Application of Carbon-Flax Hybrid Composite in High Performance Electric Personal Watercraft
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FSI-S-22-7957
Brno University of Technology
DZRO Military autonomous and robotic systems
University of Defence
ITMS2014+:313011W442
Alexander Dubček University of Trenčín
PubMed
35566934
PubMed Central
PMC9099815
DOI
10.3390/polym14091765
PII: polym14091765
Knihovny.cz E-zdroje
- Klíčová slova
- flax, hybrid composite, personal watercraft,
- Publikační typ
- časopisecké články MeSH
Within the herein presented research, we studied the applicability of flax fabrics for composite parts in personal watercrafts in order to enhance damping of vibrations from the engine and noise reduction (which is relatively high for contemporary carbon constructions). Since the composite parts are intended to be exposed to humid environments requiring high levels of mechanical properties, a carbon-flax composite was selected. Samples of carbon, fiberglass, flax, and hybrid carbon-flax twill and biax fabrics were subjected to tensile and three-point bending tests. The mechanical properties were also tested after exposure of the samples to a humid environment. Damping was assessed by vibration and noise measurements directly on the complete float for samples as well as real parts. The hybrid carbon-flax material exhibited lower values of tensile strength than the carbon material (760 MPa compared to 463 MPa), but, at the same time, significantly higher than the other tested materials, or flax itself (115 MPa for a twill fabric). A similar trend in the results was observed for the three-point bending tests. Vibration tests and noise measurements showed reductions in vibration amplitude and frequency when using the carbon-flax hybrid material; the frequency response function for the watercraft part assembled from the hybrid material was 50% lower than for that made of carbon. Testing of samples located in a humid environment showed the necessity of surface treatment to prevent moisture absorption (mechanical properties were reduced at minimum by 28%). The tests confirmed that the hybrid material is satisfactory in terms of strength and its contribution to noise and vibration damping.
Zobrazit více v PubMed
Ngo T.D. Natural and Artificial Fiber-Reinforced Composites as Renewable Sources. InTech; London, UK: 2018. Natural Fibers for Sustainable Bio-Composites; pp. 110–138.
Koronis G., Silva A., Fontul M. Green composites: A review of adequate materials for automotive applications. Compos. Part B. 2013;44:120–127. doi: 10.1016/j.compositesb.2012.07.004. DOI
Khalfallah M., Abbès B., Abbès F., Guo Y., Marcel V., Duval A., Vanfleteren F., Rousseau F. Innovative flax tapes reinforced Acrodur biocomposites: A new alternative for automotive applications. Mater. Des. 2014;64:116–126. doi: 10.1016/j.matdes.2014.07.029. DOI
Faruk O., Bledzki A.K., Fink H.P., Sain M. Progress report on natural fiber reinforced composites. Macromol. Mater. Eng. 2014;299:9–26. doi: 10.1002/mame.201300008. DOI
Shamsuyeva M., Hansen O., Endres H.J. Review on Hybrid Carbon/Flax Composites and Their Properties. Int. J. Polym. Sci. 2019;2019:9624670. doi: 10.1155/2019/9624670. DOI
Peças P., Carvalho H., Salman H., Leite M. Natural Fibre Composites and Their Applications: A Review. J. Compos. Sci. 2018;2:66. doi: 10.3390/jcs2040066. DOI
Baley C., Bourmaud A., Davies P. Eighty years of composites reinforced by flax fibres: A historical review. Compos. Part A Appl. Sci. Manuf. 2021;144:106333. doi: 10.1016/j.compositesa.2021.106333. DOI
Kandemir A., Pozegic T.R., Hamerton I., Eichhorn S.J., Longana M.L. Characterisation of Natural Fibres for Sustainable Discontinuous Fibre Composite Materials. Materials. 2020;13:2129. doi: 10.3390/ma13092129. PubMed DOI PMC
Poilâne C., Cherif Z.E., Richard F. Polymer reinforced by flax fibers as a viscoelastoplastic material. Compos. Struct. 2014;12:100–112. doi: 10.1016/j.compstruct.2014.01.043. DOI
Le Gall M., Davies P., Martin N., Baley C. Recommended flax fibre density values for composite property predictions. Ind. Crop. Prod. 2018;114:52–58. doi: 10.1016/j.indcrop.2018.01.065. DOI
Madsen B., Lilholt H. Physical and mechanical properties of unidirectional plant fibre composites—An evaluation of the influence of porosity. Compos. Sci. Technol. 2003;63:1265–1272. doi: 10.1016/S0266-3538(03)00097-6. DOI
Whitacre R., Amiri A., Ulven C. The effects of corn zein protein coupling agent on mechanical properties of flax fiber reinforced composites. Ind. Crop. Prod. 2015;77:232–238. doi: 10.1016/j.indcrop.2015.08.056. DOI
Fehri M., Ragueh R., Vivet A., Fakhreddine D., Haddar M. Improvement of Natural Fiber Composite Materials by Carbon Fibers. J. Renew. Mater. 2017;5:38–47. doi: 10.7569/JRM.2016.634123. DOI
Bhoopathi R., Deepa C.K., Sasikala G., Ramesh M. Experimental Investigation on Mechanical Properties of Hemp-Banana-Glass Fiber Reinforced Composites. Appl. Mech. Mater. 2015;766–767:167–172. doi: 10.4028/www.scientific.net/AMM.766-767.167. DOI
Atmakuri A., Palevicius A., Siddabathula M., Vilkauskas A., Janusas G. Analysis of Mechanical and Wettability Properties of Natural Fiber-Reinforced Epoxy Hybrid Composites. Polymers. 2020;12:2827. doi: 10.3390/polym12122827. PubMed DOI PMC
Bolcu D., Stănescu M.M. A Study of the Mechanical Properties of Composite Materials with a Dammar-Based Hybrid Matrix and Two Types of Flax Fabric Reinforcement. Polymers. 2020;12:1649. doi: 10.3390/polym12081649. PubMed DOI PMC
Apolinario T.G., Ienny P., Corn S., Léger R., Bergeret A., Haudin J.M. Effects of Water Ageing on the Mechanical Properties of Flax and Glass Fibre Composites: Degradation and Reversibility; Proceedings of the 2nd International Conference on Natural Fibers; Sao Miguel, Portugal. 27–29 April 2015.
Fairlie G., Njuguna J. Damping Properties of Flax/Carbon Hybrid Epoxy/Fibre-Reinforced Composites for Automotive Semi-Structural Applications. Fibers. 2020;8:64. doi: 10.3390/fib8100064. DOI
Mahmoudi S., Kervoelen A., Robin G., Duigou L., Daya E., Cadou J.M. Experimental and numerical investigation of the damping of flax–epoxy composite plates. Compos. Struct. 2018;208:426–433. doi: 10.1016/j.compstruct.2018.10.030. DOI
Phillips S., Baets J., Lessard L., Hubert P., Verpoest I. Characterization of flax/epoxy prepregs before and after cure. J. Reinf. Plast. Compos. 2013;32:777–785. doi: 10.1177/0731684412473359. DOI
Symington M.C., David-West O.S., Banks W.M., Thomason J.L., Pethrick R.A. Vacuum infusion of natural fibre composites for structural applications; Proceedings of the 13th European Conference on Composite Materials (EECM 13); Stockholm, Sweden. 2–5 June 2008.
Dhimole V.K., Serrao P., Cho C. Review and Suggestion of Failure Theories in Voids Scenario for VARTM Processed Composite Materials. Polymers. 2021;13:969. doi: 10.3390/polym13060969. PubMed DOI PMC
Mehdikhani M., Gorbatikh L., Verpoest I., Lomov S.V. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance. J. Compos. Mater. 2019;53:1579–1669. doi: 10.1177/0021998318772152. DOI
Burita L., Hrusecka D., Pivnicka M., Rosman P. The use of knowledge management systems and event-b modelling in a lean enterprise. J. Compet. 2018;10:40–53. doi: 10.7441/joc.2018.01.03. DOI
Kedari V.R., Farah B.I., Hsiao K.T. Effects of vacuum pressure, inlet pressure, and mold temperature on the void content, volume fraction of polyester/e-glass fiber composites manufactured with VARTM process. J. Compos. Mater. 2011;45:2727–2742. doi: 10.1177/0021998311415442. DOI
AL-Oqla F.M., Salit M.S., Ishak M.R., Aziz N.A. Selecting Natural Fibers for Bio-Based Materials with Conflicting Criteria. Am. J. Appl. Sci. 2015;12:64–71. doi: 10.3844/ajassp.2015.64.71. DOI
Mahboob Z., Sawi I.E., Zdero R., Fawaz Z., Bougherara H. Tensile and compressive damaged response in Flax fibre reinforced epoxy composites. Compos. Part A Appl. Sci. Manuf. 2017;92:118–133. doi: 10.1016/j.compositesa.2016.11.007. DOI
Hamad S.F., Stehling N., Holland C., Foreman J.P., Rodenburg C. Low-Voltage SEM of Natural Plant Fibers: Microstructure Properties (Surface and Cross-Section) and their Link to the Tensile Properties. Procedia Eng. 2017;200:295–302. doi: 10.1016/j.proeng.2017.07.042. DOI
Betts D., Sadeghian P., Fam A. Tensile Properties of Flax FRP Composites; Proceedings of the 6th Asia-Pacific Conference on FRP in Structures; Singapore. 19–21 July 2017.
Kersani M., Lomov S.V., Van Vuure A.W., Bouabdallah A., Verpoest I. Damage in flax/epoxy quasi-unidirectional woven laminates under quasi-static tension. J. Compos. Mater. 2015;49:403–413. doi: 10.1177/0021998313519282. DOI
Benkhelladi A., Laouici H., Bouchoucha A. Tensile and flexural properties of polymer composites reinforced by flax, jute and sisal fibres. Int. J. Adv. Manuf. Technol. 2020;108:895–916. doi: 10.1007/s00170-020-05427-2. DOI
Kocich R., Kunčická L. Development of structure and properties in bimetallic Al/Cu sandwich composite during cumulative severe plastic deformation. J. Sandw. Struct. Mater. 2021;23:4252–4275. doi: 10.1177/1099636221993886. DOI
Kunčická L., Kocich R., Strunz P., Macháčková A. Texture and residual stress within rotary swaged Cu/Al clad composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. DOI
Paturel A., Dhakal H.N. Influence of Water Absorption on the Low Velocity Falling Weight Impact Damage Behaviour of Flax/Glass Reinforced Vinyl Ester Hybrid Composites. Molecules. 2020;25:278. doi: 10.3390/molecules25020278. PubMed DOI PMC
Yao J., Yu W. Tensile strength and its variation for PAN-based carbon fibers. II. Calibration of the variation from testing. J. Appl. Polym. Sci. 2007;104:2625–2632. doi: 10.1002/app.24455. DOI
Chi Z.F., Chou T.W., Shen G.Y. Determination of single fibre strength distribution from fibre bundle testing. J. Mater. Sci. 1984;19:3319–3324. doi: 10.1007/BF00549820. DOI
10618 Carbon Fibre. Determination of Tensile Properties of Resin-Im-Pregnated Yarn. International Organization for Standardization; Geneva, Switzerland: 2004.
Bensadoun F., Verpoest I., Baets J., Müssig J., Graupner N., Davies P., Gomina M., Kervoelen A., Baley C. Impregnated fibre bundle test for natural fibres used in composites. J. Reinf. Plast. Compos. 2017;36:942–957. doi: 10.1177/0731684417695461. DOI
Kocich R., Kunčická L., Macháčková A., Šofer M. Improvement of mechanical and electrical properties of rotary swaged Al-Cu clad composites. Mater. Des. 2017;123:137–147. doi: 10.1016/j.matdes.2017.03.048. DOI
Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI
Kocich R., Macháčková A., Kunčická L., Fojtík F. Fabrication and characterization of cold-swaged multilayered Al–Cu clad composites. Mater. Des. 2015;71:36–47. doi: 10.1016/j.matdes.2015.01.008. DOI
Moustafa E.B., Almitani K.H. Detecting Damage in Carbon Fibre Composites using Numerical Analysis and Vibration Measurements. Lat. Am. J. Solids Struct. 2021;18:e362. doi: 10.1590/1679-78256294. DOI
Dos Santos J.A., Soares C.M., Maia N. Structural damage identification in laminated structures using FRF data. Compos. Struct. 2005;67:239–249. doi: 10.1016/j.compstruct.2004.09.011. DOI
Kulíšek V., Kolar P., Vrba P., Smolík J., Janota M., Růžička M., Machálka M. On passive damping in machine tool hybrid structural parts. Int. J. Adv. Manuf. Technol. 2021;114:1925–1952. doi: 10.1007/s00170-021-06865-2. DOI
Xiros N.I., Tzelepis V., Loghis E.K. Modeling and Simulation of Planing-Hull Watercraft Outfitted with an Electric Motor Drive and a Surface-Piercing Propeller. J. Mar. Sci. Eng. 2019;7:49. doi: 10.3390/jmse7020049. DOI
Lin T.R., Pan J., O’Shea P.J., Mechefske C.K. A study of vibration and vibration control of ship structures. Mar. Struct. 2009;22:730–743. doi: 10.1016/j.marstruc.2009.06.004. DOI
Prasanna A.B., Raju K.S., Ramji K., Satish P. Free Vibration, Buckling and Design Optimisation of Composite Pressure Hulls. Mater. Today Proc. 2017;4:7381–7387. doi: 10.1016/j.matpr.2017.07.068. DOI
Balıkoğlu F., Demircioğlu T., Yıldız M., Arslan N., Ataş A. Mechanical performance of marine sandwich composites subjected to flatwise compression and flexural loading: Effect of resin pins. J. Sandw. Struct. Mater. 2020;22:2030–2048. doi: 10.1177/1099636218792671. DOI
Al-hajaj Z., Zdero R., Bougherara H. Mechanical, morphological, and water absorption properties of a new hybrid composite material made from 4 harness satin woven carbon fibres and flax fibres in an epoxy matrix. Compos. Part A Appl. Sci. Manuf. 2018;115:46–56. doi: 10.1016/j.compositesa.2018.09.015. DOI
Fiore V., Valenza A., Di Bella G. Mechanical behavior of carbon/flax hybrid composites for structural applications. J. Compos. Mater. 2012;46:2089–2096. doi: 10.1177/0021998311429884. DOI
Dinesh M., Asokan R., Vignesh S., Kumar C.P., Ravichand R. Experimental Investigation on Mechanical Properties of Carbon-Flax-Glass Hybrid Composites. Int. J. Veh. Struct. Syst. 2020;12:1–8. doi: 10.4273/ijvss.12.1.01. DOI
Assarar M., Zouari W., Sabhi H., Ayad R., Berthelot J. Evaluation of the damping of hybrid carbon–Flax reinforced composites. Compos. Struct. 2015;132:148–154. doi: 10.1016/j.compstruct.2015.05.016. DOI
Singh C., Jeeva Q., Rajamurugan G. Vibration and tribological behaviour of flax/wire mesh/hemp composite reinforced with WCFC particles. J. Manuf. Processes. 2022;77:525–538. doi: 10.1016/j.jmapro.2022.03.036. DOI
Dos Santos J.C., de Oliveira L.Á., Panzera T., Remillat C., Farrow I., Placet V., Scarpa F. Ageing of autoclaved epoxy/flax composites: Effects on water absorption, porosity and flexural behaviour. Compos. Part B Eng. 2020;202:108380. doi: 10.1016/j.compositesb.2020.108380. DOI
Fiore V., Calabrese L., Miranda R., Badagliacco D., Sanfilippo C., Palamara D., Valenza A., Proverbio E. On the response of flax fiber reinforced composites under salt-fog/dry conditions: Reversible and irreversible performances degradation. Compos. Part B Eng. 2022;230:109535. doi: 10.1016/j.compositesb.2021.109535. DOI
Schuster J., Govignon Q., Bickerton S. Processability of Biobased Thermoset Resins and Flax Fibres Reinforcements Using Vacuum Assisted Resin Transfer Moulding. Open J. Compos. Mater. 2014;4:1–11. doi: 10.4236/ojcm.2014.41001. DOI
Hindersmann A. Confusion about infusion: An overview of infusion processes. Compos. Part A Appl. Sci. Manuf. 2019;126:105583. doi: 10.1016/j.compositesa.2019.105583. DOI
GRM Systems . LG 700 Epoxy System: Data Sheet. GRM Systems; Olomouc, Czech Republic: 2004.
Jones R. Mechanics of Composite Materials. 2nd ed. CRC Press; Boca Raton, FL, USA: 1999.
Campbell F. Structural Composite Materials. ASM International; Novelty, OH, USA: 2010.
Plastics. Determination of Tensile Properties, Part 4: Test Conditions for Isotropic and Orthotropic Fibre-Reinforced Plastic Composites. International Organization for Standardization; Geneva, Switzerland: 1997.
Fibre-Reinforced Plastic Composites. Determination of Flexural Properties. International Organization for Standardization; Geneva, Switzerland: 1999.
Volek A., Zouhar J. Optical methods in use by experimental strain measurement; Proceedings of the 48th International Scientific Conference on Experimental Stress Analysis 2010; Velké Losiny, Czech Republic. 31 May–3 June 2010; pp. 527–533.
Strungar E., Yankin A., Zubova E., Babushkin A., Dushko A. Experimental study of shear properties of 3D woven composite using digital image correlation and acoustic emission. Acta Mech. Sin. 2020;36:448–459. doi: 10.1007/s10409-019-00921-7. DOI
Zhang Y., Li Y., Ma H., Yu T. Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Compos. Sci. Technol. 2013;88:172–177. doi: 10.1016/j.compscitech.2013.08.037. DOI
Chen D., Sun G., Meng M., Jin X., Li Q. Flexural performance and cost efficiency of carbon/basalt/glass hybrid FRP composite laminates. Thin-Walled Struct. 2019;142:516–531. doi: 10.1016/j.tws.2019.03.056. DOI
Lu M.M., Fuentes C.A., Van Vuure A.W. Moisture sorption and swelling of flax fibre and flax fibre composites. Compos. Part B Eng. 2022;231:109538. doi: 10.1016/j.compositesb.2021.109538. DOI
Moudood A., Rahman A., Öchsner A., Islam M., Francucci G. Flax fiber and its composites: An overview of water and moisture absorption impact on their performance. J. Reinf. Plast. Compos. 2019;38:323–339. doi: 10.1177/0731684418818893. DOI
Chinnasamy S. Study on static and dynamic behavior of jute/sisal fiber reinforced epoxy composites. Mater. Today Proc. 2020;46:9425–9428.
Hassani S., Shadan F. Using incomplete FRF measurements for damage detection of structures with closely-spaced eigenvalues. Measurement. 2022;188:110388. doi: 10.1016/j.measurement.2021.110388. DOI
Yuan W., Li L.Y., Jang S.H. Dynamic stability of CNTs-reinforced non-uniform composite beams under axial excitation loading. Comput. Mater. Sci. 2021:111054. doi: 10.1016/j.commatsci.2021.111054. DOI
Hose P.F.P., Krishna D.A. Free vibration analysis of polymer composite plates reinforced with graphene platelets. Mater. Today Proc. 2022;38:419–435.
Ma M., Yao W., Jiang W., Jin W., Chen Y., Li P., Huang J. Fatigue of composite honeycomb sandwich panels under random vibration load. Compos. Struct. 2022;286:115296. doi: 10.1016/j.compstruct.2022.115296. DOI
Vasconcellos J.M., Latorre R.G. Recreational boat noise level evaluation. Ocean Eng. 2001;28:1309–1324. doi: 10.1016/S0029-8018(00)00052-4. DOI
Li Z., Kang J., Ba M. Influence of distance from traffic sounds on physiological indicators and subjective evaluation. Transp. Res. Part D Transp. Environ. 2020;87:102538. doi: 10.1016/j.trd.2020.102538. DOI