/BF01489324. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...