Unsymmetric Chiral Ligands for Large Metallo-Macrocycles: Selectivity of Orientational Self-Sorting
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
665860
H2020 Marie Skłodowska-Curie Actions
24-10760S
Grantová Agentura České Republiky
LM2023042
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/18_046/0015974
Interreg
PSG264
Eesti Teadusagentuur
PubMed
38845398
DOI
10.1002/anie.202409134
Knihovny.cz E-zdroje
- Klíčová slova
- cage compounds, chirality, epimerism, self-assembly, supramolecular chemistry,
- Publikační typ
- časopisecké články MeSH
Nature uses various chiral and unsymmetric building blocks to form substantial and complex supramolecular assemblies. In contrast, the majority of organic ligands used in metallosupramolecular chemistry are symmetric and achiral. Here we extend the group of unsymmetric chiral bile acids used as a scaffold for organic bispyridyl ligands by employing chenodeoxycholic acid (CDCA), an epimer of the previously used ursodeoxycholic acid (UDCA). The epimerism, flexibility, and bulkiness of the ligands leads to large structural differences in coordination products upon reaction with Pd(NO3)2. The UDCA-bispyridyl ligand self-assembles quantitatively into a single crown-like Pd3L6 complex, whereas the CDCA ligand provides a mixture of coordination complexes of general formula PdnL2n, i.e., Pd2L4, Pd3L6, Pd4L8, Pd5L10, and even Pd6L12 containing an impressive 120 chiral centers. The coordination products were studied by a combination of analytical methods, with ion-mobility mass spectrometry (IM-MS) providing valuable details on their structure and allowed an effective separation of m/z 1461 to individual signals according to the arrival time distribution, thereby revealing four different ions of [Pd3L6(NO3)3]3+, [Pd4L8(NO3)4]4+, [Pd5L10(NO3)5]5+, and [Pd6L12(NO3)6]6+. The structures of all the complexes were modelled using DFT calculations. Finally, the challenges and conclusions in determining the specific structural identity of these unsymmetric species are discussed.
CEITEC Central European Institute of Technology Masaryk University Kamenice 5 CZ 62500 Brno Czechia
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 CZ 62500 Brno Czechia
Department of Chemistry University of Jyvaskyla P O Box 35 FI 40014 Jyväskylä Finland
Institute of Physics University of Tartu W Ostwald Street 1 50411 Tartu Estonia
Zobrazit více v PubMed
O. Mamula, Coord. Chem. Rev. 2003, 242, 87–95.
T. Sawada, M. Fujita, Chem 2020, 6, 1861–1876.
R. A. Smaldone, R. S. Forgan, H. Furukawa, J. J. Gassensmith, A. M. Z. Slawin, O. M. Yaghi, J. F. Stoddart, Angew. Chem. Int. Ed. 2010, 49, 8630–8634.
I. Roy, J. F. Stoddart, Acc. Chem. Res. 2021, 54, 1440–1453.
O. Jurček, R. Puttreddy, F. Topić, P. Jurček, P. Zarabadi-Poor, H. V. Schröder, R. Marek, K. Rissanen, Cryst. Growth Des. 2020, 20, 4193–4199.
O. Jurček, P. Bonakdarzadeh, E. Kalenius, J. M. Linnanto, M. Groessl, R. Knochenmuss, J. A. Ihalainen, K. Rissanen, Angew. Chem. Int. Ed. 2015, 54, 15462–15467.
S. K. Sen, R. Natarajan, Inorg. Chem. 2019, 58, 7180–7188.
O. Jurček, Nonappa, E. Kalenius, P. Jurček, J. M. Linnanto, R. Puttreddy, H. Valkenier, N. Houbenov, M. Babiak, M. Peterek, A. P. Davis, R. Marek, K. Rissanen, Cell Rep. Phys. Sci. 2021, 2, 100303.
T. R. Cook, P. J. Stang, Chem. Rev. 2015, 115, 7001–7045.
M. Han, D. M. Engelhard, G. H. Clever, Chem. Soc. Rev. 2014, 43, 1848–1860.
D. Tripathy, N. B. Debata, K. C. Naik, H. S. Sahoo, Coord. Chem. Rev. 2022, 456, 214396.
L.-J. Chen, H.-B. Yang, M. Shionoya, Chem. Soc. Rev. 2017, 46, 2555–2576.
M. Pan, K. Wu, J.-H. Zhang, C.-Y. Su, Coord. Chem. Rev. 2019, 378, 333–349.
S. Pullen, J. Tessarolo, G. H. Clever, Chem. Sci. 2021, 12, 7269–7293.
R. A. S. Vasdev, D. Preston, J. D. Crowley, Chem. Asian J. 2017, 12, 2513–2523.
A. M. Spokoyny, D. Kim, A. Sumrein, C. A. Mirkin, Chem. Soc. Rev. 2009, 38, 1218.
J. E. Beves, B. A. Blight, C. J. Campbell, D. A. Leigh, R. T. McBurney, Angew. Chem. Int. Ed. 2011, 50, 9260–9327.
J. E. M. Lewis, J. D. Crowley, ChemPlusChem 2020, 85, 815–827.
R.-J. Li, A. Marcus, F. Fadaei-Tirani, K. Severin, Chem. Commun. 2021, 57, 10023–10026.
B. Roy, R. Saha, A. K. Ghosh, Y. Patil, P. S. Mukherjee, Inorg. Chem. 2017, 56, 3579–3588.
E. Kalenius, M. Groessl, K. Rissanen, Nat. Chem. Rev. 2019, 3, 4–14.
O. H. Lloyd Williams, N. J. Rijs, Front. Chem. 2021, 9, 682743.
D. Ogata, J. Yuasa, Angew. Chem. Int. Ed. 2019, 58, 18424–18428.
S. Samantray, S. Krishnaswamy, D. K. Chand, Nat. Commun. 2020, 11, 880.
S. S. Mishra, S. V. K. Kompella, S. Krishnaswamy, S. Balasubramanian, D. K. Chand, Inorg. Chem. 2020, 59, 12884–12894.
A. Tarzia, J. E. M. Lewis, K. E. Jelfs, Angew. Chem. Int. Ed. 2021, 60, 20879–20887.
J. E. M. Lewis, A. Tarzia, A. J. P. White, K. E. Jelfs, Chem. Sci. 2020, 11, 677–683.
J. E. M. Lewis, Chem. Eur. J. 2021, 27, 4454–4460.
R. Gupta, H. Paithankar, J. Chugh, R. Boomishankar, Inorg. Chem. 2021, 60, 10468–10477.
C. Klein, C. Gütz, M. Bogner, F. Topić, K. Rissanen, A. Lützen, Angew. Chem. Int. Ed. 2014, 53, 3739–3742.
T. Zhang, L.-P. Zhou, X.-Q. Guo, L.-X. Cai, Q.-F. Sun, Nat. Commun. 2017, 8, 15898.
L. Neukirch, M. D. Kulas, J. J. Holstein, G. H. Clever, Chem. Eur. J. 2024, 30, e202400132.
C. Gütz, R. Hovorka, C. Klein, Q.-Q. Jiang, C. Bannwarth, M. Engeser, C. Schmuck, W. Assenmacher, W. Mader, F. Topić, K. Rissanen, S. Grimme, A. Lützen, Angew. Chem. Int. Ed. 2014, 53, 1693–1698.
S. Komine, T. Tateishi, T. Kojima, H. Nakagawa, Y. Hayashi, S. Takahashi, S. Hiraoka, Dalton Trans. 2019, 48, 4139–4148.
S. M. Jansze, G. Cecot, M. D. Wise, K. O. Zhurov, T. K. Ronson, A. M. Castilla, A. Finelli, P. Pattison, E. Solari, R. Scopelliti, G. E. Zelinskii, A. V. Vologzhanina, Y. Z. Voloshin, J. R. Nitschke, K. Severin, J. Am. Chem. Soc. 2016, 138, 2046–2054.
P. Howlader, S. Mukherjee, R. Saha, P. S. Mukherjee, Dalton Trans. 2015, 44, 20493–20501.
L. Zeng, S. Sun, Z.-W. Wei, Y. Xin, L. Liu, J. Zhang, RSC Adv. 2020, 10, 39323–39327.
D. R. Martir, A. Pizzolante, D. Escudero, D. Jacquemin, S. L. Warriner, E. Zysman-Colman, ACS Appl. Energ. Mater. 2018, 1, 2971–2978.
X. Tang, H. Jiang, Y. Si, N. Rampal, W. Gong, C. Cheng, X. Kang, D. Fairen-Jimenez, Y. Cui, Y. Liu, Chem 2021, 7, 2771–2786.
E. O. Bobylev, B. De Bruin, J. N. H. Reek, Inorg. Chem. 2021, 60, 12498–12505.
K. Suzuki, M. Tominaga, M. Kawano, M. Fujita, Chem. Commun. 2009, 1638.
C. Liu, E. O. Bobylev, Y. Fu, D. A. Poole, K. Robeyns, C. Fustin, Y. Garcia, J. N. H. Reek, M. L. Singleton, Chem. Eur. J. 2020, 26, 11960–11965.
M. D. Wise, J. J. Holstein, P. Pattison, C. Besnard, E. Solari, R. Scopelliti, G. Bricogne, K. Severin, Chem. Sci. 2015, 6, 1004–1010.
M. Han, R. Michel, G. H. Clever, Chem. Eur. J. 2014, 20, 10640–10644.
E. Benchimol, K. E. Ebbert, A. Walther, J. J. Holstein, G. H. Clever, Chem. Eur. J. 2024, e202401850.
R. Durník, L. Šindlerová, P. Babica, O. Jurček, Molecules 2022, 27, 2961.
J. Tamminen, E. Kolehmainen, Molecules 2001, 6, 21–46.
Nonappa, U. Maitra, Org. Biomol. Chem. 2008, 6, 657–669.
H. Svobodová, V. Noponen, E. Kolehmainen, E. Sievänen, RSC Adv. 2012, 2, 4985–5007.
H. Valkenier, A. P. Davis, Acc. Chem. Res. 2013, 46, 2898–2909.
R. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810–6918.
J. Bunzen, J. Iwasa, P. Bonakdarzadeh, E. Numata, K. Rissanen, S. Sato, M. Fujita, Angew. Chem. Int. Ed. 2012, 51, 3161–3163.
Q.-F. Sun, J. Iwasa, D. Ogawa, Y. Ishido, S. Sato, T. Ozeki, Y. Sei, K. Yamaguchi, M. Fujita, Science 2010, 328, 1144–1147.
D. Fujita, H. Yokoyama, Y. Ueda, S. Sato, M. Fujita, Angew. Chem. Int. Ed. 2015, 54, 155–158.
D. Fujita, Y. Ueda, S. Sato, H. Yokoyama, N. Mizuno, T. Kumasaka, M. Fujita, Chem 2016, 1, 91–101.
S. M. Stow, T. J. Causon, X. Zheng, R. T. Kurulugama, T. Mairinger, J. C. May, E. E. Rennie, E. S. Baker, R. D. Smith, J. A. McLean, S. Hann, J. C. Fjeldsted, Anal. Chem. 2017, 89, 9048–9055.
V. Gabelica, A. A. Shvartsburg, C. Afonso, P. Barran, J. L. P. Benesch, C. Bleiholder, M. T. Bowers, A. Bilbao, M. F. Bush, J. L. Campbell, I. D. G. Campuzano, T. Causon, B. H. Clowers, C. S. Creaser, E. De Pauw, J. Far, F. Fernandez-Lima, J. C. Fjeldsted, K. Giles, M. Groessl, C. J. Hogan, S. Hann, H. I. Kim, R. T. Kurulugama, J. C. May, J. A. McLean, K. Pagel, K. Richardson, M. E. Ridgeway, F. Rosu, F. Sobott, K. Thalassinos, S. J. Valentine, T. Wyttenbach, Mass Spectrom. Rev. 2019, 38, 291–320.
C. Larriba-Andaluz, C. J. Hogan, J. Chem. Phys. 2014, 141, 194107.
D. Joseph, S. Lee, Org. Lett. 2022, 24, 6186–6191.
K. L. Stoltz, R. Erickson, C. Staley, A. R. Weingarden, E. Romens, C. J. Steer, A. Khoruts, M. J. Sadowsky, P. I. Dosa, J. Med. Chem. 2017, 60, 3451–3471.
Q. Li, G. P. Tochtrop, Tetrahedron Lett. 2011, 52, 4137–4139.