Application of Carbon-Flax Hybrid Composite in High Performance Electric Personal Watercraft

. 2022 Apr 26 ; 14 (9) : . [epub] 20220426

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35566934

Grantová podpora
FSI-S-22-7957 Brno University of Technology
DZRO Military autonomous and robotic systems University of Defence
ITMS2014+:313011W442 Alexander Dubček University of Trenčín

Within the herein presented research, we studied the applicability of flax fabrics for composite parts in personal watercrafts in order to enhance damping of vibrations from the engine and noise reduction (which is relatively high for contemporary carbon constructions). Since the composite parts are intended to be exposed to humid environments requiring high levels of mechanical properties, a carbon-flax composite was selected. Samples of carbon, fiberglass, flax, and hybrid carbon-flax twill and biax fabrics were subjected to tensile and three-point bending tests. The mechanical properties were also tested after exposure of the samples to a humid environment. Damping was assessed by vibration and noise measurements directly on the complete float for samples as well as real parts. The hybrid carbon-flax material exhibited lower values of tensile strength than the carbon material (760 MPa compared to 463 MPa), but, at the same time, significantly higher than the other tested materials, or flax itself (115 MPa for a twill fabric). A similar trend in the results was observed for the three-point bending tests. Vibration tests and noise measurements showed reductions in vibration amplitude and frequency when using the carbon-flax hybrid material; the frequency response function for the watercraft part assembled from the hybrid material was 50% lower than for that made of carbon. Testing of samples located in a humid environment showed the necessity of surface treatment to prevent moisture absorption (mechanical properties were reduced at minimum by 28%). The tests confirmed that the hybrid material is satisfactory in terms of strength and its contribution to noise and vibration damping.

Zobrazit více v PubMed

Ngo T.D. Natural and Artificial Fiber-Reinforced Composites as Renewable Sources. InTech; London, UK: 2018. Natural Fibers for Sustainable Bio-Composites; pp. 110–138.

Koronis G., Silva A., Fontul M. Green composites: A review of adequate materials for automotive applications. Compos. Part B. 2013;44:120–127. doi: 10.1016/j.compositesb.2012.07.004. DOI

Khalfallah M., Abbès B., Abbès F., Guo Y., Marcel V., Duval A., Vanfleteren F., Rousseau F. Innovative flax tapes reinforced Acrodur biocomposites: A new alternative for automotive applications. Mater. Des. 2014;64:116–126. doi: 10.1016/j.matdes.2014.07.029. DOI

Faruk O., Bledzki A.K., Fink H.P., Sain M. Progress report on natural fiber reinforced composites. Macromol. Mater. Eng. 2014;299:9–26. doi: 10.1002/mame.201300008. DOI

Shamsuyeva M., Hansen O., Endres H.J. Review on Hybrid Carbon/Flax Composites and Their Properties. Int. J. Polym. Sci. 2019;2019:9624670. doi: 10.1155/2019/9624670. DOI

Peças P., Carvalho H., Salman H., Leite M. Natural Fibre Composites and Their Applications: A Review. J. Compos. Sci. 2018;2:66. doi: 10.3390/jcs2040066. DOI

Baley C., Bourmaud A., Davies P. Eighty years of composites reinforced by flax fibres: A historical review. Compos. Part A Appl. Sci. Manuf. 2021;144:106333. doi: 10.1016/j.compositesa.2021.106333. DOI

Kandemir A., Pozegic T.R., Hamerton I., Eichhorn S.J., Longana M.L. Characterisation of Natural Fibres for Sustainable Discontinuous Fibre Composite Materials. Materials. 2020;13:2129. doi: 10.3390/ma13092129. PubMed DOI PMC

Poilâne C., Cherif Z.E., Richard F. Polymer reinforced by flax fibers as a viscoelastoplastic material. Compos. Struct. 2014;12:100–112. doi: 10.1016/j.compstruct.2014.01.043. DOI

Le Gall M., Davies P., Martin N., Baley C. Recommended flax fibre density values for composite property predictions. Ind. Crop. Prod. 2018;114:52–58. doi: 10.1016/j.indcrop.2018.01.065. DOI

Madsen B., Lilholt H. Physical and mechanical properties of unidirectional plant fibre composites—An evaluation of the influence of porosity. Compos. Sci. Technol. 2003;63:1265–1272. doi: 10.1016/S0266-3538(03)00097-6. DOI

Whitacre R., Amiri A., Ulven C. The effects of corn zein protein coupling agent on mechanical properties of flax fiber reinforced composites. Ind. Crop. Prod. 2015;77:232–238. doi: 10.1016/j.indcrop.2015.08.056. DOI

Fehri M., Ragueh R., Vivet A., Fakhreddine D., Haddar M. Improvement of Natural Fiber Composite Materials by Carbon Fibers. J. Renew. Mater. 2017;5:38–47. doi: 10.7569/JRM.2016.634123. DOI

Bhoopathi R., Deepa C.K., Sasikala G., Ramesh M. Experimental Investigation on Mechanical Properties of Hemp-Banana-Glass Fiber Reinforced Composites. Appl. Mech. Mater. 2015;766–767:167–172. doi: 10.4028/www.scientific.net/AMM.766-767.167. DOI

Atmakuri A., Palevicius A., Siddabathula M., Vilkauskas A., Janusas G. Analysis of Mechanical and Wettability Properties of Natural Fiber-Reinforced Epoxy Hybrid Composites. Polymers. 2020;12:2827. doi: 10.3390/polym12122827. PubMed DOI PMC

Bolcu D., Stănescu M.M. A Study of the Mechanical Properties of Composite Materials with a Dammar-Based Hybrid Matrix and Two Types of Flax Fabric Reinforcement. Polymers. 2020;12:1649. doi: 10.3390/polym12081649. PubMed DOI PMC

Apolinario T.G., Ienny P., Corn S., Léger R., Bergeret A., Haudin J.M. Effects of Water Ageing on the Mechanical Properties of Flax and Glass Fibre Composites: Degradation and Reversibility; Proceedings of the 2nd International Conference on Natural Fibers; Sao Miguel, Portugal. 27–29 April 2015.

Fairlie G., Njuguna J. Damping Properties of Flax/Carbon Hybrid Epoxy/Fibre-Reinforced Composites for Automotive Semi-Structural Applications. Fibers. 2020;8:64. doi: 10.3390/fib8100064. DOI

Mahmoudi S., Kervoelen A., Robin G., Duigou L., Daya E., Cadou J.M. Experimental and numerical investigation of the damping of flax–epoxy composite plates. Compos. Struct. 2018;208:426–433. doi: 10.1016/j.compstruct.2018.10.030. DOI

Phillips S., Baets J., Lessard L., Hubert P., Verpoest I. Characterization of flax/epoxy prepregs before and after cure. J. Reinf. Plast. Compos. 2013;32:777–785. doi: 10.1177/0731684412473359. DOI

Symington M.C., David-West O.S., Banks W.M., Thomason J.L., Pethrick R.A. Vacuum infusion of natural fibre composites for structural applications; Proceedings of the 13th European Conference on Composite Materials (EECM 13); Stockholm, Sweden. 2–5 June 2008.

Dhimole V.K., Serrao P., Cho C. Review and Suggestion of Failure Theories in Voids Scenario for VARTM Processed Composite Materials. Polymers. 2021;13:969. doi: 10.3390/polym13060969. PubMed DOI PMC

Mehdikhani M., Gorbatikh L., Verpoest I., Lomov S.V. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance. J. Compos. Mater. 2019;53:1579–1669. doi: 10.1177/0021998318772152. DOI

Burita L., Hrusecka D., Pivnicka M., Rosman P. The use of knowledge management systems and event-b modelling in a lean enterprise. J. Compet. 2018;10:40–53. doi: 10.7441/joc.2018.01.03. DOI

Kedari V.R., Farah B.I., Hsiao K.T. Effects of vacuum pressure, inlet pressure, and mold temperature on the void content, volume fraction of polyester/e-glass fiber composites manufactured with VARTM process. J. Compos. Mater. 2011;45:2727–2742. doi: 10.1177/0021998311415442. DOI

AL-Oqla F.M., Salit M.S., Ishak M.R., Aziz N.A. Selecting Natural Fibers for Bio-Based Materials with Conflicting Criteria. Am. J. Appl. Sci. 2015;12:64–71. doi: 10.3844/ajassp.2015.64.71. DOI

Mahboob Z., Sawi I.E., Zdero R., Fawaz Z., Bougherara H. Tensile and compressive damaged response in Flax fibre reinforced epoxy composites. Compos. Part A Appl. Sci. Manuf. 2017;92:118–133. doi: 10.1016/j.compositesa.2016.11.007. DOI

Hamad S.F., Stehling N., Holland C., Foreman J.P., Rodenburg C. Low-Voltage SEM of Natural Plant Fibers: Microstructure Properties (Surface and Cross-Section) and their Link to the Tensile Properties. Procedia Eng. 2017;200:295–302. doi: 10.1016/j.proeng.2017.07.042. DOI

Betts D., Sadeghian P., Fam A. Tensile Properties of Flax FRP Composites; Proceedings of the 6th Asia-Pacific Conference on FRP in Structures; Singapore. 19–21 July 2017.

Kersani M., Lomov S.V., Van Vuure A.W., Bouabdallah A., Verpoest I. Damage in flax/epoxy quasi-unidirectional woven laminates under quasi-static tension. J. Compos. Mater. 2015;49:403–413. doi: 10.1177/0021998313519282. DOI

Benkhelladi A., Laouici H., Bouchoucha A. Tensile and flexural properties of polymer composites reinforced by flax, jute and sisal fibres. Int. J. Adv. Manuf. Technol. 2020;108:895–916. doi: 10.1007/s00170-020-05427-2. DOI

Kocich R., Kunčická L. Development of structure and properties in bimetallic Al/Cu sandwich composite during cumulative severe plastic deformation. J. Sandw. Struct. Mater. 2021;23:4252–4275. doi: 10.1177/1099636221993886. DOI

Kunčická L., Kocich R., Strunz P., Macháčková A. Texture and residual stress within rotary swaged Cu/Al clad composites. Mater. Lett. 2018;230:88–91. doi: 10.1016/j.matlet.2018.07.085. DOI

Paturel A., Dhakal H.N. Influence of Water Absorption on the Low Velocity Falling Weight Impact Damage Behaviour of Flax/Glass Reinforced Vinyl Ester Hybrid Composites. Molecules. 2020;25:278. doi: 10.3390/molecules25020278. PubMed DOI PMC

Yao J., Yu W. Tensile strength and its variation for PAN-based carbon fibers. II. Calibration of the variation from testing. J. Appl. Polym. Sci. 2007;104:2625–2632. doi: 10.1002/app.24455. DOI

Chi Z.F., Chou T.W., Shen G.Y. Determination of single fibre strength distribution from fibre bundle testing. J. Mater. Sci. 1984;19:3319–3324. doi: 10.1007/BF00549820. DOI

10618 Carbon Fibre. Determination of Tensile Properties of Resin-Im-Pregnated Yarn. International Organization for Standardization; Geneva, Switzerland: 2004.

Bensadoun F., Verpoest I., Baets J., Müssig J., Graupner N., Davies P., Gomina M., Kervoelen A., Baley C. Impregnated fibre bundle test for natural fibres used in composites. J. Reinf. Plast. Compos. 2017;36:942–957. doi: 10.1177/0731684417695461. DOI

Kocich R., Kunčická L., Macháčková A., Šofer M. Improvement of mechanical and electrical properties of rotary swaged Al-Cu clad composites. Mater. Des. 2017;123:137–147. doi: 10.1016/j.matdes.2017.03.048. DOI

Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI

Kocich R., Macháčková A., Kunčická L., Fojtík F. Fabrication and characterization of cold-swaged multilayered Al–Cu clad composites. Mater. Des. 2015;71:36–47. doi: 10.1016/j.matdes.2015.01.008. DOI

Moustafa E.B., Almitani K.H. Detecting Damage in Carbon Fibre Composites using Numerical Analysis and Vibration Measurements. Lat. Am. J. Solids Struct. 2021;18:e362. doi: 10.1590/1679-78256294. DOI

Dos Santos J.A., Soares C.M., Maia N. Structural damage identification in laminated structures using FRF data. Compos. Struct. 2005;67:239–249. doi: 10.1016/j.compstruct.2004.09.011. DOI

Kulíšek V., Kolar P., Vrba P., Smolík J., Janota M., Růžička M., Machálka M. On passive damping in machine tool hybrid structural parts. Int. J. Adv. Manuf. Technol. 2021;114:1925–1952. doi: 10.1007/s00170-021-06865-2. DOI

Xiros N.I., Tzelepis V., Loghis E.K. Modeling and Simulation of Planing-Hull Watercraft Outfitted with an Electric Motor Drive and a Surface-Piercing Propeller. J. Mar. Sci. Eng. 2019;7:49. doi: 10.3390/jmse7020049. DOI

Lin T.R., Pan J., O’Shea P.J., Mechefske C.K. A study of vibration and vibration control of ship structures. Mar. Struct. 2009;22:730–743. doi: 10.1016/j.marstruc.2009.06.004. DOI

Prasanna A.B., Raju K.S., Ramji K., Satish P. Free Vibration, Buckling and Design Optimisation of Composite Pressure Hulls. Mater. Today Proc. 2017;4:7381–7387. doi: 10.1016/j.matpr.2017.07.068. DOI

Balıkoğlu F., Demircioğlu T., Yıldız M., Arslan N., Ataş A. Mechanical performance of marine sandwich composites subjected to flatwise compression and flexural loading: Effect of resin pins. J. Sandw. Struct. Mater. 2020;22:2030–2048. doi: 10.1177/1099636218792671. DOI

Al-hajaj Z., Zdero R., Bougherara H. Mechanical, morphological, and water absorption properties of a new hybrid composite material made from 4 harness satin woven carbon fibres and flax fibres in an epoxy matrix. Compos. Part A Appl. Sci. Manuf. 2018;115:46–56. doi: 10.1016/j.compositesa.2018.09.015. DOI

Fiore V., Valenza A., Di Bella G. Mechanical behavior of carbon/flax hybrid composites for structural applications. J. Compos. Mater. 2012;46:2089–2096. doi: 10.1177/0021998311429884. DOI

Dinesh M., Asokan R., Vignesh S., Kumar C.P., Ravichand R. Experimental Investigation on Mechanical Properties of Carbon-Flax-Glass Hybrid Composites. Int. J. Veh. Struct. Syst. 2020;12:1–8. doi: 10.4273/ijvss.12.1.01. DOI

Assarar M., Zouari W., Sabhi H., Ayad R., Berthelot J. Evaluation of the damping of hybrid carbon–Flax reinforced composites. Compos. Struct. 2015;132:148–154. doi: 10.1016/j.compstruct.2015.05.016. DOI

Singh C., Jeeva Q., Rajamurugan G. Vibration and tribological behaviour of flax/wire mesh/hemp composite reinforced with WCFC particles. J. Manuf. Processes. 2022;77:525–538. doi: 10.1016/j.jmapro.2022.03.036. DOI

Dos Santos J.C., de Oliveira L.Á., Panzera T., Remillat C., Farrow I., Placet V., Scarpa F. Ageing of autoclaved epoxy/flax composites: Effects on water absorption, porosity and flexural behaviour. Compos. Part B Eng. 2020;202:108380. doi: 10.1016/j.compositesb.2020.108380. DOI

Fiore V., Calabrese L., Miranda R., Badagliacco D., Sanfilippo C., Palamara D., Valenza A., Proverbio E. On the response of flax fiber reinforced composites under salt-fog/dry conditions: Reversible and irreversible performances degradation. Compos. Part B Eng. 2022;230:109535. doi: 10.1016/j.compositesb.2021.109535. DOI

Schuster J., Govignon Q., Bickerton S. Processability of Biobased Thermoset Resins and Flax Fibres Reinforcements Using Vacuum Assisted Resin Transfer Moulding. Open J. Compos. Mater. 2014;4:1–11. doi: 10.4236/ojcm.2014.41001. DOI

Hindersmann A. Confusion about infusion: An overview of infusion processes. Compos. Part A Appl. Sci. Manuf. 2019;126:105583. doi: 10.1016/j.compositesa.2019.105583. DOI

GRM Systems . LG 700 Epoxy System: Data Sheet. GRM Systems; Olomouc, Czech Republic: 2004.

Jones R. Mechanics of Composite Materials. 2nd ed. CRC Press; Boca Raton, FL, USA: 1999.

Campbell F. Structural Composite Materials. ASM International; Novelty, OH, USA: 2010.

Plastics. Determination of Tensile Properties, Part 4: Test Conditions for Isotropic and Orthotropic Fibre-Reinforced Plastic Composites. International Organization for Standardization; Geneva, Switzerland: 1997.

Fibre-Reinforced Plastic Composites. Determination of Flexural Properties. International Organization for Standardization; Geneva, Switzerland: 1999.

Volek A., Zouhar J. Optical methods in use by experimental strain measurement; Proceedings of the 48th International Scientific Conference on Experimental Stress Analysis 2010; Velké Losiny, Czech Republic. 31 May–3 June 2010; pp. 527–533.

Strungar E., Yankin A., Zubova E., Babushkin A., Dushko A. Experimental study of shear properties of 3D woven composite using digital image correlation and acoustic emission. Acta Mech. Sin. 2020;36:448–459. doi: 10.1007/s10409-019-00921-7. DOI

Zhang Y., Li Y., Ma H., Yu T. Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Compos. Sci. Technol. 2013;88:172–177. doi: 10.1016/j.compscitech.2013.08.037. DOI

Chen D., Sun G., Meng M., Jin X., Li Q. Flexural performance and cost efficiency of carbon/basalt/glass hybrid FRP composite laminates. Thin-Walled Struct. 2019;142:516–531. doi: 10.1016/j.tws.2019.03.056. DOI

Lu M.M., Fuentes C.A., Van Vuure A.W. Moisture sorption and swelling of flax fibre and flax fibre composites. Compos. Part B Eng. 2022;231:109538. doi: 10.1016/j.compositesb.2021.109538. DOI

Moudood A., Rahman A., Öchsner A., Islam M., Francucci G. Flax fiber and its composites: An overview of water and moisture absorption impact on their performance. J. Reinf. Plast. Compos. 2019;38:323–339. doi: 10.1177/0731684418818893. DOI

Chinnasamy S. Study on static and dynamic behavior of jute/sisal fiber reinforced epoxy composites. Mater. Today Proc. 2020;46:9425–9428.

Hassani S., Shadan F. Using incomplete FRF measurements for damage detection of structures with closely-spaced eigenvalues. Measurement. 2022;188:110388. doi: 10.1016/j.measurement.2021.110388. DOI

Yuan W., Li L.Y., Jang S.H. Dynamic stability of CNTs-reinforced non-uniform composite beams under axial excitation loading. Comput. Mater. Sci. 2021:111054. doi: 10.1016/j.commatsci.2021.111054. DOI

Hose P.F.P., Krishna D.A. Free vibration analysis of polymer composite plates reinforced with graphene platelets. Mater. Today Proc. 2022;38:419–435.

Ma M., Yao W., Jiang W., Jin W., Chen Y., Li P., Huang J. Fatigue of composite honeycomb sandwich panels under random vibration load. Compos. Struct. 2022;286:115296. doi: 10.1016/j.compstruct.2022.115296. DOI

Vasconcellos J.M., Latorre R.G. Recreational boat noise level evaluation. Ocean Eng. 2001;28:1309–1324. doi: 10.1016/S0029-8018(00)00052-4. DOI

Li Z., Kang J., Ba M. Influence of distance from traffic sounds on physiological indicators and subjective evaluation. Transp. Res. Part D Transp. Environ. 2020;87:102538. doi: 10.1016/j.trd.2020.102538. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Elimination of Delamination during the Drilling of Biocomposite Materials with Flax Fibers

. 2024 Sep 16 ; 16 (18) : . [epub] 20240916

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...