Screen-Printed Carbon Electrodes with Macroporous Copper Film for Enhanced Amperometric Sensing of Saccharides

. 2022 May 02 ; 22 (9) : . [epub] 20220502

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35591157

A porous layer of copper was formed on the surface of screen-printed carbon electrodes via the colloidal crystal templating technique. An aqueous suspension of monodisperse polystyrene spheres of 500 nm particle diameter was drop-casted on the carbon tracks printed on the substrate made of alumina ceramic. After evaporation, the electrode was carefully dipped in copper plating solution for a certain time to achieve a sufficient penetration of solution within the polystyrene spheres. The metal was then electrodeposited galvanostatically over the self-assembled colloidal crystal. Finally, the polystyrene template was dissolved in toluene to expose the porous structure of copper deposit. The morphology of porous structures was investigated using scanning electron microscopy. Electroanalytical properties of porous copper film electrodes were evaluated in amperometric detection of selected saccharides, namely glucose, fructose, sucrose, and galactose. Using hydrodynamic amperometry in stirred alkaline solution, a current response at +0.6 V vs. Ag/AgCl was recorded after addition of the selected saccharide. These saccharides could be quantified in two linear ranges (0.2-1.0 μmol L-1 and 4.0-100 μmol L-1) with detection limits of 0.1 μmol L-1 glucose, 0.03 μmol L-1 fructose, and 0.05 μmol L-1 sucrose or galactose. In addition, analytical performance of porous copper electrodes was ascertained and compared to that of copper film screen-printed carbon electrodes, prepared ex-situ by the galvanostatic deposition of metal in the plating solution. After calculating the current densities with respect to the geometric area of working electrodes, the porous electrodes exhibited much higher sensitivity to changes in concentration of analytes, presumably due to the larger surface of the porous copper deposit. In the future, they could be incorporated in detectors of flow injection systems due to their long-term mechanical stability.

Zobrazit více v PubMed

Lee H., Hong Y.J., Baik S., Hyeon T., Kim D.H. Enzyme based glucose sensor: From invasive to wearable device. Adv. Healthc. Mater. 2018;7:1701150. doi: 10.1002/adhm.201701150. PubMed DOI

Lee W.C., Kim K.B., Gurudatt N.G., Hussain K.K., Choi C.S., Park D.S., Shim Y.B. Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with conductive polymer. Biosens. Bioelectron. 2019;130:48–54. doi: 10.1016/j.bios.2019.01.028. PubMed DOI

Ruiz Altisent M., Ruiz-Garcia L., Moreda G.P., Lu R., Hernandez-Sanchez N., Correa E.C., Diezma B., Nicolaï B., García Ramos J. Sensors for product characterization and quality of specialty crops-A review. Comput. Electron. Agric. 2010;74:176–194. doi: 10.1016/j.compag.2010.07.002. DOI

Espro C., Marini S., Giusi D., Ampelli C., Neri G. Non-enzymatic screen printed sensor based on Cu2O nanocubes for glucose determination in bio-fermentation processes. J. Electroanal. Chem. 2020;837:114354. doi: 10.1016/j.jelechem.2020.114354. DOI

Luiz da Silva J., Buffon E., Beluomini M.A., Pradela Filho L.A., Araújo D.A.G., Santos A.L., Takeuchi R.M., Stradiotto N.R. Non-enzymatic lactose molecularly imprinted sensor based on disposable graphite paper electrode. Anal. Chim. Acta. 2021;1143:53–64. doi: 10.1016/j.aca.2020.11.030. PubMed DOI

Niu X.H., Li Y.X., Tang J., Hu Y.L., Zhao H.L., Lan M.B. Electrochemical sensing interfaces with tunable porosity for nonenzymatic glucose detection: A Cu foam case. Biosens. Bioelectron. 2014;51:22–28. doi: 10.1016/j.bios.2013.07.032. PubMed DOI

Liu S., Zeng W., Guo Q., Li Y. Metal oxide-based composite for non-enzymatic glucose sensors. J. Mater. Sci. Mater. Electron. 2020;31:16111–16136. doi: 10.1007/s10854-020-04239-0. DOI

Lu W., Sun Y., Dai H., Ni P., Jiang S., Wang Y., Li Z., Li Z. CuO nanothorn arrays on three-dimensional copper foam as an ultra-highly sensitive and efficient nonenzymatic glucose sensor. RSC Adv. 2016;6:16474–16480. doi: 10.1039/C5RA24579F. DOI

Shackery I., Patil U., Pezeshki A., Shinde N.M., Kang S., Im S.C. Copper hydroxide nanorods decorated porous graphene foam electrodes for non-enzymatic glucose sensing. Electrochim. Acta. 2016;191:954–961. doi: 10.1016/j.electacta.2016.01.047. DOI

Liu X., Yang X., Chen L., Jia J. Three-dimensional copper foam supported CuO nanowire arrays: An efficient non-enzymatic glucose sensor. Electrochim. Acta. 2017;235:519–526. doi: 10.1016/j.electacta.2017.03.150. DOI

Kumar K.P.A., Ghosh K., Alduhaish O., Pumera M. Metal-plated 3D printed electrode for electrochemical detection of carbohydrates. Electrochem. Commun. 2020;120:106827. doi: 10.1016/j.elecom.2020.106827. DOI

Bie L., Luo X., Kang L., He D., Jiang P. Commercial copper foam as an effective 3D porous electrode for nonenzymatic glucose detection. Electroanalysis. 2016;28:2070–2074. doi: 10.1002/elan.201501167. DOI

Liu W., Wu X., Li X. Gold nanorods on three-dimensional nickel foam: A non-enzymatic glucose sensor with enhanced electro-catalytic performance. RSC Adv. 2017;7:36744. doi: 10.1039/C7RA06909J. DOI

Cao X., Wang N. A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst. 2011;136:4241. doi: 10.1039/c1an15367f. PubMed DOI

Sattarahmady N., Heli H. A non-enzymatic amperometric sensor for glucose based on cobalt oxide nanoparticles. J. Exp. Nanosci. 2012;7:529–546. doi: 10.1080/17458080.2010.539275. DOI

Chen J., Zhang W.D., Ye J.S. Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite. Electrochem. Commun. 2008;10:1268–1271. doi: 10.1016/j.elecom.2008.06.022. DOI

Ahmad R., Tripathy N., Ahn M.S., Bhat K.S., Mahmoudi T., Wang Y., Yoo J.Y., Kwon D.W., Yang H.Y., Hahn Y.B. Highly efficient non-enzymatic glucose sensor based on CuO modified vertically-grown ZnO nanorods on electrode. Sci. Rep. 2017;7:5715. doi: 10.1038/s41598-017-06064-8. PubMed DOI PMC

Zhao Y., Bo Y., Guo L. Highly exposed copper oxide supported on three-dimensional porous reduced graphene oxide for non-enzymatic detection of glucose. Electrochim. Acta. 2015;176:1272–1279. doi: 10.1016/j.electacta.2015.07.143. DOI

Zhang L., Ni Y., Li H. Addition of porous cuprous oxide to a Nafion film strongly improves the performance of a nonenzymatic glucose sensor. Microchim. Acta. 2010;171:103–108. doi: 10.1007/s00604-010-0415-0. DOI

Azharudeen A.M., Suriyakala T., Rajarajan M., Suganthi A. An improved sensitive and selective non-enzymatic glucose biosensor based on PEG assisted CuO nanocomposites. Egypt. J. Chem. 2019;62:487–500. doi: 10.21608/ejchem.2018.5707.1489. DOI

Cherevko S., Chung C.H. The porous CuO electrode fabricated by hydrogen bubble evolution and its application to highly sensitive non-enzymatic glucose detection. Talanta. 2010;80:1371–1377. doi: 10.1016/j.talanta.2009.09.038. PubMed DOI

Zhao X.X., Li Y.P., He Z.Y., Yan Z.F. Facile preparation of Cu–Cu2O nanoporous nanoparticles as a potential catalyst for non-enzymatic glucose sensing. RSC Adv. 2013;3:2178–2181. doi: 10.1039/c2ra22654e. DOI

Jin J., Ge Y., Zheng G., Cai Y., Liu W., Hui G. d-glucose, d-galactose, and d-lactose non-enzyme quantitative and qualitative analysis method based on Cu foam electrode. Food Chem. 2015;175:485–493. doi: 10.1016/j.foodchem.2014.11.148. PubMed DOI

Zhang L., Li H., Ni Y.N., Li J., Liao K.M., Zhao G.C. Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing. Electrochem. Commun. 2009;11:812–815. doi: 10.1016/j.elecom.2009.01.041. DOI

Zhou D.L., Feng J.J., Cai L.Y., Fang Q.X., Chen J.R., Wang A.J. Facile synthesis of monodisperse porous Cu2O nanospheres on reduced graphene oxide for non-enzymatic amperometric glucose sensing. Electrochim. Acta. 2014;115:103–108. doi: 10.1016/j.electacta.2013.10.151. DOI

Li Z., Chen Y., Xin Y., Zhang Z. Sensitive electrochemical nonenzymatic glucose sensing based on anodized CuO nanowires on three-dimensional porous copper foam. Sci. Rep. 2015;5:16115. doi: 10.1038/srep16115. PubMed DOI PMC

Velev O.D., Lenhoff A.M. Colloidal crystals as templates for porous materials. Curr. Opin. Colloid Interface Sci. 2000;5:56–63. doi: 10.1016/S1359-0294(00)00039-X. DOI

Toghill K.E., Compton R.G. Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. Int. J. Electrochem. Sci. 2010;5:1246–1301.

Shiba S., Maruyama R., Kamata T., Kato D., Niwa O. Chromatographic determination of sugar probes used for gastrointestinal permeability test by employing nickel copper nanoalloy embedded in carbon film electrodes. Electroanalysis. 2018;30:1407–1415. doi: 10.1002/elan.201800072. DOI

Poorahong S., Thammakhet C., Thavarungkul P., Kanatharana P. One-step preparation of porous copper nanowires electrode for highly sensitive and stable amperometric detection of glyphosate. Chem. Pap. 2015;69:385–394. doi: 10.1515/chempap-2015-0038. DOI

Zhu H., Li L., Zhou W., Shao Z., Chen X. Advances in non-enzymatic glucose sensors based on metal oxides. J. Mater. Chem. B. 2016;4:7333–7349. doi: 10.1039/C6TB02037B. PubMed DOI

Dal Borgo S., Sopha H., Smarzewska S., Hocevar S.B., Svancara I., Metelka R. Macroporous bismuth film screen-printed carbon electrode for simultaneous determination of Ni(II) and Co(II) Electroanalysis. 2015;27:209–216. doi: 10.1002/elan.201400422. DOI

Urbanová V., Bartoš M., Vytřas K., Kuhn A. Porous bismuth film electrodes for signal increase in anodic stripping voltammetry. Electroanalysis. 2010;22:1524–1530. doi: 10.1002/elan.200970016. DOI

Urbanová V., Vytřas K., Kuhn A. Macroporous antimony film electrodes for stripping analysis of trace heavy metals. Electrochem. Commun. 2010;12:114–117. doi: 10.1016/j.elecom.2009.11.001. DOI

Walcarius A., Kuhn A. Ordered porous thin films in electrochemical analysis. TrAC Trends Anal. Chem. 2008;27:593–603. doi: 10.1016/j.trac.2008.03.011. DOI

Józwik M., Józwik M., Teng C., Battaglia F.C. Concentrations of monosaccharides and their amino and alcohol derivatives in human preovulatory follicular fluid. Mol. Hum. Reprod. 2007;13:791–796. doi: 10.1093/molehr/gam060. PubMed DOI

Ning C., Segal S. Plasma galactose and galactitol concentration in patients with galactose-1-phosphate uridyltransferase deficiency galactosemia: Determination by gas chromatography/mass spectrometry. Metabolism. 2000;49:1460–1466. doi: 10.1053/meta.2000.9512. PubMed DOI

Pitkänen E., Kanninen T. Determination of mannose and fructose in human plasma using deuterium labelling and gas chromatography/mass spectrometry. Biol. Mass Spectrom. 1994;23:590–595. doi: 10.1002/bms.1200230909. PubMed DOI

Sun S.Z., Empie M.W. Fructose metabolism in humans–what isotopic tracer studies tell us. Nutr. Metab. 2012;9:89. doi: 10.1186/1743-7075-9-89. PubMed DOI PMC

Apthorp G.H. Investigation of the sugar content of urine from normal subjects and patients with renal and hepatic disease by paper chromatography. J. Clin. Pathol. 1957;10:84–87. doi: 10.1136/jcp.10.1.84. PubMed DOI PMC

Wei M., Gibbons L.W., Mitchell T.L., Kampert J.B., Stern M.P., Blair S.N. Low fasting plasma glucose level as a predictor of cardiovascular disease and all-cause mortality. Circulation. 2000;101:2047–2052. doi: 10.1161/01.CIR.101.17.2047. PubMed DOI

Van Loon G.R., Sole M.J. Plasma dopamine: Source, regulation, and significance. Metabolism. 1980;29:1119–1123. doi: 10.1016/0026-0495(80)90020-7. PubMed DOI

Hodis J. New facts about paracetamol, risks of overdose, intoxication and their management. Pract. Pharm. 2015;11:90–92.

Frangu A., Pravcová K., Šilarová P., Arbneshi T., Sýs M. Flow injection tyrosinase biosensor for direct determination of acetaminophen in human urine. Anal. Bioanal. Chem. 2019;411:2415–2424. doi: 10.1007/s00216-019-01687-4. PubMed DOI

Kabasakalis V., Siopidou D., Moshatou E. Ascorbic acid content of commercial fruit juices and its rate of loss upon storage. Food Chem. 2000;70:325–328.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...