Unexplained post-acute infection syndromes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
Grantová podpora
Howard Hughes Medical Institute - United States
PubMed
35585196
DOI
10.1038/s41591-022-01810-6
PII: 10.1038/s41591-022-01810-6
Knihovny.cz E-zdroje
- MeSH
- COVID-19 * komplikace MeSH
- lidé MeSH
- postakutní syndrom COVID-19 MeSH
- progrese nemoci MeSH
- SARS-CoV-2 MeSH
- syndrom chronické únavy * diagnóza etiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
SARS-CoV-2 is not unique in its ability to cause post-acute sequelae; certain acute infections have long been associated with an unexplained chronic disability in a minority of patients. These post-acute infection syndromes (PAISs) represent a substantial healthcare burden, but there is a lack of understanding of the underlying mechanisms, representing a significant blind spot in the field of medicine. The relatively similar symptom profiles of individual PAISs, irrespective of the infectious agent, as well as the overlap of clinical features with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), suggest the potential involvement of a common etiopathogenesis. In this Review, we summarize what is known about unexplained PAISs, provide context for post-acute sequelae of SARS-CoV-2 infection (PASC), and delineate the need for basic biomedical research into the underlying mechanisms behind this group of enigmatic chronic illnesses.
Department of Epidemiology Columbia University Mailman School of Public Health New York NY USA
Department of Epidemiology of Microbial Diseases Yale School of Public Health New Haven CT USA
Department of Immunobiology Yale University School of Medicine New Haven CT USA
Department of Molecular Cellular and Developmental Biology Yale University New Haven CT USA
Zobrazit více v PubMed
Stefano, G. B. Historical insight into infections and disorders associated with neurological and psychiatric sequelae similar to long COVID. Med. Sci. Monit. 27, e931447 (2021). PubMed DOI PMC
Huang, C. et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 397, 220–232 (2021). PubMed DOI PMC
Sigfrid, L. et al. Long COVID in adults discharged from UK hospitals after COVID-19: a prospective, multicentre cohort study using the ISARIC WHO Clinical Characterisation Protocol. Lancet Reg. Heal. Eur. 8, 100186 (2021). DOI
Evans, R. A. et al. Clinical characteristics with inflammation profiling of long-COVID and association with one-year recovery following hospitalisation in the UK: a prospective observational study. Preprint at medRxiv https://doi.org/10.1101/2021.12.13.21267471 (2021).
Taquet, M. et al. Incidence, co-occurrence, and evolution of long-COVID features: a 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLoS Med. 18, e1003773 (2021). PubMed DOI PMC
Estiri, H. et al. Evolving phenotypes of non-hospitalized patients that indicate long COVID. BMC Med. 19, 249 (2021). PubMed DOI PMC
Caspersen, I. H., Magnus, P. & Trogstad, L. Excess risk and clusters of symptoms after COVID-19 in a large Norwegian cohort. Eur. J. Epidemiol. https://doi.org/10.1007/s10654-022-00847-8 (2022).
Havervall, S. et al. Symptoms and functional impairment assessed 8 months after mild COVID-19 among health care workers. J. Am. Med. Assoc. 325, 2015–2016 (2021). DOI
Blomberg, B. et al. Long COVID in a prospective cohort of home-isolated patients. Nat. Med. 27, 1607–1613 (2021). PubMed DOI PMC
Logue, J. K. et al. Sequelae in adults at 6 Months after COVID-19 infection. JAMA Netw. Open 4, e210830 (2021). PubMed DOI PMC
Amin-Chowdhury, Z. et al. Characterising long COVID more than 6 months after acute infection in adults; prospective longitudinal cohort study, England. Preprint at medRxiv https://doi.org/10.1101/2021.03.18.21253633 (2021).
Frontera, J. A. et al. Prevalence and predictors of prolonged cognitive and psychological symptoms following COVID-19 in the United States. Front. Aging Neurosci. 13, 357 (2021). DOI
Søraas, A. et al. Persisting symptoms three to eight months after non-hospitalized COVID-19, a prospective cohort study. PLoS ONE 16, e0256142 (2021). PubMed DOI PMC
Ayoubkhani, D. & Pawelek, P. Prevalence of ongoing symptoms following coronavirus (COVID-19) infection in the UK: 3 February 2022. UK Office for National Statistics https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/prevalenceofongoingsymptomsfollowingcoronaviruscovid19infectionintheuk/3february2022 (2022).
Groff, D. et al. Short-term and long-term rates of postacute sequelae of SARS-CoV-2 infection: a systematic review. JAMA Netw. Open 4, e2128568 (2021). PubMed DOI PMC
Crook, H., Raza, S., Nowell, J., Young, M. & Edison, P. Long COVID — mechanisms, risk factors, and management. Br. Med. J. 374, n1648 (2021). DOI
Michelen, M. et al. Characterising long COVID: a living systematic review. BMJ Glob. Heal. 6, e005427 (2021). DOI
Malik, P. et al. Post-acute COVID-19 syndrome (PCS) and health-related quality of life (HRQoL)—a systematic review and meta-analysis. J. Med. Virol. 94, 253–262 (2022). PubMed DOI
Korompoki, E. et al. Epidemiology and organ specific sequelae of post-acute COVID19: a narrative review. J. Infect. 83, 1–16 (2021). PubMed DOI PMC
Nalbandian, A. et al. Post-acute COVID-19 syndrome. Nat. Med. 27, 601–615 (2021). PubMed DOI PMC
Proal, A. D. & VanElzakker, M. B. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms. Front. Microbiol. 12, 1494 (2021). DOI
Balcom, E. F., Nath, A. & Power, C. Acute and chronic neurological disorders in COVID-19: potential mechanisms of disease. Brain 144, 3576–3588 (2021). PubMed DOI PMC
Mehandru, S. & Merad, M. Pathological sequelae of long-haul COVID. Nat. Immunol. 23, 194–202 (2022). PubMed DOI PMC
Morroy, G. et al. Fatigue following acute Q-fever: a systematic literature review. PLoS One 11, e0155884 (2016). PubMed DOI PMC
Hung, T. M., Wills, B., Clapham, H. E., Yacoub, S. & Turner, H. C. The uncertainty surrounding the burden of post-acute consequences of dengue infection. Trends Parasitol. 35, 673–676 (2019). PubMed DOI
PREVAIL III Study Group et al. A longitudinal study of Ebola sequelae in Liberia. N. Engl. J. Med. 380, 924–934 (2019).
Rojas, M. et al. Ebola virus disease: an emerging and re-emerging viral threat. J. Autoimmun. 106, 102375 (2020). PubMed DOI
Carod-Artal, F. J. Post-Ebola virus disease syndrome: what do we know? Expert Rev. Anti. Infect. Ther. 13, 1185–1187 (2015). PubMed DOI
Rodríguez-Morales, A. J., Cardona-Ospina, J. A., Fernanda Urbano-Garzón, S. & Sebastian Hurtado-Zapata, J. Prevalence of post-chikungunya infection chronic inflammatory arthritis: a systematic review and meta-analysis. Arthritis Care Res. 68, 1849–1858 (2016). DOI
Paixão, E. S. et al. Chikungunya chronic disease: a systematic review and meta-analysis. Trans. R. Soc. Trop. Med. Hyg. 112, 301–316 (2018). PubMed DOI
Hickie, I. et al. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: Prospective cohort study. Br. Med. J. 333, 575–578 (2006). DOI
Harley, D., Bossingham, D., Purdie, D. M., Pandeya, N. & Sleigh, A. C. Ross River virus disease in tropical Queensland: evolution of rheumatic manifestations in an inception cohort followed for six months. Med. J. Aust. 177, 352–355 (2002). PubMed DOI
Mylonas, A. D. et al. Natural history of Ross River virus-induced epidemic polyarthritis. Med. J. Aust. 177, 356–360 (2002). PubMed DOI
Condon, R. J. & Rouse, I. L. Acute symptoms and sequelae of Ross River virus infection in south-western Australia: a follow-up study. Clin. Diagn. Virol. 3, 273–284 (1995). PubMed DOI
Shing, S. L. H. et al. Post-polio syndrome: more than just a lower motor neuron disease. Front. Neurol. 10, 773 (2019). DOI
Patel, H., Sander, B. & Nelder, M. P. Long-term sequelae of West Nile virus-related illness: a systematic review. Lancet Infect. Dis. 15, 951–959 (2015). PubMed DOI
Katz, B. Z., Shiraishi, Y., Mears, C. J., Binns, H. J. & Taylor, R. Chronic fatigue syndrome after infectious mononucleosis in adolescents. Pediatrics 124, 189–193 (2009). PubMed DOI
Jason, L. A., Cotler, J., Islam, M. F., Sunnquist, M. & Katz, B. Z. Risks for developing myalgic encephalomyelitis/chronic fatigue syndrome in college students following infectious mononucleosis: a prospective cohort study. Clin. Infect. Dis. 73, e3740–e3746 (2021). PubMed DOI
Pedersen, M. et al. Predictors of chronic fatigue in adolescents six months after acute Epstein–Barr virus infection: a prospective cohort study. Brain. Behav. Immun. 75, 94–100 (2019). PubMed DOI
Petersen, I., Thomas, J. M., Hamilton, W. T. & White, P. D. Risk and predictors of fatigue after infectious mononucleosis in a large primary-care cohort. QJM 99, 49–55 (2006). PubMed DOI
White, P. D. et al. Incidence, risk and prognosis of acute and chronic fatigue syndromes and psychiatric disorders after glandular fever. Br. J. Psychiatry 173, 475–481 (1998). PubMed DOI
Naess, H., Nyland, M., Hausken, T., Follestad, I. & Nyland, H. I. Chronic fatigue syndrome after Giardia enteritis: clinical characteristics, disability and long-term sickness absence. BMC Gastroenterol. 12, 13 (2012). PubMed DOI PMC
Litleskare, S. et al. Prevalence of irritable bowel syndrome and chronic fatigue 10 years after Giardia infection. Clin. Gastroenterol. Hepatol. 16, 1064–1072.e4 (2018). PubMed DOI
Hunskar, G. S. et al. Prevalence of fibromyalgia 10 years after infection with Giardia lamblia: a controlled prospective cohort study. Scand. J. Pain 22, 348–355 (2021).
Rebman, A. W. & Aucott, J. N. Post-treatment Lyme disease as a model for persistent symptoms in Lyme disease. Front. Med. 7, 57 (2020). DOI
Mac, S. et al. Long-term sequelae and health-related quality of life associated with lyme disease: a systematic review. Clin. Infect. Dis. 71, 440–452 (2020). PubMed DOI
Aucott, J. N. et al. Risk of post-treatment Lyme disease in patients with ideally-treated early Lyme disease: a prospective cohort study. Int. J. Infect. Dis. 116, 230–237 (2022). PubMed DOI
Shadick, N. A. et al. Musculoskeletal and neurologic outcomes in patients with previously treated Lyme disease. Ann. Intern. Med. 131, 919–926 (1999). PubMed DOI
Shadick, N. A. et al. The long-term clinical outcomes of Lyme disease: a population-based retrospective cohort study. Ann. Intern. Med. 121, 560–567 (1994). PubMed DOI
Rebman, A. W. et al. The clinical, symptom, and quality-of-life characterization of a well-defined group of patients with posttreatment lyme disease syndrome. Front. Med. 4, 224 (2017). DOI
Fallon, B. A. et al. The General Symptom Questionnaire-30 (GSQ-30): a brief measure of multi-system symptom burden in Lyme disease. Front. Med. 6, 283 (2019). DOI
Ursinus, J. et al. Prevalence of persistent symptoms after treatment for Lyme borreliosis: a prospective observational cohort study. Lancet Reg. Heal. Eur. 6, 100142 (2021). DOI
Bechtold, K. T., Rebman, A. W., Crowder, L. A., Johnson-Greene, D. & Aucott, J. N. Standardized symptom measurement of individuals with early Lyme disease over time. Arch. Clin. Neuropsychol. 32, 129–141 (2017). PubMed DOI
Seltzer, E. G., Gerber, M. A., Cartter, M. L., Freudigman, K. & Shapiro, E. D. Long-term outcomes of persons with Lyme disease. J. Am. Med. Assoc. 283, 609–616 (2000). DOI
Wormser, G. P. et al. Prospective evaluation of the frequency and severity of symptoms in Lyme disease patients with erythema migrans compared with matched controls at baseline, 6 months, and 12 months. Clin. Infect. Dis. 71, 3118–3124 (2020). PubMed DOI PMC
Cerar, D., Cerar, T., Ružić-Sabljić, E., Wormser, G. P. & Strle, F. Subjective symptoms after treatment of early Lyme disease. Am. J. Med. 123, 79–86 (2010). PubMed DOI
Magnus, P. et al. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is associated with pandemic influenza infection, but not with an adjuvanted pandemic influenza vaccine. Vaccine 33, 6173–6177 (2015). PubMed DOI
Tsai, S. Y. et al. Increased risk of chronic fatigue syndrome following herpes zoster: a population-based study. Eur. J. Clin. Microbiol. Infect. Dis. 33, 1653–1659 (2014). PubMed DOI
Chia, J., Chia, A., Voeller, M., Lee, T. & Chang, R. Acute enterovirus infection followed by myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and viral persistence. J. Clin. Pathol. 63, 165–168 (2010). PubMed DOI
O’Neal, A. J. & Hanson, M. R. The enterovirus theory of disease etiology in myalgic encephalomyelitis/chronic fatigue syndrome: a critical review. Front. Med. 8, 908 (2021).
Shantha, J. G., Crozier, I. & Yeh, S. An update on ocular complications of Ebola virus disease. Curr. Opin. Ophthalmol. 28, 600–606 (2017). PubMed DOI PMC
Shantha, J. G. et al. Ophthalmic manifestations and causes of vision impairment in Ebola virus disease survivors in Monrovia, Liberia. Ophthalmology 124, 170–177 (2017). PubMed DOI
Steptoe, P. J. et al. Novel retinal lesion in Ebola survivors, Sierra Leone, 2016. Emerg. Infect. Dis. 23, 1102–1109 (2017). PubMed DOI PMC
Fukuda, K. et al. The chronic fatigue syndrome: a comprehensive approach to its definition and study. Ann. Intern. Med. 121, 953–959 (1994). PubMed DOI
Carruthers, B. M. et al. Myalgic encephalomyelitis/chronic fatigue syndrome: clinical working case definition, diagnostic and treatment protocols. J. Chronic Fatigue Syndr. 11, 7–115 (2003). DOI
Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome et al. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness (National Academies Press, 2015).
Sharpe, M. C. A report — chronic fatigue syndrome: guidelines for research. J. R. Soc. Med. 84, 118–121 (1991). PubMed DOI PMC
Moss-Morris, R., Spence, M. J. & Hou, R. The pathway from glandular fever to chronic fatigue syndrome: can the cognitive behavioural model provide the map? Psychol. Med. 41, 1099–1107 (2011). PubMed DOI
Buchwald, D. S., Rea, T. D., Katon, W. J., Russo, J. E. & Ashley, R. L. Acute infectious mononucleosis: Characteristics of patients who report failure to recover. Am. J. Med. 109, 531–537 (2000). PubMed DOI
Murray, K. O. et al. Survival analysis, long-term outcomes, and percentage of recovery up to 8 years post-infection among the Houston West Nile virus cohort. PLoS ONE 9, e102953 (2014). PubMed DOI PMC
Balakrishnan, A., Thekkekara, R. J. & Tandale, B. V. Outcomes of West Nile encephalitis patients after 1 year of West Nile encephalitis outbreak in Kerala, India: a follow-up study. J. Med. Virol. 88, 1856–1861 (2016).
Sejvar, J. J. et al. Neurocognitive and functional outcomes in persons recovering from West Nile virus illness. J. Neuropsychol. 2, 477–499 (2008). PubMed DOI
Ayres, J. G. et al. Post-infection fatigue syndrome following Q fever. QJM 91, 105–123 (1998). PubMed DOI
Wildman, M. J. et al. Chronic fatigue following infection by Coxiella burnetii (Q fever): ten-year follow-up of the 1989 UK outbreak cohort. QJM 95, 527–538 (2002). PubMed DOI
Ayres, J. G. et al. Long-term follow-up of patients from the 1989 Q fever outbreak: no evidence of excess cardiac disease in those with fatigue. QJM 95, 539–546 (2002). PubMed DOI
Van Woerden, H. C., Healy, B., Llewelyn, M. B. & Matthews, I. P. A nested case control study demonstrating increased chronic fatigue six years after a Q fever outbreak. Microbiol. Res. 2, 19 (2011). DOI
Marmion, B. P., Shannon, M., Maddocks, I., Storm, P. & Penttila, I. Protracted debility and fatigue after acute Q fever. Lancet 347, 977–978 (1996). PubMed DOI
Ankert, J., Frosinski, J., Weis, S., Boden, K. & Pletz, M. W. Incidence of chronic Q fever and chronic fatigue syndrome: a 6 year follow-up of a large Q fever outbreak. Transbound. Emerg. Dis. https://doi.org/10.1111/tbed.14224 (2021).
Bronner, M. B. et al. Long-term impact of a Q-fever outbreak: an evaluation of health symptoms, health-related quality of life, participation and health care satisfaction after ten years. J. Psychosom. Res. 139, 110258 (2020). PubMed DOI PMC
Mørch, K. et al. Chronic fatigue syndrome 5 years after giardiasis: differential diagnoses, characteristics and natural course. BMC Gastroenterol. 13, 28 (2013). PubMed DOI PMC
Canavan, C., West, J. & Card, T. The epidemiology of irritable bowel syndrome. Clin. Epidemiol. 6, 71–80 (2014). PubMed PMC
Lim, E. J. et al. Systematic review and meta-analysis of the prevalence of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). J. Transl. Med. 18, 100 (2020). PubMed DOI PMC
Weitzner, E. et al. Long-term assessment of post-treatment symptoms in patients with culture-confirmed early Lyme disease. Clin. Infect. Dis. 61, 1800–1806 (2015). PubMed DOI PMC
Dinerman, H. & Steerc, A. C. Lyme disease associated with fibromyalgia. Ann. Intern. Med. 117, 281–285 (1992). PubMed DOI
Rowe, A. K. et al. Clinical, virologic, and immunologic follow-up of convalescent Ebola hemorrhagic fever patients and their household contacts, Kikwit, Democratic Republic of the Congo. J. Infect. Dis. 179, S28–S35 (1999). PubMed DOI
Jagadesh, S. et al. Disability among Ebola survivors and their close contacts in Sierra Leone: a retrospective case-controlled cohort study. Clin. Infect. Dis. 66, 131–133 (2018). PubMed DOI
Clark, D. V. et al. Long-term sequelae after Ebola virus disease in Bundibugyo, Uganda: a retrospective cohort study. Lancet Infect. Dis. 15, 905–912 (2015). PubMed DOI
Bond, N. G. et al. Post-Ebola syndrome presents with multiple overlapping symptom clusters: evidence from an ongoing cohort study in eastern Sierra Leone. Clin. Infect. Dis. 73, 1046–1054 (2021). PubMed DOI PMC
Soumahoro, M. K. et al. Impact of chikungunya virus infection on health status and quality of life: a retrospective cohort study. PLoS ONE 4, e7800 (2009). PubMed DOI PMC
Duvignaud, A. et al. Rheumatism and chronic fatigue, the two facets of post-chikungunya disease: the TELECHIK cohort study on Reunion island. Epidemiol. Infect. 146, 633–641 (2018). PubMed DOI
Gérardin, P. et al. Perceived morbidity and community burden after a chikungunya outbreak: the TELECHIK survey, a population-based cohort study. BMC Med. 9, 1–11 (2011). DOI
Marimoutou, C., Vivier, E., Oliver, M., Boutin, J. P. & Simon, F. Morbidity and impaired quality of life 30 months after chikungunya infection: comparative cohort of infected and uninfected french military policemen in Reunion island. Medicine 91, 212–219 (2012). PubMed DOI
Ramachandran, V. et al. Impact of chikungunya on health related quality of life Chennai, South India. PLoS ONE 7, e51519 (2012). PubMed DOI PMC
Kularatne, S. A. M. et al. Epidemiology, clinical manifestations, and long-term outcomes of a major outbreak of chikungunya in a hamlet in Sri Lanka, in 2007: a longitudinal cohort study. J. Trop. Med. 2012, 639178 (2012). PubMed DOI PMC
Rogers, J. P. et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiat. 7, 611–627 (2020). DOI
Lam, M. H. B. et al. Mental morbidities and chronic fatigue in severe acute respiratory syndrome survivors long-term follow-up. Arch. Intern. Med. 169, 2142–2147 (2009). PubMed DOI
Moldofsky, H. & Patcai, J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol. 11, 37 (2011). PubMed DOI PMC
Keita, A. K. et al. A 40-month follow-up of Ebola virus disease survivors in Guinea (Postebogui) reveals long-term detection of Ebola viral ribonucleic acid in semen and breast milk. Open Forum Infect. Dis. 6, ofz482 (2019). PubMed DOI PMC
Fischer, W. A. et al. Ebola virus ribonucleic acid detection in semen more than two years after resolution of acute Ebola virus infection. Open Forum Infect. Dis. 4, ofx155 (2017). PubMed DOI PMC
Lavergne, S. M. et al. Ebola-Specific CD8 PubMed DOI PMC
Wiedemann, A. et al. Long-lasting severe immune dysfunction in Ebola virus disease survivors. Nat. Commun. 11, 3730 (2020). PubMed DOI PMC
Adaken, C. et al. Ebola virus antibody decay–stimulation in a high proportion of survivors. Nature 590, 468–472 (2021). PubMed DOI PMC
Keita, A. K. et al. Resurgence of Ebola virus in 2021 in Guinea suggests a new paradigm for outbreaks. Nature 597, 539–543 (2021). PubMed DOI
Diallo, B. et al. Resurgence of Ebola virus disease in Guinea linked to a survivor with virus persistence in seminal fluid for more than 500 days. Clin. Infect. Dis. 63, 1353–1356 (2016). PubMed DOI PMC
Murray, K. et al. Persistent infection with West Nile virus years after initial infection. J. Infect. Dis. 201, 2–4 (2010). PubMed DOI
Gaebler, C. et al. Evolution of antibody immunity to SARS-CoV-2. Nature 591, 639–644 (2021). PubMed DOI PMC
Cheung, C. C. L. et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19. Gut 71, 226–229 (2022). PubMed DOI
Fernández-Castañeda, A. et al. Mild respiratory SARS-CoV-2 infection can cause multi-lineage cellular dysregulation and myelin loss in the brain. Preprint at bioRxiv https://doi.org/10.1101/2022.01.07.475453 (2022).
Rojas, M. et al. Molecular mimicry and autoimmunity. J. Autoimmun. 95, 100–123 (2018). PubMed DOI
Lanz, T. V. et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327 (2022). PubMed DOI
Bjornevik, K. et al. Longitudinal analysis reveals high prevalence of Epstein–Barr virus associated with multiple sclerosis. Science 375, 296–301 (2022). PubMed DOI
Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, eabd4585 (2020).
Wang, E. Y. et al. Diverse functional autoantibodies in patients with COVID-19. Nature 595, 283–288 (2021). PubMed DOI
Combes, A. J. et al. Global absence and targeting of protective immune states in severe COVID-19. Nature 591, 124–130 (2021). PubMed DOI PMC
Zuo, Y. et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci. Transl. Med. 12, eabd3876 (2020). PubMed DOI PMC
Woodruff, M. C. et al. Relaxed peripheral tolerance drives broad de novo autoreactivity in severe COVID-19. Preprint at medRxiv https://doi.org/10.1101/2020.10.21.20216192 (2021).
Zhou, Y. et al. Clinical and autoimmune characteristics of severe and critical cases of COVID-19. Clin. Transl. Sci. 13, 1077–1086 (2020). PubMed DOI PMC
Song, E. et al. Divergent and self-reactive immune responses in the CNS of COVID-19 patients with neurological symptoms. Cell Rep. Med. 2, 100288 (2021). PubMed DOI PMC
Zuniga, M. et al. Autoimmunity to annexin A2 predicts mortality among hospitalised COVID-19 patients. Eur. Respir. J. 58, 2100918 (2021). PubMed DOI PMC
Chang, S. E. et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat. Commun. 12, 1–15 (2021). DOI
Wallukat, G. et al. Functional autoantibodies against G-protein coupled receptors in patients with persistentlLong-COVID-19 symptoms. J. Transl. Autoimmun. 4, 100100 (2021). PubMed DOI PMC
Su, Y. et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 185, 881–895 (2022).
Iijima, N. & Iwasaki, A. Access of protective antiviral antibody to neuronal tissues requires CD4 T-cell help. Nature 533, 552–556 (2016). PubMed DOI PMC
Manfredo Vieira, S. et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 359, 1156–1161 (2018). PubMed DOI
Kaminska, B., Mota, M. & Pizzi, M. Signal transduction and epigenetic mechanisms in the control of microglia activation during neuroinflammation. Biochim. Biophys. Acta Mol. Basis Dis. 1862, 339–351 (2016). DOI
Matthay, M. A. et al. Acute respiratory distress syndrome. Nat. Rev. Dis. Prim. 5, 18 (2018). DOI
Pretorius, E. et al. Persistent clotting protein pathology in Long COVID/post-acute sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc. Diabetol. 20, 172 (2021). PubMed DOI PMC
Angum, F., Khan, T., Kaler, J., Siddiqui, L. & Hussain, A. The prevalence of autoimmune disorders in women: a narrative review. Cureus 12, e8094–e8094 (2020). PubMed PMC
Tozay, S. et al. Long-term complications of ebola virus disease: prevalence and predictors of major symptoms and the role of inflammation. Clin. Infect. Dis. 71, 1749–1755 (2020). PubMed DOI
Etard, J. F. et al. Multidisciplinary assessment of post-Ebola sequelae in Guinea (Postebogui): an observational cohort study. Lancet Infect. Dis. 17, 545–552 (2017). PubMed DOI
Kibadi, K. et al. Late ophthalmologic manifestations in survivors of the 1995 Ebola virus epidemic in Kikwit, Democratic Republic of the Congo. J. Infect. Dis. 179, S13–S14 (1999). PubMed DOI
Wilson, H. W. et al. Post-Ebola syndrome among ebola virus disease survivors in montserrado county, Liberia 2016. Biomed. Res. Int. 2018, 1909410 (2018). PubMed DOI PMC
Mattia, J. G. et al. Early clinical sequelae of Ebola virus disease in Sierra Leone: a cross-sectional study. Lancet Infect. Dis. 16, 331–338 (2016). PubMed DOI
Qureshi, A. I. et al. Study of Ebola virus disease survivors in Guinea. Clin. Infect. Dis. 61, 1035–1042 (2015). PubMed DOI
Tiffany, A. et al. Ebola virus disease complications as experienced by survivors in Sierra Leone. Clin. Infect. Dis. 62, 1360–1366 (2016). PubMed DOI PMC
Nanyonga, M., Saidu, J., Ramsay, A., Shindo, N. & Bausch, D. G. Sequelae of Ebola virus disease, Kenema District, Sierra Leone. Clin. Infect. Dis. 62, 125–126 (2016). PubMed DOI
Howlett, P. J. et al. Case series of severe neurologic sequelae of ebola virus disease during epidemic, Sierra Leone. Emerg. Infect. Dis. 24, 1412–1421 (2018). PubMed DOI PMC
Halsey, E. S. et al. Occurrence and correlates of symptom persistence following acute dengue fever in Peru. Am. J. Trop. Med. Hyg. 90, 449–456 (2014). PubMed DOI PMC
Sigera, P. C. et al. Dengue and post-infection fatigue: findings from a prospective cohort — the Colombo Dengue Study. Trans. R. Soc. Trop. Med. Hyg. 115, 669–676 (2021). PubMed DOI
Seet, R. C. S., Quek, A. M. L. & Lim, E. C. H. Post-infectious fatigue syndrome in dengue infection. J. Clin. Virol. 38, 1–6 (2007). PubMed DOI
Teixeira, L. A. S., Nogueira, F. P. D. S. & Nascentes, G. A. N. Prospective study of patients with persistent symptoms of dengue in Brazil. Rev. Inst. Med. Trop. Sao Paulo 59, e65 (2017). PubMed DOI PMC
García, G. et al. Long-term persistence of clinical symptoms in dengue-infected persons and its association with immunological disorders. Int. J. Infect. Dis. 15, e38–e43 (2011). PubMed DOI
Kularatne, S. Survey on the management of dengue infection in Sri Lanka: opinions of physicians and pediatricians. Southeast Asian J. Trop. Med. Public Health 36, 1198–1200 (2005). PubMed
Umakanth, M. Post dengue fatigue syndrome (PDFS) among dengue IgM-antibody positive patients at Batticaloa Teaching Hospital, Sri Lanka. OALib 05, 1–6 (2018).
González, D. et al. Evaluation of some clinical, humoral and imagenological parameters in patients of dengue haemorrhagic fever six months after acute illness. Dengue Bull. 29, 79–84 (2005).
Chang, A. Y. et al. Frequency of chronic joint pain following chikungunya virus infection: a Colombian cohort study. Arthritis Rheumatol. 70, 578–584 (2018). PubMed DOI PMC
Couturier, E. et al. Impaired quality of life after chikungunya virus infection: a 2-year follow-up study. Rheumatology 51, 1315–1322 (2012). PubMed DOI
Bouquillard, E. et al. Rheumatic manifestations associated with chikungunya virus infection: a study of 307 patients with 32-month follow-up (RHUMATOCHIK study). Joint Bone Spine 85, 207–210 (2018). PubMed DOI
Moro, M. L. et al. Long-term chikungunya infection clinical manifestations after an outbreak in Italy: a prognostic cohort study. J. Infect. 65, 165–172 (2012). PubMed DOI
Manimunda, S. P. et al. Clinical progression of chikungunya fever during acute and chronic arthritic stages and the changes in joint morphology as revealed by imaging. Trans. R. Soc. Trop. Med. Hyg. 104, 392–399 (2010). PubMed DOI
Schilte, C. et al. Chikungunya virus-associated long-term arthralgia: a 36-month prospective longitudinal study. PLoS Negl. Trop. Dis. 7, e2137 (2013). PubMed DOI PMC
Javelle, E. et al. Specific management of post-chikungunya rheumatic disorders: a retrospective study of 159 cases in Reunion Island from 2006–2012. PLoS Negl. Trop. Dis. 9, e0003603 (2015). PubMed DOI PMC
Sissoko, D. et al. Post-epidemic chikungunya disease on Reunion Island: course of rheumatic manifestations and associated factors over a 15-month period. PLoS Negl. Trop. Dis. 3, 389 (2009). DOI
Rahim, A. A., Thekkekara, R. J., Bina, T. & Paul, B. J. Disability with persistent pain following an epidemic of chikungunya in rural south India. J. Rheumatol. 43, 440–444 (2016). PubMed DOI
Blettery, M. et al. Brief report: management of chronic post-chikungunya rheumatic disease: the Martinican experience. Arthritis Rheumatol. 68, 2817–2824 (2016). PubMed DOI
Dupuis-Maguiraga, L. et al. Chikungunya disease: infection-associated markers from the acute to the chronic phase of arbovirus-induced arthralgia. PLoS Negl. Trop. Dis. 6, e1446 (2012). PubMed DOI PMC
Jason, L. A. et al. Predictors of post-infectious chronic fatigue syndrome in adolescents. Heal. Psychol. Behav. Med. 2, 41–51 (2014). DOI
Katz, B. Z., Stewart, J. M., Shiraishi, Y., Mears, C. J. & Taylor, R. Autonomic symptoms at baseline and following infectious mononucleosis in a prospective cohort of adolescents. Arch. Pediatr. Adolesc. Med. 165, 765 (2011). PubMed DOI PMC
Katz, B. Z. et al. A validated scale for assessing the severity of acute infectious mononucleosis. J. Pediatr. 209, 130–133 (2019). PubMed DOI PMC
Ragonese, P. et al. Prevalence and risk factors of post-polio syndrome in a cohort of polio survivors. J. Neurol. Sci. 236, 31–35 (2005). PubMed DOI
Ramblow, J., Alexander, M., Laporte, R., Kaufmann, C. & Kuller, L. Epidemiology of the post-polio syndrome. Am. J. Epidemiol. 136, 769–786 (1992). DOI
Berlly, M. H., Strauser, W. W. & Hall, K. M. Fatigue in postpolio syndrome. Arch. Phys. Med. Rehabil. 72, 115–118 (1991). PubMed
Nollet, F. et al. Disability and functional assessment in former polio patients with and without postpolio syndrome. Arch. Phys. Med. Rehabil. 80, 136–143 (1999). PubMed DOI
Romigi, A. et al. Restless legs syndrome and post polio syndrome: a case–control study. Eur. J. Neurol. 22, 472–478 (2015). PubMed DOI
On, A. Y., Oncu, J., Atamaz, F. & Durmaz, B. Impact of post-polio-related fatigue on quality of life. J. Rehabil. Med. 38, 329–332 (2006). PubMed DOI
Takemura, J., Saeki, S., Hachisuka, K. & Aritome, K. Prevalence of post-polio syndrome based on a cross-sectional survey in Kitakyushu, Japan. J. Rehabil. Med. 36, 1–3 (2004). PubMed DOI
Marin, L. F., Carvalho, L. B. C., Prado, L. B. F., Oliveira, A. S. B. & Prado, G. F. Restless legs syndrome is highly prevalent in patients with post-polio syndrome. Sleep. Med. 37, 147–150 (2017). PubMed DOI
Nolan, M. S., Hause, A. M. & Murray, K. O. Findings of long-term depression up to 8 years post infection from West Nile virus. J. Clin. Psychol. 68, 801–808 (2012). PubMed DOI PMC
Loeb, M. et al. Prognosis after West Nile virus infection. Ann. Intern. Med. 149, 232–241 (2008). PubMed DOI
Yeung, M. W., Tomlinson, G., Loeb, M. & Sander, B. Health-related quality of life in persons with West Nile virus infection: a longitudinal cohort study. Health Qual. Life Outcomes 15, 1–10 (2017). DOI
Garcia, M. N. et al. Evaluation of prolonged fatigue post-west nile virus infection and association of fatigue with elevated antiviral and proinflammatory cytokines. Viral Immunol. 27, 327–333 (2014). PubMed DOI PMC
Carson, P. J. et al. Long-term clinical and neuropsychological outcomes of West Nile virus infection. Clin. Infect. Dis. 43, 723–730 (2006). PubMed DOI
Klee, A. L. et al. Long-term prognosis for clinical West Nile virus infection. Emerg. Infect. Dis. 10, 1405–1411 (2004). PubMed DOI PMC
Patnaik, J. L., Harmon, H. & Vogt, R. L. Follow-up of 2003 human West Nile virus infections, Denver, Colorado. Emerg. Infect. Dis. 12, 1129–1131 (2006). PubMed DOI PMC
Cook, R. L. et al. Demographic and clinical factors associated with persistent symptoms after West Nile virus infection. Am. J. Trop. Med. Hyg. 83, 1133–1136 (2010). PubMed DOI PMC
Samaan, Z. et al. Neuropsychological impact of west nile virus infection: an extensive neuropsychiatric assessment of 49 cases in Canada. PLoS One 11, e0158364 (2016). PubMed DOI PMC
Sadek, J. R. et al. Persistent neuropsychological impairment associated with West Nile virus infection. J. Clin. Exp. Neuropsychol. 32, 81–87 (2010). PubMed DOI
Kuberski, T., Brown, C. B. & Robinson, L. Clinical observations on West Nile virus infections. Infect. Med. 25, 430–434 (2008).
Leis, A. A. et al. Tumor necrosis factor-alpha signaling may contribute to chronic West Nile virus post-infectious proinflammatory state. Front. Med. 7, 164 (2020). DOI
Tansey, C. M. et al. One-year outcomes and health care utilization in survivors of severe acute respiratory syndrome. Arch. Intern. Med. 167, 1312–1320 (2007). PubMed DOI
Guo, L. et al. Long-term outcomes in patients with severe acute respiratory syndrome treated with oseltamivir: a 12-year longitudinal study. Int J. Clin. Exp. Med 12, 12464–12471 (2019).
Vallings, R. A case of chronic fatigue syndrome triggered by influenza H1N1 (swine influenza). J. Clin. Pathol. 63, 184–185 (2010). PubMed DOI
Van Loenhout, J. A. F. et al. Q-fever patients suffer from impaired health status long after the acute phase of the illness: results from a 24-month cohort study. J. Infect. 70, 237–246 (2015). PubMed DOI
Hatchette, T. F., Hayes, M., Merry, H., Schlech, W. F. & Marrie, T. J. The effect of C. burnetii infection on the quality of life of patients following an outbreak of Q fever. Epidemiol. Infect. 130, 491–495 (2003). PubMed DOI PMC
Leung-Shea, C. & Danaher, P. J. Q fever in members of the United States armed forces returning from Iraq. Clin. Infect. Dis. 43, e77–e82 (2006). PubMed DOI
Smith, R. P. et al. Clinical characteristics and treatment outcome of early Lyme disease in patients with microbiologically confirmed erythema migrans. Ann. Intern. Med. 136, 421–428 (2002). PubMed DOI
Nowakowski, J. et al. Long-term follow-up of patients with culture-confirmed lyme disease. Am. J. Med. 115, 91–96 (2003). PubMed DOI
Aucott, J. N., Rebman, A. W., Crowder, L. A. & Kortte, K. B. Post-treatment Lyme disease syndrome symptomatology and the impact on life functioning: is there something here? Qual. Life Res. 22, 75–84 (2013). PubMed DOI
Adrion, E. R., Aucott, J., Lemke, K. W. & Weiner, J. P. Health care costs, utilization and patterns of care following lyme disease. PLoS ONE 10, e0116767 (2015). PubMed DOI PMC
Klempner, M. S. et al. Two controlled trials of antibiotic treatment in patients with persistent symptoms and a history of Lyme disease. N. Engl. J. Med. 345, 85–92 (2001). PubMed DOI
Stormorken, E., Jason, L. A. & Kirkevold, M. From good health to illness with post-infectious fatigue syndrome: a qualitative study of adults’ experiences of the illness trajectory. BMC Fam. Pract. 18, 1–15 (2017). DOI
Ayoubkhani, D. & Gaughan, C. Technical article: Updated estimates of the prevalence of post-acute symptoms among people with coronavirus (COVID-19) in the UK: 26 April 2020 to 1 August 2021. UK Office for National Statistics https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/articles/technicalarticleupdatedestimatesoftheprevalenceofpostacutesymptomsamongpeoplewithcoronaviruscovid19intheuk/26april2020to1august2021 (2021).
Smith, M. P. Estimating total morbidity burden of COVID-19: relative importance of death and disability. J. Clin. Epidemiol. 142, 54–59 (2022). PubMed DOI
Morin, L. et al. Four-month clinical status of a cohort of patients after hospitalization for COVID-19. J. Am. Med. Assoc. 325, 1525–1534 (2021). DOI
Komaroff, A. L. & Lipkin, W. I. Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome. Trends Mol. Med. 27, 895–906 (2021). PubMed DOI PMC
Wong, T. L. & Weitzer, D. J. Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) — a systemic review and comparison of clinical presentation and symptomatology. Medicina 57, 418 (2021). PubMed DOI PMC
Torjesen, I. COVID-19: middle aged women face greater risk of debilitating long term symptoms. Br. Med. J. 372, n829 (2021). DOI
Peghin, M. et al. Post-COVID-19 symptoms 6 months after acute infection among hospitalized and non-hospitalized patients. Clin. Microbiol. Infect. 27, 1507–1513 (2021). PubMed DOI PMC
Visconti, A. et al. Diagnostic value of cutaneous manifestation of SARS-CoV-2 infection. Br. J. Dermatol. 184, 880–887 (2021). PubMed DOI PMC
Caress, J. B. et al. COVID-19-associated Guillain–Barré syndrome: the early pandemic experience. Muscle Nerve 62, 485–491 (2020). PubMed DOI PMC
Blitshteyn, S. & Whitelaw, S. Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients. Immunol. Res. 69, 205–211 (2021). PubMed DOI PMC
Fahd Qadir, M. M. et al. SARS-CoV-2 infection of the pancreas promotes thrombofibrosis and is associated with new-onset diabetes. JCI Insight 6, e151551 (2021). DOI
Li, P. et al. Factors associated with risk of postdischarge thrombosis in patients with COVID-19. JAMA Netw. Open 4, e2135397(2021). PubMed DOI PMC
Xie, Y., Xu, E. & Al-Aly, Z. Risks of mental health outcomes in people with COVID-19: cohort study. Br. Med. J. 376, e068993 (2022). DOI
World Health Organization. A clinical case definition of post COVID-19 condition by a Delphi consensus. https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1 (2021).
US Centers for Disease Control and Prevention. Post-COVID conditions. https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/ (2021).
National Institute for Health and Care Excellence. COVID-19 rapid guideline: managing the long-term effects of COVID-19. https://www.nice.org.uk/guidance/ng188 (2020).