Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) in Patients after Acute Stroke: Relation to Stroke Severity, Myocardial Injury, and Impact on Prognosis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
UNCE-MED 002
Charles University
CZ.02.1.01/0.0/0.0/16_026/0008388
EU project INTERCARDIS
PubMed
35566677
PubMed Central
PMC9103556
DOI
10.3390/jcm11092552
PII: jcm11092552
Knihovny.cz E-zdroje
- Klíčová slova
- TRAIL, acute stroke, cardiovascular disease, mortality,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is known to be associated with poor prognosis after cardiovascular events. We aimed to assess the dynamic changes in TRAIL levels and the relation of TRAIL level to stroke severity, its impact on the short-term outcomes, and its association with markers of cardiac injury in patients after acute stroke. METHODS: Between August 2020 and August 2021, 120 consecutive patients, 104 after acute ischemic stroke (AIS), 76 receiving reperfusion therapy, and 16 patients after intracerebral hemorrhage (ICH) were enrolled in our study. Blood samples were obtained from patients at the time of admission, 24 h later, and 48 h later to determine the plasma level of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), N-terminal prohormone of brain natriuretic peptide (NT-proBNP), and high-sensitive Troponin I (hs-TnI). Twelve-lead ECGs were obtained at the time of admission, 24 h later, 48 h later, and at the release of the patients. Evaluations were performed using the National Institutes of Health Stroke Scale (NIHSS) at the time of admission and using the modified Rankin Scale (mRS) 90 days following the patient's discharge from the hospital. RESULTS: We observed a connection between lower TRAIL levels and stroke severity evaluated using the NIHSS (p = 0.044) on the first day. Lower TRAIL showed an association with severe disability and death as evaluated using the mRS at 90 days, both after 24 (p = 0.0022) and 48 h (p = 0.044) of hospitalization. Moreover, we observed an association between lower TRAIL and NT-proBNP elevation at the time of admission (p = 0.039), after 24 (p = 0.043), and after 48 h (p = 0.023) of hospitalization. In the ECG analysis, lower TRAIL levels were associated with the occurrence of premature ventricular extrasystoles (p = 0.043), and there was an association with prolonged QTc interval (p = 0.052). CONCLUSIONS: The results show that lower TRAIL is associated with stroke severity, unfavorable functional outcome, and short-term mortality in patients after acute ischemic stroke. Moreover, we described the association with markers of cardiac injury and ECG changes.
Cardiocenter 3rd Faculty of Medicine Charles University 100 34 Prague Czech Republic
Medtronic Czechia Partner of INTERCARDIS Project 190 00 Prague Czech Republic
Zobrazit více v PubMed
Wiley S.R., Schooley K., Smolak P.J., Din W.S., Huang C.P., Nicholl J.K., Sutherland G.R., Smith T.D., Rauch C., Smith C.A., et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity. 1995;3:673–682. doi: 10.1016/1074-7613(95)90057-8. PubMed DOI
Stuckey D.W., Shah K. TRAIL on trial: Preclinical advances in cancer therapy. Trends Mol. Med. 2013;19:685–694. doi: 10.1016/j.molmed.2013.08.007. PubMed DOI PMC
Gasparini C., Vecchi Brumatti L., Monasta L., Zauli G. TRAIL-based therapeutic approaches for the treatment of pediatric malignancies. Curr. Med. Chem. 2013;20:2254–2271. doi: 10.2174/0929867311320170009. PubMed DOI
Corallini F., Rimondi E., Secchiero P. TRAIL and osteoprotegerin: A role in endothelial physiopathology? Front. Biosci. 2008;13:135–147. doi: 10.2741/2665. PubMed DOI
Kavurma M.M., Bennett M.R. Expression, regulation and function of trail in atherosclerosis. Biochem. Pharmacol. 2008;75:1441–1450. doi: 10.1016/j.bcp.2007.10.020. PubMed DOI
Kakareko K., Rydzewska-Rosolowska A., Zbroch E., Hryszko T. TRAIL and Cardiovascular Disease-A Risk Factor or Risk Marker: A Systematic Review. J. Clin. Med. 2021;10:1252. doi: 10.3390/jcm10061252. PubMed DOI PMC
Teringova E., Kozel M., Knot J., Kocka V., Benesova K., Tousek P. Relationship between TRAIL and Left Ventricular Ejection Fraction in Patients with ST-Elevation Myocardial Infarction Treated with Primary Percutaneous Coronary Intervention. BioMed Res. Int. 2018;2018:3709084. doi: 10.1155/2018/3709084. PubMed DOI PMC
Volpato S., Ferrucci L., Secchiero P., Corallini F., Zuliani G., Fellin R., Guralnik J.M., Bandinelli S., Zauli G. Association of tumor necrosis factor-related apoptosis-inducing ligand with total and cardiovascular mortality in older adults. Atherosclerosis. 2011;215:452–458. doi: 10.1016/j.atherosclerosis.2010.11.004. PubMed DOI PMC
Mori K., Ikari Y., Jono S., Shioi A., Ishimura E., Emoto M., Inaba M., Hara K., Nishizawa Y. Association of serum TRAIL level with coronary artery disease. Thromb. Res. 2010;125:322–325. doi: 10.1016/j.thromres.2009.11.024. PubMed DOI
Secchiero P., Corallini F., Ceconi C., Parrinello G., Volpato S., Ferrari R., Zauli G. Potential prognostic significance of decreased serum levels of TRAIL after acute myocardial infarction. PLoS ONE. 2009;4:e4442. doi: 10.1371/journal.pone.0004442. PubMed DOI PMC
Niessner A., Hohensinner P.J., Rychli K., Neuhold S., Zorn G., Richter B., Hulsmann M., Berger R., Mortl D., Huber K., et al. Prognostic value of apoptosis markers in advanced heart failure patients. Eur. Heart J. 2009;30:789–796. doi: 10.1093/eurheartj/ehp004. PubMed DOI
Skau E., Henriksen E., Wagner P., Hedberg P., Siegbahn A., Leppert J. GDF-15 and TRAIL-R2 are powerful predictors of long-term mortality in patients with acute myocardial infarction. Eur. J. Prev. Cardiol. 2017;24:1576–1583. doi: 10.1177/2047487317725017. PubMed DOI
Ferreira J.P., Sharma A., Mehta C., Bakris G., Rossignol P., White W.B., Zannad F. Multi-proteomic approach to predict specific cardiovascular events in patients with diabetes and myocardial infarction: Findings from the EXAMINE trial. Clin. Res. Cardiol. 2021;110:1006–1019. doi: 10.1007/s00392-020-01729-3. PubMed DOI
Arcidiacono M.V., Rimondi E., Maietti E., Melloni E., Tisato V., Gallo S., Valdivielso J.M., Fernandez E., Betriu A., Voltan R., et al. Relationship between low levels of circulating TRAIL and atheromatosis progression in patients with chronic kidney disease. PLoS ONE. 2018;13:e0203716. doi: 10.1371/journal.pone.0203716. PubMed DOI PMC
Voltan R., Secchiero P., Casciano F., Milani D., Zauli G., Tisato V. Redox signaling and oxidative stress: Cross talk with TNF-related apoptosis inducing ligand activity. Int. J. Biochem. Cell Biol. 2016;81:364–374. doi: 10.1016/j.biocel.2016.09.019. PubMed DOI
Xia P., Liu Y., Cheng Z. Signaling Pathways in Cardiac Myocyte Apoptosis. BioMed Res. Int. 2016;2016:9583268. doi: 10.1155/2016/9583268. PubMed DOI PMC
Tisato V., Gonelli A., Voltan R., Secchiero P., Zauli G. Clinical perspectives of TRAIL: Insights into central nervous system disorders. Cell. Mol. Life Sci. 2016;73:2017–2027. doi: 10.1007/s00018-016-2164-7. PubMed DOI PMC
Tufekci K.U., Vurgun U., Yigitaslan O., Keskinoglu P., Yaka E., Kutluk K., Genc S. Follow-up Analysis of Serum TNF-Related Apoptosis-Inducing Ligand Protein and mRNA Expression in Peripheral Blood Mononuclear Cells from Patients with Ischemic Stroke. Front. Neurol. 2018;9:102. doi: 10.3389/fneur.2018.00102. PubMed DOI PMC
Pan X., Pang M., Ma A., Wang K., Zhang Z., Zhong Q., Yang S. Association of TRAIL and Its Receptors with Large-Artery Atherosclerotic Stroke. PLoS ONE. 2015;10:e0136414. doi: 10.1371/journal.pone.0136414. PubMed DOI PMC
Kang Y.H., Park M.G., Noh K.H., Park H.R., Lee H.W., Son S.M., Park K.P. Low serum TNF-related apoptosis-inducing ligand (TRAIL) levels are associated with acute ischemic stroke severity. Atherosclerosis. 2015;240:228–233. doi: 10.1016/j.atherosclerosis.2015.03.028. PubMed DOI
Soto-Camara R., Gonzalez-Santos J., Gonzalez-Berna J., Trejo-Gabriel-Galan J.M. Factors associated with a rapid call for assistance for patients with ischemic stroke. Emergencias. 2020;32:33–39. PubMed
Scheitz J.F., Nolte C.H., Laufs U., Endres M. Application and interpretation of high-sensitivity cardiac troponin assays in patients with acute ischemic stroke. Stroke. 2015;46:1132–1140. doi: 10.1161/STROKEAHA.114.007858. PubMed DOI
Kerr G., Ray G., Wu O., Stott D.J., Langhorne P. Elevated troponin after stroke: A systematic review. Cerebrovasc. Dis. 2009;28:220–226. doi: 10.1159/000226773. PubMed DOI
Faiz K.W., Thommessen B., Einvik G., Omland T., Ronning O.M. Prognostic value of high-sensitivity cardiac troponin T in acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 2014;23:241–248. doi: 10.1016/j.jstrokecerebrovasdis.2013.01.005. PubMed DOI
de Lemos J.A., Morrow D.A., Bentley J.H., Omland T., Sabatine M.S., McCabe C.H., Hall C., Cannon C.P., Braunwald E. The prognostic value of B-type natriuretic peptide in patients with acute coronary syndromes. N. Engl. J. Med. 2001;345:1014–1021. doi: 10.1056/NEJMoa011053. PubMed DOI
Wang T.J., Larson M.G., Levy D., Benjamin E.J., Leip E.P., Omland T., Wolf P.A., Vasan R.S. Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N. Engl. J. Med. 2004;350:655–663. doi: 10.1056/NEJMoa031994. PubMed DOI
Fonarow G.C., Peacock W.F., Phillips C.O., Givertz M.M., Lopatin M., ADHERE Scientific Advisory Committee and Investigators Admission B-type natriuretic peptide levels and in-hospital mortality in acute decompensated heart failure. J. Am. Coll. Cardiol. 2007;49:1943–1950. doi: 10.1016/j.jacc.2007.02.037. PubMed DOI
Cushman M., Judd S.E., Howard V.J., Kissela B., Gutierrez O.M., Jenny N.S., Ahmed A., Thacker E.L., Zakai N.A. N-terminal pro-B-type natriuretic peptide and stroke risk: The reasons for geographic and racial differences in stroke cohort. Stroke. 2014;45:1646–1650. doi: 10.1161/STROKEAHA.114.004712. PubMed DOI PMC
Di Castelnuovo A., Veronesi G., Costanzo S., Zeller T., Schnabel R.B., de Curtis A., Salomaa V., Borchini R., Ferrario M., Giampaoli S., et al. NT-proBNP (N-Terminal Pro-B-Type Natriuretic Peptide) and the Risk of Stroke. Stroke. 2019;50:610–617. doi: 10.1161/STROKEAHA.118.023218. PubMed DOI
Osmancik P., Teringova E., Tousek P., Paulu P., Widimsky P. Prognostic value of TNF-related apoptosis inducing ligand (TRAIL) in acute coronary syndrome patients. PLoS ONE. 2013;8:e53860. doi: 10.1371/journal.pone.0053860. PubMed DOI PMC
Shichita T., Ito M., Yoshimura A. Post-ischemic inflammation regulates neural damage and protection. Front. Cell. Neurosci. 2014;8:319. doi: 10.3389/fncel.2014.00319. PubMed DOI PMC
Mabuchi T., Kitagawa K., Ohtsuki T., Kuwabara K., Yagita Y., Yanagihara T., Hori M., Matsumoto M. Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke. 2000;31:1735–1743. doi: 10.1161/01.STR.31.7.1735. PubMed DOI
Martin-Villalba A., Herr I., Jeremias I., Hahne M., Brandt R., Vogel J., Schenkel J., Herdegen T., Debatin K.M. CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons. J. Neurosci. 1999;19:3809–3817. doi: 10.1523/JNEUROSCI.19-10-03809.1999. PubMed DOI PMC
Giannakoulas G., Hatzitolios A., Karvounis H., Koliakos G., Charitandi A., Dimitroulas T., Savopoulos C., Tsirogianni E., Louridas G. N-terminal pro-brain natriuretic peptide levels are elevated in patients with acute ischemic stroke. Angiology. 2005;56:723–730. doi: 10.1177/000331970505600610. PubMed DOI
Di Angelantonio E., Fiorelli M., Toni D., Sacchetti M.L., Lorenzano S., Falcou A., Ciarla M.V., Suppa M., Bonanni L., Bertazzoni G., et al. Prognostic significance of admission levels of troponin I in patients with acute ischaemic stroke. J. Neurol. Neurosurg. Psychiatry. 2005;76:76–81. doi: 10.1136/jnnp.2004.041491. PubMed DOI PMC
Christensen H., Fogh Christensen A., Boysen G. Abnormalities on ECG and telemetry predict stroke outcome at 3 months. J. Neurol. Sci. 2005;234:99–103. doi: 10.1016/j.jns.2005.03.039. PubMed DOI
Christensen H., Boysen G., Christensen A.F., Johannesen H.H. Insular lesions, ECG abnormalities, and outcome in acute stroke. J. Neurol. Neurosurg. Psychiatry. 2005;76:269–271. doi: 10.1136/jnnp.2004.037531. PubMed DOI PMC
Eom Y.W., Jung H.Y., Oh J.E., Lee J.W., Ahn M.S., Youn Y.J., Ahn S.G., Kim J.Y., Lee S.H., Yoon J., et al. Isoproterenol Enhances Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Human Embryonic Kidney Cells through Death Receptor 5 up-Regulation. Korean Circ. J. 2016;46:93–98. doi: 10.4070/kcj.2016.46.1.93. PubMed DOI PMC
Secchiero P., Gonelli A., Corallini F., Ceconi C., Ferrari R., Zauli G. Metalloproteinase 2 cleaves in vitro recombinant TRAIL: Potential implications for the decreased serum levels of TRAIL after acute myocardial infarction. Atherosclerosis. 2010;211:333–336. doi: 10.1016/j.atherosclerosis.2010.02.024. PubMed DOI
Secchiero P., Gonelli A., Carnevale E., Milani D., Pandolfi A., Zella D., Zauli G. TRAIL promotes the survival and proliferation of primary human vascular endothelial cells by activating the Akt and ERK pathways. Circulation. 2003;107:2250–2256. doi: 10.1161/01.CIR.0000062702.60708.C4. PubMed DOI
Zauli G., Pandolfi A., Gonelli A., Di Pietro R., Guarnieri S., Ciabattoni G., Rana R., Vitale M., Secchiero P. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sequentially upregulates nitric oxide and prostanoid production in primary human endothelial cells. Circ. Res. 2003;92:732–740. doi: 10.1161/01.RES.0000067928.83455.9C. PubMed DOI
Secchiero P., Candido R., Corallini F., Zacchigna S., Toffoli B., Rimondi E., Fabris B., Giacca M., Zauli G. Systemic tumor necrosis factor-related apoptosis-inducing ligand delivery shows antiatherosclerotic activity in apolipoprotein E-null diabetic mice. Circulation. 2006;114:1522–1530. doi: 10.1161/CIRCULATIONAHA.106.643841. PubMed DOI
Secchiero P., Corallini F., di Iasio M.G., Gonelli A., Barbarotto E., Zauli G. TRAIL counteracts the proadhesive activity of inflammatory cytokines in endothelial cells by down-modulating CCL8 and CXCL10 chemokine expression and release. Blood. 2005;105:3413–3419. doi: 10.1182/blood-2004-10-4111. PubMed DOI