Flexibility-Aided Orientational Self-Sorting and Transformations of Bioactive Homochiral Cuboctahedron Pd12L16
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
24-10760S
Czech Science Foundation
MUNI/A/1575/2023
Grant Agency of Masaryk University
MUNI/C/0123/2023
Grant Agency of Masaryk University
LM2023042
Core Facility NMR of CIISB, Instruct-CZ Center, supported by MEYS CR
CZ.02.1.01/0.0/0.0/18_046/0015974
European Regional Development Fund Project "UP CIISB"
LM2023069
RECETOX Research Infrastructure
857560 (CETOCOEN Excellence)
European Union's Horizon 2020 research and innovation program
PubMed
40785269
PubMed Central
PMC12416454
DOI
10.1002/anie.202513902
Knihovny.cz E-zdroje
- Klíčová slova
- Biological activity, Chirality, Self‐assembly, Structural transformation, Supramolecular chemistry,
- MeSH
- buňky Hep G2 MeSH
- komplexní sloučeniny * chemie farmakologie chemická syntéza MeSH
- lidé MeSH
- ligandy MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- palladium * chemie farmakologie MeSH
- protinádorové látky * chemie farmakologie chemická syntéza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- komplexní sloučeniny * MeSH
- ligandy MeSH
- palladium * MeSH
- protinádorové látky * MeSH
The rational design and selective self-assembly of flexible and unsymmetric ligands into large coordination complexes is an eminent challenge in supramolecular coordination chemistry. Here, we present the coordination-driven self-assembly of natural ursodeoxycholic-bile-acid-derived unsymmetric tris-pyridyl ligand (L) resulting in the selective and switchable formation of chiral stellated Pd6L8 and Pd12L16 cages. The selectivity of the cage originates in the adaptivity and flexibility of the arms of the ligand bearing pyridyl moieties. The interspecific transformations can be controlled by changes in the reaction conditions. The orientational self-sorting of L into a single constitutional isomer of each cage, i.e., homochiral quadruple and octuple right-handed helical species, was confirmed by a combination of molecular modelling and circular dichroism. The cages, derived from natural amphiphilic transport molecules, mediate the higher cellular uptake and increase the anticancer activity of bioactive palladium cations as determined in studies using in vitro 3D spheroids of the human hepatic cells HepG2.
CEITEC Central European Institute of Technology Masaryk University Kamenice 5 Brno CZ 62500 Czechia
Department of Biochemistry Faculty of Science Masaryk University Kamenice 5 Brno CZ 62500 Czechia
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno CZ 62500 Czechia
Department of Chemistry University of Jyvaskyla P O Box 35 Jyväskylä FI 40014 Finland
Institute of Physics University of Tartu W Ostwald Street 1 Tartu 50411 Estonia
RECETOX Faculty of Science Masaryk University Kotlarska 2 Brno CZ 61137 Czechia
Zobrazit více v PubMed
Saalfrank R. W., Stark A., Peters K., von Schnering H. G., Angew. Chem. Int. Ed. Engl. 1988, 27, 851–853.
Chakrabarty R., Mukherjee P. S., Stang P. J., Chem. Rev. 2011, 111, 6810–6918. PubMed PMC
Saha S., Regeni I., Clever G. H., Coord. Chem. Rev. 2018, 374, 1–14.
Ronson T. K., Carruthers C., Fisher J., Brotin T., Harding L. P., Rizkallah P. J., Hardie M. J., Inorg. Chem. 2010, 49, 675–685. PubMed
Bandi S., Pal A. K., Hanan G. S., Chand D. K., Chem. – Eur. J. 2014, 20, 13122–13126. PubMed
Dasary H., Sarkar M., Chand D. K., Chem. Commun. 2022, 58, 8480–8483. PubMed
Preston D., Inglis A. R., Crowley J. D., Kruger P. E., Chem. Asian J. 2019, 14, 3404–3408. PubMed
Sun Q.‐F., Sato S., Fujita M., Nat. Chem. 2012, 4, 330–333. PubMed
Debata N. B., Tripathy D., Sahoo H. S., Coord. Chem. Rev. 2019, 387, 273–298.
Tripathy D., Debata N. B., Naik K. C., Sahoo H. S., Coord. Chem. Rev. 2022, 456, 214396.
Pullen S., Tessarolo J., Clever G. H., Chem. Sci. 2021, 12, 7269–7293. PubMed PMC
Wu K., Benchimol E., Baksi A., Clever G. H., Nat. Chem. 2024, 16, 584–591. PubMed
Meng W., Ronson T. K., Nitschke J. R., Proc. Natl. Acad. Sci 2013, 110, 10531–10535. PubMed PMC
Bonakdarzadeh P., Pan F., Kalenius E., Jurček O., Rissanen K., Angew. Chem. Int. Ed. 2015, 54, 14890–14893. PubMed
Howlader P., Zangrando E., Mukherjee P. S., J. Am. Chem. Soc. 2020, 142, 9070–9078. PubMed
Howlader P., Mondal S., Ahmed S., Mukherjee P. S., J. Am. Chem. Soc. 2020, 142, 20968–20972. PubMed
Chen L.‐J., Yang H.‐B., Shionoya M., Chem. Soc. Rev. 2017, 46, 2555–2576. PubMed
Kikuchi T., Sato S., Fujita D., Fujita M., Chem. Sci. 2014, 5, 3257.
Barber B. E., Jamieson E. M. G., White L. E. M., McTernan C. T., Chem 2024, 10, 2792–2806.
Sato S., Yoshimasa Y., Fujita D., Yagi‐Utsumi M., Yamaguchi T., Kato K., Fujita M., Angew. Chem. 2015, 127, 8555–8559. PubMed
Domoto Y., Yamamoto K., Horie S., Yu Z., Fujita M., Chem. Sci. 2022, 13, 4372–4376. PubMed PMC
Jurček O., Bonakdarzadeh P., Kalenius E., Linnanto J. M., Groessl M., Knochenmuss R., Ihalainen J. A., Rissanen K., Angew. Chem. Int. Ed. 2015, 54, 15462–15467. PubMed
Jurček O., Nonappa, E. K. , Jurček P., Linnanto J. M., Puttreddy R., Valkenier H., Houbenov N., Babiak M., Peterek M., Davis A. P., Marek R., Rissanen K., Cell Rep. Phys. Sci. 2021, 2, 100303.
Sen S. K., Natarajan R., Inorg. Chem. 2019, 58, 7180–7188. PubMed
Jurček O., Chattopadhyay S., Kalenius E., Linnanto J. M., Kiesilä A., Jurček P., Radiměřský P., Marek R., Angew. Chem. Int. Ed. 2024, 63, e202409134. PubMed
Sawada T., Fujita M., Chem 2020, 6, 1861–1876.
Fujita D., Ueda Y., Sato S., Mizuno N., Kumasaka T., Fujita M., Nature 2016, 540, 563–566. PubMed
Bunzen J., Iwasa J., Bonakdarzadeh P., Numata E., Rissanen K., Sato S., Fujita M., Angew. Chem. Int. Ed. 2012, 51, 3161–3163. PubMed
Yokoyama H., Ueda Y., Fujita D., Sato S., Fujita M., Chem. – Asian J. 2015, 10, 2292–2295. PubMed
Fujita D., Ueda Y., Sato S., Yokoyama H., Mizuno N., Kumasaka T., Fujita M., Chem 2016, 1, 91–101.
Casini A., Woods B., Wenzel M., Inorg. Chem. 2017, 56, 14715–14729. PubMed
Cook T. R., Vajpayee V., Lee M. H., Stang P. J., Chi K.‐W., Acc. Chem. Res. 2013, 46, 2464–2474. PubMed PMC
Sepehrpour H., Fu W., Sun Y., Stang P. J., J. Am. Chem. Soc. 2019, 141, 14005–14020. PubMed PMC
Durník R., Šindlerová L., Babica P., Jurček O., Molecules 2022, 27, 2961. PubMed PMC
Yan Y., Huang J., Tang B. Z., Chem. Commun. 2016, 52, 11870–11884. PubMed
Kai S., Sakuma Y., Mashiko T., Kojima T., Tachikawa M., Hiraoka S., Inorg. Chem. 2017, 56, 12652–12663. PubMed
Díaz‐Torres R., Alvarez S., Dalton Trans. 2011, 40, 10742. PubMed
Komine S., Takahashi S., Kojima T., Sato H., Hiraoka S., J. Am. Chem. Soc. 2019, 141, 3178–3186. PubMed
It was previously observed (please see reference 22) with a similar bile‐acid‐based ligand, that ligand's rotation in either dimeric Pd
Suzuki K., Kawano M., Fujita M., Angew. Chem. 2007, 119, 2877–2880.
Lee H., Han J., Kim D., Jung O.‐S., Dalton Trans. 2021, 50, 14849–14854. PubMed
Zhang T., Zhou L.‐P., Guo X.‐Q., Cai L.‐X., Sun Q.‐F., Nat. Commun. 2017, 8, 15898. PubMed PMC
Fujita D., Takahashi A., Sato S., Fujita M., J. Am. Chem. Soc. 2011, 133, 13317–13319. PubMed
Howlader P., Bhandari P., Chakraborty D., Clegg J. K., Mukherjee P. S., Inorg. Chem. 2020, 59, 15454–15459. PubMed
Han M., Luo Y., Damaschke B., Gómez L., Ribas X., Jose A., Peretzki P., Seibt M., Clever G. H., Angew. Chem. Int. Ed. 2016, 55, 445–449. PubMed
Kypr J., Kejnovská I., Bednářová K., Vorlíčková M., in Compr. Chiroptical Spectrosc. John Wiley & Sons, Ltd, Hoboken, New Jersey, USA: 2012, 2, pp. 575–586, 10.1002/9781118120392.ch17. DOI
Stow S. M., Causon T. J., Zheng X., Kurulugama R. T., Mairinger T., May J. C., Rennie E. E., Baker E. S., Smith R. D., McLean J. A., Hann S., Fjeldsted J. C., Anal. Chem. 2017, 89, 9048–9055. PubMed PMC
Gabelica V., Shvartsburg A. A., Afonso C., Barran P., Benesch J. L. P., Bleiholder C., Bowers M. T., Bilbao A., Bush M. F., Campbell J. L., Campuzano I. D. G., Causon T., Clowers B. H., Creaser C. S., De Pauw E., Far J., Fernandez‐Lima F., Fjeldsted J. C., Giles K., Groessl M., Hogan C. J., Hann S., Kim H. I., Kurulugama R. T., May J. C., McLean J. A., Pagel K., Richardson K., Ridgeway M. E., Rosu F., et al., Mass Spectrom. Rev. 2019, 38, 291–320. PubMed PMC
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., et al., Gaussian 09, Revision D.01., 2013, http://www.rsc.org/suppdata/c5/sc/c5sc02423d/c5sc02423d1.pdf.
Linnanto J., Korppi‐Tommola J., J. Phys. Chem. A 2004, 108, 5872–5882.
Schneider M., Grossi M. F., Gadara D., Spáčil Z., Babica P., Bláha L., J. Hazard. Mater. 2022, 424, 127447. PubMed
Gütz C., Hovorka R., Klein C., Jiang Q.‐Q., Bannwarth C., Engeser M., Schmuck C., Assenmacher W., Mader W., Topić F., Rissanen K., Grimme S., Lützen A., Angew. Chem. Int. Ed. 2014, 53, 1693–1698. PubMed
Schulte T. R., Holstein J. J., Clever G. H., Angew. Chem. Int. Ed. 2019, 58, 5562–5566. PubMed PMC
Wu K., Tessarolo J., Baksi A., Clever G. H., Angew. Chem. Int. Ed. 2022, 61, e202205725. PubMed PMC