Cross-Frequency Slow Oscillation-Spindle Coupling in a Biophysically Realistic Thalamocortical Neural Mass Model

. 2022 ; 16 () : 769860. [epub] 20220506

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35603132

Sleep manifests itself by the spontaneous emergence of characteristic oscillatory rhythms, which often time-lock and are implicated in memory formation. Here, we analyze a neural mass model of the thalamocortical loop in which the cortical node can generate slow oscillations (approximately 1 Hz) while its thalamic component can generate fast sleep spindles of σ-band activity (12-15 Hz). We study the dynamics for different coupling strengths between the thalamic and cortical nodes, for different conductance values of the thalamic node's potassium leak and hyperpolarization-activated cation-nonselective currents, and for different parameter regimes of the cortical node. The latter are listed as follows: (1) a low activity (DOWN) state with noise-induced, transient excursions into a high activity (UP) state, (2) an adaptation induced slow oscillation limit cycle with alternating UP and DOWN states, and (3) a high activity (UP) state with noise-induced, transient excursions into the low activity (DOWN) state. During UP states, thalamic spindling is abolished or reduced. During DOWN states, the thalamic node generates sleep spindles, which in turn can cause DOWN to UP transitions in the cortical node. Consequently, this leads to spindle-induced UP state transitions in parameter regime (1), thalamic spindles induced in some but not all DOWN states in regime (2), and thalamic spindles following UP to DOWN transitions in regime (3). The spindle-induced σ-band activity in the cortical node, however, is typically the strongest during the UP state, which follows a DOWN state "window of opportunity" for spindling. When the cortical node is parametrized in regime (3), the model well explains the interactions between slow oscillations and sleep spindles observed experimentally during Non-Rapid Eye Movement sleep. The model is computationally efficient and can be integrated into large-scale modeling frameworks to study spatial aspects like sleep wave propagation.

Zobrazit více v PubMed

Achermann P., Borbely A. (1997). Low-frequency (< 1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 81, 213–222. 10.1016/S0306-4522(97)00186-3 PubMed DOI

Alfonsi V., D'Atri A., Gorgoni M., Scarpelli S., Mangiaruga A., Ferrara M., et al. . (2019). Spatiotemporal dynamics of sleep spindle sources across NREM sleep cycles. Front. Neurosci. 13, 727. 10.3389/fnins.2019.00727 PubMed DOI PMC

Amzica F., Steriade M. (1997). The K-complex: its slow (< 1-Hz) rhythmicity and relation to delta waves. Neurology 49, 952–959. 10.1212/WNL.49.4.952 PubMed DOI

Augustin M., Ladenbauer J., Baumann F., Obermayer K. (2017). Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: comparison and implementation. PLoS Comput. Biol. 13, e1005545. 10.1371/journal.pcbi.1005545 PubMed DOI PMC

Axmacher N., Elger C. E., Fell J. (2008). Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain 131, 1806–1817. 10.1093/brain/awn103 PubMed DOI

Bazhenov M., Timofeev I., Steriade M., Sejnowski T. J. (2002). Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J. Neurosci. 22, 8691–8704. 10.1523/JNEUROSCI.22-19-08691.2002 PubMed DOI PMC

Bendor D., Wilson M. A. (2012). Biasing the content of hippocampal replay during sleep. Nat. Neurosci. 15, 1439–1444. 10.1038/nn.3203 PubMed DOI PMC

Berry R. B., Brooks R., Gamaldo C. E., Harding S. M., Marcus C., Vaughn B. V., et al. . (2012). The AASM manual for the scoring of sleep and associated events, in Rules, Terminology and Technical Specifications, Vol. 176 (Darien, IL: American Academy of Sleep Medicine; ), 2012.

Bibbona E., Panfilo G., Tavella P. (2008). The ornstein-uhlenbeck process as a model of a low pass filtered white noise. Metrologia 45, S117. 10.1088/0026-1394/45/6/S17 DOI

Bonjean M., Baker T., Bazhenov M., Cash S., Halgren E., Sejnowski T. (2012). Interactions between core and matrix thalamocortical projections in human sleep spindle synchronization. J. Neurosci. 32, 5250–5263. 10.1523/JNEUROSCI.6141-11.2012 PubMed DOI PMC

Bonjean M., Baker T., Lemieux M., Timofeev I., Sejnowski T., Bazhenov M. (2011). Corticothalamic feedback controls sleep spindle duration in vivo. J. Neurosci. 31, 9124–9134. 10.1523/JNEUROSCI.0077-11.2011 PubMed DOI PMC

Brady S., Siegel G., Albers R. W., Price D. (2011). Basic Neurochemistry: Principles of Molecular, Cellular, and Medical Neurobiology. Cambridge, MA: Academic Press.

Brette R., Gerstner W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642. 10.1152/jn.00686.2005 PubMed DOI

Brunel N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208. 10.1023/A:1008925309027 PubMed DOI

Cakan C., Dimulescu C., Khakimova L., Obst D., Flöel A., Obermayer K. (2022). Spatiotemporal patterns of adaptation-induced slow oscillations in a whole-brain model of slow-wave sleep. Front. Comput. Neurosci. 15, 129. 10.3389/fncom.2021.800101 PubMed DOI PMC

Cakan C., Jajcay N., Obermayer K. (2021). neurolib: A simulation framework for whole-brain neural mass modeling. Cogn. Comput. 10.1007/s12559-021-09931-9 DOI

Cakan C., Obermayer K. (2020). Biophysically grounded mean-field models of neural populations under electrical stimulation. PLoS Comput. Biol. 16, e1007822. 10.1371/journal.pcbi.1007822 PubMed DOI PMC

Canolty R. T., Edwards E., Dalal S. S., Soltani M., Nagarajan S. S., Kirsch H. E., et al. . (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628. 10.1126/science.1128115 PubMed DOI PMC

Cohen M. X. (2008). Assessing transient cross-frequency coupling in eeg data. J. Neurosci. Methods 168, 494–499. 10.1016/j.jneumeth.2007.10.012 PubMed DOI

Cona F., Lacanna M., Ursino M. (2014). A thalamo-cortical neural mass model for the simulation of brain rhythms during sleep. J. Comput. Neurosci. 37, 125–148. 10.1007/s10827-013-0493-1 PubMed DOI

Contreras D., Destexhe A., Sejnowski T. J., Steriade M. (1997). Spatiotemporal patterns of spindle oscillations in cortex and thalamus. J. Neurosci. 17, 1179–1196. 10.1523/JNEUROSCI.17-03-01179.1997 PubMed DOI PMC

Cox R., Hofman W. F., Talamini L. M. (2012). Involvement of spindles in memory consolidation is slow wave sleep-specific. Learn. Mem. 19, 264–267. 10.1101/lm.026252.112 PubMed DOI

Cox R., Schapiro A. C., Manoach D. S., Stickgold R. (2017). Individual differences in frequency and topography of slow and fast sleep spindles. Front. Hum. Neurosci. 11, 433. 10.3389/fnhum.2017.00433 PubMed DOI PMC

De Gennaro L., Ferrara M. (2003). Sleep spindles: an overview. Sleep Med. Rev. 7, 423–440. 10.1053/smrv.2002.0252 PubMed DOI

Deco G., Jirsa V. K., Robinson P. A., Breakspear M., Friston K. (2008). The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol. 4, e1000092. 10.1371/journal.pcbi.1000092 PubMed DOI PMC

Destexhe A., Bal T., McCormick D. A., Sejnowski T. J. (1996a). Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J. Neurophysiol. 76, 2049–2070. 10.1152/jn.1996.76.3.2049 PubMed DOI

Destexhe A., Contreras D., Steriade M., Sejnowski T. J., Huguenard J. R. (1996b). In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. J. Neurosci. 16, 169–185. 10.1523/JNEUROSCI.16-01-00169.1996 PubMed DOI PMC

Destexhe A., Neubig M., Ulrich D., Huguenard J. (1998). Dendritic low-threshold calcium currents in thalamic relay cells. J. Neurosci. 18, 3574–3588. 10.1523/JNEUROSCI.18-10-03574.1998 PubMed DOI PMC

Destexhe A., Sejnowski T. J. (2003). Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol. Rev. 83, 1401–1453. 10.1152/physrev.00012.2003 PubMed DOI PMC

Fernandez L. M. J., Lüthi A. (2020). Sleep spindles: mechanisms and functions. Physiol. Rev. 100, 805–868. 10.1152/physrev.00042.2018 PubMed DOI

Gramfort A., Luessi M., Larson E., Engemann D. A., Strohmeier D., Brodbeck C., et al. . (2013). MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7, 267. 10.3389/fnins.2013.00267 PubMed DOI PMC

Hagler D. J., Ulbert I., Wittner L., Erőss L., Madsen J. R., Devinsky O., et al. . (2018). Heterogeneous origins of human sleep spindles in different cortical layers. J. Neurosci. 38, 3013–3025. 10.1523/JNEUROSCI.2241-17.2018 PubMed DOI PMC

Helfrich R. F., Lendner J. D., Mander B. A., Guillen H., Paff M., Mnatsakanyan L., et al. . (2019). Bidirectional prefrontal-hippocampal dynamics organize information transfer during sleep in humans. Nat. Commun. 10, 1–16. 10.1038/s41467-019-11444-x PubMed DOI PMC

Helfrich R. F., Mander B. A., Jagust W. J., Knight R. T., Walker M. P. (2018). Old brains come uncoupled in sleep: slow wave-spindle synchrony, brain atrophy, and forgetting. Neuron 97, 221–230. 10.1016/j.neuron.2017.11.020 PubMed DOI PMC

Jajcay N., Cakan C., Obermayer K. (2022). Cross-frequency slow oscillation-spindle coupling in a biophysically realistic thalamocortical neural mass model. bioRxiv [Preprint]. 10.1101/2021.08.29.458101. PubMed DOI PMC

Jajcay N., Kravtsov S., Sugihara G., Tsonis A. A., Paluš M. (2018). Synchronization and causality across time scales in El Niño Southern Oscillation. npj Clim. Atmos. Sci. 1, 1–8. 10.1038/s41612-018-0043-7 PubMed DOI

Ji D., Wilson M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci. 10, 100–107. 10.1038/nn1825 PubMed DOI

Jiang X., Gonzalez-Martinez J., Halgren E. (2019). Posterior hippocampal spindle ripples co-occur with neocortical theta bursts and downstates-upstates, and phase-lock with parietal spindles during NREM sleep in humans. J. Neurosci. 39, 8949–8968. 10.1523/JNEUROSCI.2858-18.2019 PubMed DOI PMC

Jones E. G. (2001). The thalamic matrix and thalamocortical synchrony. Trends Neurosci. 24, 595–601. 10.1016/S0166-2236(00)01922-6 PubMed DOI

Kim U., Bal T., McCormick D. A. (1995). Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. J. Neurophysiol. 74, 1301–1323. 10.1152/jn.1995.74.3.1301 PubMed DOI

King B. R., Hoedlmoser K., Hirschauer F., Dolfen N., Albouy G. (2017). Sleeping on the motor engram: the multifaceted nature of sleep-related motor memory consolidation. Neurosci. Biobehav. Rev. 80, 1–22. 10.1016/j.neubiorev.2017.04.026 PubMed DOI

Klinzing J. G., Niethard N., Born J. (2019). Mechanisms of systems memory consolidation during sleep. Nat. Neurosci. 22, 1598–1610. 10.1038/s41593-019-0467-3 PubMed DOI

Krishnan G. P., Chauvette S., Shamie I., Soltani S., Timofeev I., Cash S. S., et al. . (2016). Cellular and neurochemical basis of sleep stages in the thalamocortical network. Elife 5:e18607. 10.7554/eLife.18607 PubMed DOI PMC

Kullback S., Leibler R. A. (1951). On information and sufficiency. Ann. Math. Stat. 22, 79–86. 10.1214/aoms/1177729694 DOI

Lacourse K., Delfrate J., Beaudry J., Peppard P., Warby S. C. (2019). A sleep spindle detection algorithm that emulates human expert spindle scoring. J. Neurosci. Methods 316, 3–11. 10.1016/j.jneumeth.2018.08.014 PubMed DOI PMC

Lacourse K., Yetton B., Mednick S., Warby S. C. (2020). Massive online data annotation, crowdsourcing to generate high quality sleep spindle annotations from EEG data. Sci. Data 7, 1–14. 10.1038/s41597-020-0533-4 PubMed DOI PMC

Ladenbauer J., Külzow N., Passmann S., Antonenko D., Grittner U., Tamm S., et al. . (2016). Brain stimulation during an afternoon nap boosts slow oscillatory activity and memory consolidation in older adults. Neuroimage 142, 311–323. 10.1016/j.neuroimage.2016.06.057 PubMed DOI

Ladenbauer J., Ladenbauer J., Külzow N., de Boor R., Avramova E., Grittner U., et al. . (2017). Promoting sleep oscillations and their functional coupling by transcranial stimulation enhances memory consolidation in mild cognitive impairment. J. Neurosci. 37, 7111–7124. 10.1523/JNEUROSCI.0260-17.2017 PubMed DOI PMC

Langdon A. J., Breakspear M., Coombes S. (2012). Phase-locked cluster oscillations in periodically forced integrate-and-fire-or-burst neuronal populations. Physi. Rev. E 86, 061903. 10.1103/PhysRevE.86.061903 PubMed DOI

Latchoumane C.-F. V., Ngo H.-V. V., Born J., Shin H.-S. (2017). Thalamic spindles promote memory formation during sleep through triple phase-locking of cortical, thalamic, and hippocampal rhythms. Neuron 95, 424–435. 10.1016/j.neuron.2017.06.025 PubMed DOI

Laureys S., Perrin F., Brédart S. (2007). Self-consciousness in non-communicative patients. Conscious Cogn. 16, 722–741. 10.1016/j.concog.2007.04.004 PubMed DOI

Lüthi A., McCormick D. A. (1998). Periodicity of thalamic synchronized oscillations: the role of Ca2+-mediated upregulation of Ih. Neuron 20, 553–563. 10.1016/S0896-6273(00)80994-0 PubMed DOI

Mayer J., Schuster H. G., Claussen J. C. (2006). Role of inhibitory feedback for information processing in thalamocortical circuits. Phys. Rev. E 73, 031908. 10.1103/PhysRevE.73.031908 PubMed DOI

McCormick D. A. (1992). Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Progr. Neurobiol. 39, 337–388. 10.1016/0301-0082(92)90012-4 PubMed DOI

McCormick D. A., Williamson A. (1991). Modulation of neuronal firing mode in cat and guinea pig lgnd by histamine: possible cellular mechanisms of histaminergic control of arousal. J. Neurosci. 11, 3188–3199. 10.1523/JNEUROSCI.11-10-03188.1991 PubMed DOI PMC

Mölle M., Bergmann T. O., Marshall L., Born J. (2011). Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. Sleep 34, 1411–1421. 10.5665/SLEEP.1290 PubMed DOI PMC

Mölle M., Born J. (2011). Slow oscillations orchestrating fast oscillations and memory consolidation. Prog. Brain Res. 193, 93–110. 10.1016/B978-0-444-53839-0.00007-7 PubMed DOI

Mölle M., Marshall L., Gais S., Born J. (2002). Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J. Neurosci. 22, 10941–10947. 10.1523/JNEUROSCI.22-24-10941.2002 PubMed DOI PMC

Nir Y., Staba R. J., Andrillon T., Vyazovskiy V. V., Cirelli C., Fried I., et al. . (2011). Regional slow waves and spindles in human sleep. Neuron 70, 153–169. 10.1016/j.neuron.2011.02.043 PubMed DOI PMC

Oyanedel C. N., Durán E., Niethard N., Inostroza M., Born J. (2020). Temporal associations between sleep slow oscillations, spindles and ripples. Eur. J. Neurosci. 52, 4762–4778. 10.1111/ejn.14906 PubMed DOI

Paluš M. (1995). Testing for nonlinearity using redundancies: Quantitative and qualitative aspects. Physica D 80, 186–205. 10.1016/0167-2789(95)90079-9 DOI

Paluš M. (1997). Detecting phase synchronization in noisy systems. Phys. Lett. A 235, 341–351. 10.1016/S0375-9601(97)00635-X DOI

Peyrache A., Dehghani N., Eskandar E. N., Madsen J. R., Anderson W. S., Donoghue J. A., et al. . (2012). Spatiotemporal dynamics of neocortical excitation and inhibition during human sleep. Proc. Natl. Acad. Sci. U.S.A. 109, 1731–1736. 10.1073/pnas.1109895109 PubMed DOI PMC

Piantoni G., Halgren E., Cash S. S. (2016). The contribution of thalamocortical core and matrix pathways to sleep spindles. Neural Plast. 2016, 3024342. 10.1155/2016/3024342 PubMed DOI PMC

Popa D., Duvarci S., Popescu A. T., Léna C., Paré D. (2010). Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc. Natl. Acad. Sci. U.S.A. 107, 6516–6519. 10.1073/pnas.0913016107 PubMed DOI PMC

Potjans T. C., Diesmann M. (2014). The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cereb. Cortex 24, 785–806. 10.1093/cercor/bhs358 PubMed DOI PMC

Purcell S., Manoach D., Demanuele C., Cade B., Mariani S., Cox R., et al. . (2017). Characterizing sleep spindles in 11,630 individuals from the national sleep research resource. Nat. Commun. 8, 1–16. 10.1038/ncomms15930 PubMed DOI PMC

Rasch B., Born J. (2013). About sleep's role in memory. Physiol. Rev. 93, 681–766. 10.1152/physrev.00032.2012 PubMed DOI PMC

Richardson M. J. (2007). Firing-rate response of linear and nonlinear integrate-and-fire neurons to modulated current-based and conductance-based synaptic drive. Phys. Rev. E 76, 021919. 10.1103/PhysRevE.76.021919 PubMed DOI

Robinson P., Rennie C., Rowe D. (2002). Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys. Rev. E 65, 041924. 10.1103/PhysRevE.65.041924 PubMed DOI

Rosanova M., Ulrich D. (2005). Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. J. Neurosci. 25, 9398–9405. 10.1523/JNEUROSCI.2149-05.2005 PubMed DOI PMC

Roux F., Wibral M., Singer W., Aru J., Uhlhaas P. J. (2013). The phase of thalamic alpha activity modulates cortical gamma-band activity: evidence from resting-state MEG recordings. J. Neurosci. 33, 17827–17835. 10.1523/JNEUROSCI.5778-12.2013 PubMed DOI PMC

Rubio-Garrido P., Pérez-de Manzo F., Porrero C., Galazo M. J., Clascá F. (2009). Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb. Cortex 19, 2380–2395. 10.1093/cercor/bhn259 PubMed DOI

Sanchez-Vives M. V., McCormick D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3, 1027–1034. 10.1038/79848 PubMed DOI

Sawangjit A., Oyanedel C. N., Niethard N., Salazar C., Born J., Inostroza M. (2018). The hippocampus is crucial for forming non-hippocampal long-term memory during sleep. Nature 564, 109–113. 10.1038/s41586-018-0716-8 PubMed DOI

Schellenberger Costa M., Weigenand A., Ngo H.-V. V., Marshall L., Born J., Martinetz T., et al. . (2016). A thalamocortical neural mass model of the EEG during NREM sleep and its response to auditory stimulation. PLoS Comput. Biol. 12, e1005022. 10.1371/journal.pcbi.1005022 PubMed DOI PMC

Schomer D. L., Da Silva F. L. (2012). Niedermeyer's Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Oxford: Oxford University Press. 10.1093/med/9780190228484.001.0001 DOI

Schreiber T., Schmitz A. (2000). Surrogate time series. Physica D 142, 346–382. 10.1016/S0167-2789(00)00043-9 DOI

Silber M. H., Ancoli-Israel S., Bonnet M. H., Chokroverty S., Grigg-Damberger M. M., Hirshkowitz M., et al. . (2007). The visual scoring of sleep in adults. J. Clin. Sleep Med. 3, 121–131. 10.5664/jcsm.26814 PubMed DOI

Sirota A., Csicsvari J., Buhl D., Buzsáki G. (2003). Communication between neocortex and hippocampus during sleep in rodents. Proc. Natl. Acad. Sci. U.S.A. 100, 2065–2069. 10.1073/pnas.0437938100 PubMed DOI PMC

Steriade M. (2003). The corticothalamic system in sleep. Front. Biosci. 8, 1043. 10.2741/1043 PubMed DOI

Steriade M., McCormick D. A., Sejnowski T. J. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685. 10.1126/science.8235588 PubMed DOI

Suffczynski P., Kalitzin S., Da Silva F. L. (2004). Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126, 467–484. 10.1016/j.neuroscience.2004.03.014 PubMed DOI

Timofeev I., Bazhenov M. (2005). Mechanisms and biological role of thalamocortical oscillations, in Trends in Chronobiology Research (Hauppauge, NY: Nova Science Publishers, Inc.), 1–47.

Timofeev I., Steriade M. (1996). Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J. Neurophysiol. 76, 4152–4168. 10.1152/jn.1996.76.6.4152 PubMed DOI

Tort A. B., Komorowski R., Eichenbaum H., Kopell N. (2010). Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J. Neurophysiol. 104, 1195–1210. 10.1152/jn.00106.2010 PubMed DOI PMC

Touboul J., Wendling F., Chauvel P., Faugeras O. (2011). Neural mass activity, bifurcations, and epilepsy. Neural Comput. 23, 3232–3286. 10.1162/NECO_a_00206 PubMed DOI

Ujma P. P., Hajnal B., Bódizs R., Gombos F., Erőss L., Wittner L., et al. . (2021). The laminar profile of sleep spindles in humans. Neuroimage 226, 117587. 10.1016/j.neuroimage.2020.117587 PubMed DOI PMC

Vallat R., Jajcay N. (2020). YASA. Available online at: https://github.com/raphaelvallat/yasa.

Vanini G., Wathen B. L., Lydic R., Baghdoyan H. A. (2011). Endogenous GABA levels in the pontine reticular formation are greater during wakefulness than during rapid eye movement sleep. J. Neurosci. 31, 2649–2656. 10.1523/JNEUROSCI.5674-10.2011 PubMed DOI PMC

Walker M. P., Stickgold R. (2004). Sleep-dependent learning and memory consolidation. Neuron 44, 121–133. 10.1016/j.neuron.2004.08.031 PubMed DOI

Warby S. C., Wendt S. L., Welinder P., Munk E. G., Carrillo O., Sorensen H. B., et al. . (2014). Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods. Nat. Methods 11, 385. 10.1038/nmeth.2855 PubMed DOI PMC

Werth E., Achermann P., Dijk D.-J., Borbély A. A. (1997). Spindle frequency activity in the sleep EEG: individual differences and topographical distribution. Electroencephalogr. Clin. Neurophysiol. 103, 535–542. 10.1016/S0013-4694(97)00070-9 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace