Microsatellite Instability and Metastatic Colorectal Cancer - A Clinical Perspective
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35574322
PubMed Central
PMC9097548
DOI
10.3389/fonc.2022.888181
Knihovny.cz E-zdroje
- Klíčová slova
- chemotherapy, colorectal cancer, ipilimumab, mismatch repair, nivolumab, pembrolizumab,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Approximately 4-5% of patients with metastatic colorectal cancer (mCRC) have mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) tumours. These tumours present challenges in the clinical practice due to variant response to fluoropyrimidine-based chemotherapy and, perhaps, also non-immunologic targeted therapies. Recently, a breakthrough in the treatment of dMMR/MSI-H mCRC has been achieved with several clinical trials showing dramatic long-term benefit of immunotherapy using checkpoint inhibitors. Nevertheless, several questions remain regarding the optimisation of immunotherapy regimens and the use of biomarkers to identify populations set to derive the greatest benefit from immunotherapy. Combination regimens and/or the use of immunotherapy as a maintenance after induction non-immunologic systemic therapy may be the way forward to improve outcomes.
Zobrazit více v PubMed
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. . Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin (2021) 71(3):209–49. doi: 10.3322/caac.21660 PubMed DOI
Sinicrope FA, Sargent DJ. Molecular Pathways: Microsatellite Instability in Colorectal Cancer: Prognostic, Predictive, and Therapeutic Implications. Clin Cancer Res an Off J Am Assoc Cancer Res (2012) 18(6):1506–12. doi: 10.1158/1078-0432.CCR-11-1469 PubMed DOI PMC
Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-Fluorouracil and Other Fluoropyrimidines in Colorectal Cancer: Past, Present and Future. Pharmacol Ther (2020) 206:107447. doi: 10.1016/j.pharmthera.2019.107447 PubMed DOI
Sargent DJ, Marsoni S, Monges G, Thibodeau SN, Labianca R, Hamilton SR, et al. . Defective Mismatch Repair as a Predictive Marker for Lack of Efficacy of Fluorouracil-Based Adjuvant Therapy in Colon Cancer. J Clin Oncol Off J Am Soc Clin Oncol (2010) 28(20):3219–26. doi: 10.1200/JCO.2009.27.1825 PubMed DOI PMC
Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, et al. . Tumor Microsatellite-Instability Status as a Predictor of Benefit From Fluorouracil-Based Adjuvant Chemotherapy for Colon Cancer. N Engl J Med (2003) 349(3):247–57. doi: 10.1056/NEJMoa022289 PubMed DOI PMC
Cohen R, Taieb J, Fiskum J, Yothers G, Goldberg R, Yoshino T, et al. . Microsatellite Instability in Patients With Stage III Colon Cancer Receiving Fluoropyrimidine With or Without Oxaliplatin: An ACCENT Pooled Analysis of 12 Adjuvant Trials. J Clin Oncol Off J Am Soc Clin Oncol (2021) 39(6):642–51. doi: 10.1200/JCO.20.01600 PubMed DOI PMC
André T, de Gramont A, Vernerey D, Chibaudel B, Bonnetain F, Tijeras-Raballand A, et al. . Adjuvant Fluorouracil, Leucovorin, and Oxaliplatin in Stage II to III Colon Cancer: Updated 10-Year Survival and Outcomes According to BRAF Mutation and Mismatch Repair Status of the MOSAIC Study. J Clin Oncol Off J Am Soc Clin Oncol (2015) 33(35):4176–87. doi: 10.1200/JCO.2015.63.4238 PubMed DOI
Gavin PG, Colangelo LH, Fumagalli D, Tanaka N, Remillard MY, Yothers G, et al. . Mutation Profiling and Microsatellite Instability in Stage II and III Colon Cancer: An Assessment of Their Prognostic and Oxaliplatin Predictive Value. Clin Cancer Res an Off J Am Assoc Cancer Res (2012) 18(23):6531–41. doi: 10.1158/1078-0432.CCR-12-0605 PubMed DOI PMC
Venderbosch S, Nagtegaal ID, Maughan TS, Smith CG, Cheadle JP, Fisher D, et al. . Mismatch Repair Status and BRAF Mutation Status in Metastatic Colorectal Cancer Patients: A Pooled Analysis of the CAIRO, CAIRO2, COIN, and FOCUS Studies. Clin Cancer Res (2014) 20(20):5322–30. doi: 10.1158/1078-0432.CCR-14-0332 PubMed DOI PMC
Shulman K, Barnett-Griness O, Friedman V, Greenson JK, Gruber SB, Lejbkowicz F, et al. . Outcomes of Chemotherapy for Microsatellite Instable-High Metastatic Colorectal Cancers. JCO Precis Oncol (2018) 2:PO.17.00253. doi: 10.1200/PO.17.00253 PubMed DOI PMC
Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA, et al. . CpG Island Methylator Phenotype Underlies Sporadic Microsatellite Instability and is Tightly Associated With BRAF Mutation in Colorectal Cancer. Nat Genet (2006) 38(7):787–93. doi: 10.1038/ng1834 PubMed DOI
Fang M, Ou J, Hutchinson L, Green MR. The BRAF Oncoprotein Functions Through the Transcriptional Repressor MAFG to Mediate The CpG Island Methylator Phenotype. Mol Cell (2014) 55(6):904–15. doi: 10.1016/j.molcel.2014.08.010 PubMed DOI PMC
Cocco E, Benhamida J, Middha S, Zehir A, Mullaney K, Shia J, et al. . Colorectal Carcinomas Containing Hypermethylated MLH1 Promoter and Wild-Type BRAF/KRAS Are Enriched for Targetable Kinase Fusions. Cancer Res (2019) 79(6):1047–53. doi: 10.1158/0008-5472.CAN-18-3126 PubMed DOI PMC
Innocenti F, Ou F-S, Qu X, Zemla TJ, Niedzwiecki D, Tam R, et al. . Mutational Analysis of Patients With Colorectal Cancer in CALGB/SWOG 80405 Identifies New Roles of Microsatellite Instability and Tumor Mutational Burden for Patient Outcome. J Clin Oncol Off J Am Soc Clin Oncol (2019) 37(14):1217–27. doi: 10.1200/JCO.18.01798 PubMed DOI PMC
Tougeron D, Sueur B, Zaanan A, de la Fouchardiére C, Sefrioui D, Lecomte T, et al. . Prognosis and Chemosensitivity of Deficient MMR Phenotype in Patients With Metastatic Colorectal Cancer: An AGEO Retrospective Multicenter Study. Int J Cancer (2020) 147(1):285–96. doi: 10.1002/ijc.32879 PubMed DOI
Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. . PD-1 Blockade in Tumors With Mismatch-Repair Deficiency. N Engl J Med (2015) 372(26):2509–20. doi: 10.1056/NEJMoa1500596 PubMed DOI PMC
Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. . Mismatch Repair Deficiency Predicts Response of Solid Tumors to PD-1 Blockade. Science (2017) 357(6349):409–13. doi: 10.1126/science.aan6733 PubMed DOI PMC
Overman MJ, Lonardi S, Wong KYM, Lenz H-J, Gelsomino F, Aglietta M, et al. . Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J Clin Oncol Off J Am Soc Clin Oncol (2018) 36(8):773–9. doi: 10.1200/JCO.2017.76.9901 PubMed DOI
André T, Lonardi S, Wong K, Lenz H, Gelsomino F, Aglietta M, et al. . SO-27 Nivolumab Plus Low-Dose Ipilimumab in Previously Treated Patients With Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: 4-Year Follow-Up From CheckMate 142. Ann Oncol (2021) 32:S213–4. doi: 10.1016/j.annonc.2021.05.051 PubMed DOI
Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. . Nivolumab in Patients With Metastatic DNA Mismatch Repair-Deficient or Microsatellite Instability-High Colorectal Cancer (CheckMate 142): An Open-Label, Multicentre, Phase 2 Study. Lancet Oncol (2017)18(9):1182–91. doi: 10.1016/S1470-2045(17)30422-9 PubMed DOI PMC
Lenz H-J, Van Cutsem E, Luisa Limon M, Wong KYM, Hendlisz A, Aglietta M, et al. . First-Line Nivolumab Plus Low-Dose Ipilimumab for Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study. J Clin Oncol Off J Am Soc Clin Oncol (2022) 40(2):161–70. doi: 10.1200/JCO.21.01015 PubMed DOI
André T, Shiu K-K, Kim TW, Jensen BV, Jensen LH, Punt C, et al. . Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N Engl J Med (2020) 383(23):2207–18. doi: 10.1056/NEJMoa2017699 PubMed DOI
Andre T, Shiu K-K, Kim TW, Jensen BV, Jensen LH, Punt CJA, et al. . Final Overall Survival for the Phase III KN177 Study: Pembrolizumab Versus Chemotherapy in Microsatellite Instability-High/Mismatch Repair Deficient (MSI-H/dMMR) Metastatic Colorectal Cancer (mCRC). J Clin Oncol (2021) 39(15_suppl):3500. doi: 10.1200/JCO.2021.39.15_suppl.3500 DOI
Cremolini C, Loupakis F, Antoniotti C, Lupi C, Sensi E, Lonardi S, et al. . FOLFOXIRI Plus Bevacizumab Versus FOLFIRI Plus Bevacizumab as First-Line Treatment Of Patients With Metastatic Colorectal Cancer: Updated Overall Survival and Molecular Subgroup Analyses of the Open-Label, Phase 3 TRIBE Study. Lancet Oncol (2015) 16(13):1306–15. doi: 10.1016/S1470-2045(15)00122-9 PubMed DOI
Cho YA, Lee H, Kim DG, Kim H, Ha SY, Choi Y-L, et al. . PD-L1 Expression Is Significantly Associated With Tumor Mutation Burden and Microsatellite Instability Score. Cancers (Basel) (2021) 13(18):4659. doi: 10.3390/cancers13184659 PubMed DOI PMC
Sahin IH, Akce M, Alese O, Shaib W, Lesinski GB, El-Rayes B, et al. . Immune Checkpoint Inhibitors for the Treatment of MSI-H/MMR-D Colorectal Cancer and A Perspective on Resistance Mechanisms. Br J Cancer (2019) 121(10):809–18. doi: 10.1038/s41416-019-0599-y PubMed DOI PMC
Schrock AB, Ouyang C, Sandhu J, Sokol E, Jin D, Ross JS, et al. . Tumor Mutational Burden is Predictive of Response to Immune Checkpoint Inhibitors in MSI-High Metastatic Colorectal Cancer. Ann Oncol Off J Eur Soc Med Oncol (2019) 30(7):1096–103. doi: 10.1093/annonc/mdz134 PubMed DOI
Fabrizio DA, George TJJ, Dunne RF, Frampton G, Sun J, Gowen K, et al. . Beyond Microsatellite Testing: Assessment of Tumor Mutational Burden Identifies Subsets of Colorectal Cancer Who may Respond to Immune Checkpoint Inhibition. J Gastrointest Oncol (2018) 9(4):610–7. doi: 10.21037/jgo.2018.05.06 PubMed DOI PMC
Bielska AA, Chatila WK, Walch H, Schultz N, Stadler ZK, Shia J, et al. . Tumor Mutational Burden and Mismatch Repair Deficiency Discordance as a Mechanism of Immunotherapy Resistance. J Natl Compr Canc Netw (2021) 19(2):130–3. doi: 10.6004/jnccn.2020.7680 PubMed DOI PMC
Salem ME, Bodor JN, Puccini A, Xiu J, Goldberg RM, Grothey A, et al. . Relationship Between MLH1, PMS2, MSH2 and MSH6 Gene-Specific Alterations and Tumor Mutational Burden in 1057 Microsatellite Instability-High Solid Tumors. Int J Cancer (2020) 147(10):2948–56. doi: 10.1002/ijc.33115 PubMed DOI PMC
Domingo E, Freeman-Mills L, Rayner E, Glaire M, Briggs S, Vermeulen L, et al. . Somatic POLE Proofreading Domain Mutation, Immune Response, and Prognosis in Colorectal Cancer: A Retrospective, Pooled Biomarker Study. Lancet Gastroenterol Hepatol (2016) 1(3):207–16. doi: 10.1016/S2468-1253(16)30014-0 PubMed DOI
Hu H, Cai W, Wu D, Hu W, Dong Wang L, Mao J, et al. . Ultra-Mutated Colorectal Cancer Patients With POLE Driver Mutations Exhibit Distinct Clinical Patterns. Cancer Med (2021) 10(1):135–42. doi: 10.1002/cam4.3579 PubMed DOI PMC
Vaňková B, Vaněček T, Ptáková N, Hájková V, Dušek M, Michal M, et al. . Targeted Next Generation Sequencing of MLH1-Deficient, MLH1 Promoter Hypermethylated, and BRAF/RAS-Wild-Type Colorectal Adenocarcinomas is Effective in Detecting Tumors With Actionable Oncogenic Gene Fusions. Genes Chromosomes Cancer (2020) 59(10):562–8. doi: 10.1002/gcc.22861 PubMed DOI
Hamada T, Zhang X, Mima K, Bullman S, Sukawa Y, Nowak JA, et al. . Fusobacterium Nucleatum in Colorectal Cancer Relates to Immune Response Differentially by Tumor Microsatellite Instability Status. Cancer Immunol Res (2018) 6(11):1327–36. doi: 10.1158/2326-6066.CIR-18-0174 PubMed DOI PMC
Gao Y, Bi D, Xie R, Li M, Guo J, Liu H, et al. . Fusobacterium Nucleatum Enhances the Efficacy of PD-L1 Blockade in Colorectal Cancer. Signal Transduct Target Ther (2021) 6(1):398. doi: 10.1038/s41392-021-00795-x PubMed DOI PMC
Chida K, Kawazoe A, Suzuki T, Kawazu M, Ueno T, Takenouchi K, et al. . Transcriptomic Profiling of MSI-H/dMMR Gastrointestinal Tumors to Identify Determinants of Responsiveness to Anti-PD-1 Therapy. Clin Cancer Res an Off J Am Assoc Cancer Res (2022). doi: 10.1158/1078-0432.CCR-22-0041 PubMed DOI PMC
Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane J-P, et al. . Resistance to Checkpoint Blockade Therapy Through Inactivation of Antigen Presentation. Nat Commun (2017) 8(1):1136. doi: 10.1038/s41467-017-01062-w PubMed DOI PMC
Middha S, Yaeger R, Shia J, Stadler ZK, King S, Guercio S, et al. . Majority of B2M-Mutant and -Deficient Colorectal Carcinomas Achieve Clinical Benefit From Immune Checkpoint Inhibitor Therapy and Are Microsatellite Instability-High. JCO Precis Oncol (2019) 3:PO.18.00321. doi: 10.1200/PO.18.00321 PubMed DOI PMC
Fucà G, Cohen R, Lonardi S, Shitara K, Elez ME, Fakih M, et al. . Ascites and Resistance to Immune Checkpoint Inhibition in dMMR/MSI-H Metastatic Colorectal and Gastric Cancers. J Immunother Cancer (2022) 10(2):e004001. doi: 10.1136/jitc-2021-004001 PubMed DOI PMC
Battaglin F, Naseem M, Lenz H-J, Salem ME. Microsatellite Instability in Colorectal Cancer: Overview of its Clinical Significance and Novel Perspectives. Clin Adv Hematol Oncol (2018) 16(11):735–45. PubMed PMC
Carlsen L, Huntington KE, El-Deiry WS. Immunotherapy for Colorectal Cancer: Mechanisms and Predictive Biomarkers. Cancers (Basel) (2022) 14(4):1028. doi: 10.3390/cancers14041028 PubMed DOI PMC
Powles T, Park SH, Voog E, Caserta C, Valderrama BP, Gurney H, et al. . Avelumab Maintenance Therapy for Advanced or Metastatic Urothelial Carcinoma. N Engl J Med (2020) 383(13):1218–30. doi: 10.1056/NEJMoa2002788 PubMed DOI
Powles T, Csőszi T, Özgüroğlu M, Matsubara N, Géczi L, Cheng SY-S, et al. . Pembrolizumab Alone or Combined With Chemotherapy Versus Chemotherapy as First-Line Therapy for Advanced Urothelial Carcinoma (KEYNOTE-361): A Randomised, Open-Label, Phase 3 Trial. Lancet Oncol (2021) 22(7):931–45. doi: 10.1016/S1470-2045(21)00152-2 PubMed DOI