Desiccation Tolerance in Ramonda serbica Panc.: An Integrative Transcriptomic, Proteomic, Metabolite and Photosynthetic Study
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
6039663
Science Fund of the Republic of Serbia-RS
Contract No. 451-03-68/2022-14/200042, 2022
Ministry of Education, Science and Technological Development, the Republic of Serbia
BIRD189887/18
University of Padova
STSM-BM1405-190218-092344 and STSM-BM1405-190317-080965
COST Action BM1405
CZ.02.1.01/0.0/0.0/15_003/0000336
Ministry of Education, Youth and Sports of the Czech Republic
PRIN 2020HB9PR9_005
Italian Ministry for Education, University and Research
PubMed
35567200
PubMed Central
PMC9104375
DOI
10.3390/plants11091199
PII: plants11091199
Knihovny.cz E-resources
- Keywords
- OJIP, cell wall remodeling, cyclic electron transport, drought, germin-like proteins, late embryogenesis abundant proteins, pectin, polyphenol oxidase, resurrection plant, superoxide dismutase,
- Publication type
- Journal Article MeSH
The resurrection plant Ramonda serbica Panc. survives long desiccation periods and fully recovers metabolic functions within one day upon watering. This study aimed to identify key candidates and pathways involved in desiccation tolerance in R. serbica. We combined differential transcriptomics and proteomics, phenolic and sugar analysis, FTIR analysis of the cell wall polymers, and detailed analysis of the photosynthetic electron transport (PET) chain. The proteomic analysis allowed the relative quantification of 1192 different protein groups, of which 408 were differentially abundant between hydrated (HL) and desiccated leaves (DL). Almost all differentially abundant proteins related to photosynthetic processes were less abundant, while chlorophyll fluorescence measurements implied shifting from linear PET to cyclic electron transport (CET). The levels of H2O2 scavenging enzymes, ascorbate-glutathione cycle components, catalases, peroxiredoxins, Fe-, and Mn superoxide dismutase (SOD) were reduced in DL. However, six germin-like proteins (GLPs), four Cu/ZnSOD isoforms, three polyphenol oxidases, and 22 late embryogenesis abundant proteins (LEAPs; mainly LEA4 and dehydrins), were desiccation-inducible. Desiccation provoked cell wall remodeling related to GLP-derived H2O2/HO● activity and pectin demethylesterification. This comprehensive study contributes to understanding the role and regulation of the main metabolic pathways during desiccation aiming at crop drought tolerance improvement.
See more in PubMed
Rabara R.C., Tripathi P., Reese R.N., Rushton D.L., Alexander D., Timko M.P., Rushton P.J. Tobacco drought stress responses reveal new targets for Solanaceae crop improvement. BMC Genom. 2015;16:484. doi: 10.1186/s12864-015-1575-4. PubMed DOI PMC
Farrant J.M., Hilhorst H.W.M. What is dry? Exploring metabolism and molecular mobility at extremely low water contents. J. Exp. Bot. 2021;72:1507–1510. doi: 10.1093/jxb/eraa579. PubMed DOI PMC
Challabathula D., Zhang Q., Bartels D. Protection of photosynthesis in desiccation-tolerant resurrection plants. J. Plant Physiol. 2018;227:84–92. doi: 10.1016/j.jplph.2018.05.002. PubMed DOI
Scott P. Resurrection plants and the secrets of eternal leaf. Ann. Bot. 2000;85:159–166. doi: 10.1006/anbo.1999.1006. DOI
Veljović-Jovanović S., Kukavica B., Stevanović B., Navari-Izzo F. Senescence-and drought-related changes in peroxidase and superoxide dismutase isoforms in leaves of Ramonda serbica. J. Exp. Bot. 2006;57:1759–1768. doi: 10.1093/jxb/erl007. PubMed DOI
Challabathula D., Bartels D. Desiccation tolerance in resurrection plants: New insights from transcriptome, proteome and metabolome analysis. Front. Plant Sci. 2013;4:482–497. PubMed PMC
Liu J., Moyankova D., Lin C.T., Mladenov P., Sun R.Z., Djilianov D., Deng X. Transcriptome reprogramming during severe dehydration contributes to physiological and metabolic changes in the resurrection plant Haberlea rhodopensis. BMC Plant Biol. 2018;18:351–367. doi: 10.1186/s12870-018-1566-0. PubMed DOI PMC
Farrant J.M., Moore J.P. Programming desiccation-tolerance: From plants to seeds to resurrection plants. Curr. Opin. Plant Biol. 2011;14:340–345. doi: 10.1016/j.pbi.2011.03.018. PubMed DOI
Chandra J., Keshavkant S. Desiccation-induced ROS accumulation and lipid catabolism in recalcitrant. Physiol. Mol. Biol. Plants. 2018;24:75–87. doi: 10.1007/s12298-017-0487-y. PubMed DOI PMC
Gechev T.S., Dinakar C., Benina M., Toneva V., Bartels D. Molecular mechanisms of desiccation tolerance in resurrection plants. Cell. Mol. Life Sci. 2012;69:3175–3186. doi: 10.1007/s00018-012-1088-0. PubMed DOI PMC
Bartels D. Desiccation tolerance studied in the resurrection plant Craterostigma plantagineum. Integr. Comp. Biol. 2005;45:696–701. doi: 10.1093/icb/45.5.696. PubMed DOI
Olvera-Carrillo Y., Campos F., Reyes J.L., Garciarrubio A., Covarrubias A.A. Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis. Plant Physiol. 2010;154:373–390. doi: 10.1104/pp.110.158964. PubMed DOI PMC
Farrant J.M. Mechanisms of desiccation tolerance in angiosperm resurrection plants. Plant Stress. 2007;1:72–84.
Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V. Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim. Biophys. Acta–Bioenerg. 2010;1797:1313–1326. doi: 10.1016/j.bbabio.2010.03.008. PubMed DOI
Dirk L.M.A., Abdel C.G., Ahmad I., Neta I.C.S., Pereira C.C., Pereira F.E.C.B., Unêda-Trevisoli S.H., Pinheiro D.G., Downie A.B. Late embryogenesis abundant protein-client protein interactions. Plants. 2020;9:814. doi: 10.3390/plants9070814. PubMed DOI PMC
Ginsawaeng O., Heise C., Sangwan R., Karcher D., Hernández-Sánchez I.E., Sampathkumar A., Zuther E. Subcellular localization of seed-expressed LEA_4 proteins reveals liquid-liquid phase separation for LEA9 and for LEA48 homo- and LEA42-LEA48 heterodimers. Biomolecules. 2021;11:1770. doi: 10.3390/biom11121770. PubMed DOI PMC
Dražić G., Mihailović N., Stevanović B. Chlorophyll metabolism in leaves of higher poikilohydric plants Ramonda serbica Panč. and Ramonda nathaliae Panč. et Petrov. during dehydration and rehydration. J. Plant Physiol. 1999;154:379–384. doi: 10.1016/S0176-1617(99)80184-9. DOI
Zhu Y., Wang B., Phillips J., Zhang Z.N., Du H., Xu T., Huang L.C., Zhang X.F., Xu G.H., Li W.L., et al. Global transcriptome analysis reveals acclimation–primed processes involved in the acquisition of desiccation tolerance in Boea hygrometrica. Plant Cell Physiol. 2015;56:1429–1441. doi: 10.1093/pcp/pcv059. PubMed DOI
Artur M.A.S., Zhao T., Ligterink W., Schranz E., Hilhorst H.W.M. Dissecting the genomic diversification of late embryogenesis abundant (LEA) protein gene families in plants. Genome Biol. Evol. 2019;11:459–471. doi: 10.1093/gbe/evy248. PubMed DOI PMC
Thimm O., Bläsing O., Gibon Y., Nagel A., Meyer S., Krüger P., Stitt M. MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37:914–939. doi: 10.1111/j.1365-313X.2004.02016.x. PubMed DOI
Pantelić A., Stevanović S., Komić S.M., Kilibarda N., Vidović M. In silico characterisation of the late embryogenesis abundant (LEA) protein families and their role in desiccation tolerance in Ramonda serbica Panc. Int. J. Mol. Sci. 2022;23:3547. doi: 10.3390/ijms23073547. PubMed DOI PMC
Živanović B., Milić-Komić S., Nikolić N., Mutavdžić D., Srećković T., Veljović-Jovanović S., Prokić L. Differential response of two tomato genotypes, wild type cv. Ailsa Craig and its ABA-deficient mutant flacca to short-termed drought cycles. Plants. 2021;10:2308. doi: 10.3390/plants10112308. PubMed DOI PMC
Alonso-Simón A., García-Angulo P., Mélida H., Encina A., Álvarez J.M., Acebes J.L. The use of FTIR spectroscopy to monitor modifications in plant cell wall architecture caused by cellulose biosynthesis inhibitors. Plant Signal. Behav. 2011;6:1104–1110. doi: 10.4161/psb.6.8.15793. PubMed DOI PMC
Ross A.B., Langer J.D., Jovanovic M. Proteome turnover in the spotlight: Approaches, applications, and perspectives. Mol. Cell. Proteom. 2021;20:100016. doi: 10.1074/mcp.R120.002190. PubMed DOI PMC
Vogel C., Marcotte E.M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 2012;13:227–232. doi: 10.1038/nrg3185. PubMed DOI PMC
Fernie A.R., Stitt M. On the discordance of metabolomics with proteomics and transcriptomics: Coping with increasing complexity in logic, chemistry, and network interactions scientific correspondence. Plant Physiol. 2012;158:1139–1145. doi: 10.1104/pp.112.193235. PubMed DOI PMC
Liang C., Cheng S., Zhang Y., Sun Y., Fernie A.R., Kang K., Panagiotou G., Lo C., Lim B.L. Transcriptomic, proteomic and metabolic changes in Arabidopsis thaliana leaves after the onset of illumination. BMC Plant Biol. 2016;16:43. doi: 10.1186/s12870-016-0726-3. PubMed DOI PMC
Xu X., Legay S., Sergeant K., Zorzan S., Leclercq C.C., Charton S., Giarola V., Liu X., Challabathula D., Renaut J., et al. Molecular insights into plant desiccation tolerance: Transcriptomics, proteomics and targeted metabolite profiling in Craterostigma plantagineum. Plant J. 2021;107:377–398. doi: 10.1111/tpj.15294. PubMed DOI PMC
Rakić T., Lazarević M., Jovanović Z.S., Radović S., Siljak–Yakovlev S., Stevanović B., Stevanović V. Resurrection plants of the genus Ramonda: Prospective survival strategies—Unlock further capacity of adaptation, or embark on the path of evolution? Front. Plant Sci. 2014;4:550–560. doi: 10.3389/fpls.2013.00550. PubMed DOI PMC
Moore J.P., Nguema-Ona E.E., Vicré-Gibouin M., Sørensen I., Willats W.G., Driouich A., Farrant J.M. Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. Planta. 2013;237:739–754. doi: 10.1007/s00425-012-1785-9. PubMed DOI
Jung N.U. Ph.D. Thesis. Mathematisch-Naturwissenschaftlichen Fakultät, Rheinischen Friedrich-Wilhelms-Universität Bonn; Bonn, Germany: Feb 11, 2020. Molecular and Biochemical Studies of the Craterostigma plantagineum Cell Wall during Dehydration and Rehydration.
Vicré M., Lerouxel O., Farrant J., Lerouge P., Driouich A. Composition and desiccation-induced alterations of the cell wall in the resurrection plant Craterostigma wilmsii. Physiol. Plant. 2004;120:229–239. doi: 10.1111/j.0031-9317.2004.0234.x. PubMed DOI
Wormit A., Usadel B. The multifaceted role of pectin methylesterase inhibitors (PMEIs) Int. J. Mol. Sci. 2018;19:2878. doi: 10.3390/ijms19102878. PubMed DOI PMC
Jung N.U., Giarola V., Chen P., Knox J.P., Bartels D. Craterostigma plantagineum cell wall composition is remodelled during desiccation and the glycine-rich protein CpGRP1 interacts with pectins through clustered arginines. Plant J. 2019;100:661–676. doi: 10.1111/tpj.14479. PubMed DOI
Levesque-Tremblay G., Pelloux J., Braybrook S.A., Müller K. Tuning of pectin methylesterification: Consequences for cell wall biomechanics and development. Planta. 2015;242:791–811. doi: 10.1007/s00425-015-2358-5. PubMed DOI
Wang L., Shang H., Liu Y., Zheng M., Wu R., Phillips J., Bartels D., Deng X. A role for a cell wall localized glycine-rich protein in dehydration and rehydration of the resurrection plant Boea hygrometrica. Plant Biol. 2009;11:837–848. doi: 10.1111/j.1438-8677.2008.00187.x. PubMed DOI
Giarola V., Krey S., von den Driesch B., Bartels D. The Craterostigma plantagineum glycine-rich protein CpGRP1 interacts with a cell wall-associated protein kinase 1 (CpWAK1) and accumulates in leaf cell walls during dehydration. New Phytol. 2016;210:535–550. doi: 10.1111/nph.13766. PubMed DOI
Pei Y., Li X., Zhu Y., Ge X., Sun Y., Liu N., Jia Y., Li F., Hou Y. GhABP19, a novel germin-like protein from Gossypium hirsutum, plays an important role in the regulation of resistance to Verticillium and Fusarium wilt pathogens. Front. Plant Sci. 2019;10:583–601. doi: 10.3389/fpls.2019.00583. PubMed DOI PMC
Veljović-Jovanović S., Kukavica B., Vidović M., Morina F., Menckhoff L. Class III peroxidases: Functions, localization and redox regulation of isoenzymes. In: Gupta D.K., Palma J.M., Corpas F.J., editors. Antioxidants and Antioxidant Enzymes in Higher Plants. Springer; Cham, Switzerland: New York, NY, USA: 2018. pp. 269–300.
Pristov J.B., Mitrović A., Spasojević I. A comparative study of antioxidative activities of cell-wall polysaccharides. Carbohydr. Res. 2011;346:2255–2259. doi: 10.1016/j.carres.2011.07.015. PubMed DOI
Kukavica B., Mojović M., Vučinić Ž., Maksimović V., Takahama U., Veljović-Jovanović S. Generation of hydroxyl radical in isolated pea root cell wall, and the role of cell wall-bound peroxidase, Mn-SOD and phenolics in their production. Plant Cell Physiol. 2009;50:304–317. doi: 10.1093/pcp/pcn199. PubMed DOI
Collett H.M., Butowt R., Smith J., Farrant J., Illing N. Photosynthetic genes are differentially transcribed during the dehydration-rehydration cycle in the resurrection plant, Xerophyta humilis. J. Exp. Bot. 2003;54:2543–2595. doi: 10.1093/jxb/erg285. PubMed DOI
Yang E.J., Oh Y.A., Lee E.S., Park A.R., Cho S.K., Yoo Y.J., Park O.K. Oxygen-evolving enhancer protein 2 is phosphorylated by glycine-rich protein 3/wall-associated kinase 1 in Arabidopsis. Biochem. Biophys. Res. Commun. 2003;305:862–868. doi: 10.1016/S0006-291X(03)00851-9. PubMed DOI
Jiang G., Wang Z., Shang H., Yang W., Hu Z., Phillips J., Deng X. Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration. Planta. 2007;225:1405–1420. doi: 10.1007/s00425-006-0449-z. PubMed DOI
Farrant J.M. A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecol. 2000;151:29–39. doi: 10.1023/A:1026534305831. DOI
Heber U., Bilger W., Bligny R., Lange O.L. Photo-tolerance of lichens, mosses and higher plants in an alpine environment: Analysis of photoreactions. Planta. 2000;211:770–780. doi: 10.1007/s004250000356. PubMed DOI
Huang W., Yang S.-J., Zhang S.-B., Zhang J.-L., Cao K.-F. Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress. Planta. 2012;235:819–828. doi: 10.1007/s00425-011-1544-3. PubMed DOI
Tan T., Sun Y., Luo S., Zhang C., Zhou H., Lin H. Efficient modulation of photosynthetic apparatus confers desiccation tolerance in the resurrection plant Boea hygrometrica. Plant Cell Physiol. 2017;58:1976–1990. doi: 10.1093/pcp/pcx140. PubMed DOI
Mladenov P., Finazzi G., Bligny R., Moyankova D., Zasheva D., Boisson A.-M., Brugière S., Krasteva V., Alipieva K., Simova S., et al. In vivo spectroscopy and NMR metabolite fingerprinting approaches to connect the dynamics of photosynthetic and metabolic phenotypes in resurrection plant Haberlea rhodopensis during desiccation and recovery. Front. Plant Sci. 2015;6:564–578. doi: 10.3389/fpls.2015.00564. PubMed DOI PMC
Markovska Y., Tsonev T., Kimenov G. Regulation of cam and respiratory recycling by water supply in higher poikilohydric plants—Haberlea rhodopensis Friv. and Ramonda serbica Panc, at transition from biosis to anabiosis and vice versa. Bot. Acta. 1997;110:18–24. doi: 10.1111/j.1438-8677.1997.tb00606.x. DOI
Kirch H.H., Nair A., Bartels D. Novel ABA-and dehydration-inducible aldehyde dehydrogenase genes isolated from the resurrection plant Craterostigma plantagineum and Arabidopsis thaliana. Plant J. 2001;28:555–567. doi: 10.1046/j.1365-313X.2001.01176.x. PubMed DOI
Živković T., Quartacci M.F., Stevanović B., Marinone F., Navari-Izzo F. Low molecular weight substances in the poikilohydric plant Ramonda serbica during dehydration and rehydration. Plant Sci. 2005;168:105–111. doi: 10.1016/j.plantsci.2004.07.018. DOI
Ingram J., Bartels D. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. 1996;47:377–403. doi: 10.1146/annurev.arplant.47.1.377. PubMed DOI
Vidović M., Morina F., Milić S., Albert A., Zechmann B., Tosti T., Winkler J.B., Jovanović S.V. Carbon allocation from source to sink leaf tissue in relation to flavonoid biosynthesis in variegated Pelargonium zonale under UV-B radiation and high PAR intensity. Plant Physiol. Biochem. 2015;93:44–55. doi: 10.1016/j.plaphy.2015.01.008. PubMed DOI
Nishizawa A., Yabuta Y., Shigeoka S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol. 2008;147:1251–1263. doi: 10.1104/pp.108.122465. PubMed DOI PMC
Dietz K.J., Jacob S., Oelze M.L., Laxa M., Tognetti V., de Miranda S.M., Baier M., Finkemeier I. The function of peroxiredoxins in plant organelle redox metabolism. J. Exp. Bot. 2016;57:1697–1709. doi: 10.1093/jxb/erj160. PubMed DOI
Augusti A., Scartazza A., Navari-Izzo F., Sgherri C.L.M., Stevanović B., Brugnoli E. Photosystem II photochemical efficiency, zeaxanthin and antioxidant contents in the poikilohydric Ramonda serbica during dehydration and rehydration. Photosynth. Res. 2001;67:79–88. doi: 10.1023/A:1010692632408. PubMed DOI
Vidović M., Franchin C., Morina F., Veljović-Jovanović S., Masi A., Arrigoni G. Efficient protein extraction for shotgun proteomics from hydrated and desiccated leaves of resurrection Ramonda serbica plants. Anal. Bioanal. Chem. 2020;412:8299–8312. doi: 10.1007/s00216-020-02965-2. PubMed DOI
Vidović M., Morina F., Veljović-Jovanović S. Stimulation of various phenolics in plants under ambient UV-B radiation. In: Singh V.P., Singh S., Prasad S.M., Parihar P., editors. UV-B Radiation: From Environmental Stressor to Regulator of Plant Growth. Wiley-Blackwell; Hoboken, NJ, USA: 2017. pp. 9–56.
Veljović-Jovanović S., Kukavica B., Navari-Izzo F. Characterization of polyphenol oxidase changes induced by desiccation of Ramonda serbica leaves. Physiol. Plant. 2008;132:407–416. doi: 10.1111/j.1399-3054.2007.01040.x. PubMed DOI
Sgherri C., Stevanovic B., Navari-Izzo F. Role of phenolics in the antioxidative status of the resurrection plant Ramonda serbica during dehydration and rehydration. Physiol. Plant. 2004;122:478–485. doi: 10.1111/j.1399-3054.2004.00428.x. DOI
Takahama U. Oxidation of vacuolar and apoplastic phenolic substrates by peroxidase: Physiological significance of the oxidation reactions. Phytochem. Rev. 2004;3:207–219. doi: 10.1023/B:PHYT.0000047805.08470.e3. DOI
Boeckx T., Winters A.L., Webb K.J., Kingston-Smith A.H. Polyphenol oxidase in leaves: Is there any significance to the chloroplastic localization? J. Exp. Bot. 2015;66:3571–3579. doi: 10.1093/jxb/erv141. PubMed DOI
Bremer A., Wolff M., Thalhammer A., Hincha D.K. Folding of intrinsically disordered plant LEA proteins is driven by glycerol-induced crowding and the presence of membranes. FEBS J. 2017;284:919–936. doi: 10.1111/febs.14023. PubMed DOI
Cuevas-Velazquez C.L., Reyes J.L., Covarrubias A.A. Group 4 late embryogenesis abundant proteins as a model to study intrinsically disordered proteins in plants. Plant Signal. Behav. 2017;12:10893–10903. doi: 10.1080/15592324.2017.1343777. PubMed DOI PMC
Candat A., Paszkiewicz G., Neveu M., Gautier R., Logan D.C., Avelange-Macherel M.H., Macherel D. The ubiquitous distribution of late embryogenesis abundant proteins across cell compartments in Arabidopsis offers tailored protection against abiotic stress. Plant Cell. 2014;26:3148–3166. doi: 10.1105/tpc.114.127316. PubMed DOI PMC
Koag M.C., Wilkens S., Fenton R.D., Resnik J., Vo E., Close T.J. The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol. 2009;150:1503–1514. doi: 10.1104/pp.109.136697. PubMed DOI PMC
Hara M., Shinoda Y., Tanaka Y., Kuboi T. DNA binding of citrus dehydrin promoted by zinc ion. Plant Cell Environ. 2009;32:532–541. doi: 10.1111/j.1365-3040.2009.01947.x. PubMed DOI
Liu X., Wang Z., Wang L., Wu R., Phillips J., Deng X. LEA 4 group genes from the resurrection plant Boea hygrometrica confer dehydration tolerance in transgenic tobacco. Plant Sci. 2009;176:90–98. doi: 10.1016/j.plantsci.2008.09.012. DOI
Olvera-Carrillo Y., Luis Reyes J., Covarrubias A.A. Late embryogenesis abundant proteins: Versatile players in the plant adaptation to water limiting environments. Plant Signal. Behav. 2011;6:586–589. doi: 10.4161/psb.6.4.15042. PubMed DOI PMC
Chakrabortee S., Tripathi R., Watson M., Schierle G.S., Kurniawan D.P., Kaminski C.F., Wise M.J., Tunnacliffe A. Intrinsically disordered proteins as molecular shields. Mol. Biosyst. 2012;8:210–219. doi: 10.1039/C1MB05263B. PubMed DOI PMC
Belott C., Janis B., Menze M.A. Liquid-liquid phase separation promotes animal desiccation tolerance. Proc. Natl. Acad. Sci. USA. 2020;117:27676–27684. doi: 10.1073/pnas.2014463117. PubMed DOI PMC
Rohrig H., Schmidt J., Colby T., Brautigam A., Hufnagel P., Bartels D. Desiccation of the resurrection plant Craterostigma plantagineum induces dynamic changes in protein phosphorylation. Plant Cell Environ. 2006;29:1606–1617. doi: 10.1111/j.1365-3040.2006.01537.x. PubMed DOI
Biundo A., Braunschmid V., Pretzler M., Kampatsikas I., Darnhofer B., Birner-Gruenberger R., Rompel A., Ribitsch D., Guebitz G.M. Polyphenol oxidases exhibit promiscuous proteolytic activity. Commun. Chem. 2020;3:62. doi: 10.1038/s42004-020-0305-2. PubMed DOI PMC
Harten J.B., Eickmeier W.G. Enzyme dynamics of the resurrection plant Selaginella lepidophylla (Hook. & Grev.) spring during rehydration. Plant Phys. 1986;82:61–64. PubMed PMC
Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Ebinezer L.B., Franchin C., Trentin A.R., Carletti P., Trevisan S., Agrawal G.K., Quaggiotti S., Arrigoni G., Masi A. Quantitative proteomics of maize roots treated with a protein hydrolysate: A comparative study with transcriptomics highlights the molecular mechanisms responsive to biostimulants. J. Agric. Food Chem. 2020;68:7541–7553. doi: 10.1021/acs.jafc.0c01593. PubMed DOI
Emanuelsson O., Brunak S., von Heijne G., Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2007;2:953–971. doi: 10.1038/nprot.2007.131. PubMed DOI
Küpper H., Benedikty Z., Morina F., Andresen E., Mishra A., Trtilek M. Analysis of OJIP chlorophyll fluorescence kinetics and QA reoxidation kinetics by direct fast imaging. Plant Physiol. 2019;179:369–381. doi: 10.1104/pp.18.00953. PubMed DOI PMC
Lichtenthaler H.K., Wellburn A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983;11:591–592. doi: 10.1042/bst0110591. DOI