Waste brick dust as a prospective eco-friendly alternative component of artificial soils for ecotoxicological studies
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS19/143/OHK1/3T/11
České Vysoké Učení Technické v Praze
SGS22/137/OHK1/3T/11
České Vysoké Učení Technické v Praze
PubMed
35612704
DOI
10.1007/s11356-022-20911-w
PII: 10.1007/s11356-022-20911-w
Knihovny.cz E-zdroje
- Klíčová slova
- Artificial soil, Calcium carbonate, Ecotoxicity, Invertebrates, Plants, Waste brick dust,
- MeSH
- členovci * MeSH
- látky znečišťující půdu * analýza MeSH
- Oligochaeta * MeSH
- oxid uhličitý MeSH
- prach MeSH
- prospektivní studie MeSH
- půda chemie MeSH
- rozmnožování MeSH
- uhličitan vápenatý MeSH
- voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- látky znečišťující půdu * MeSH
- oxid uhličitý MeSH
- prach MeSH
- půda MeSH
- uhličitan vápenatý MeSH
- voda MeSH
Current artificial soils for ecotoxicological studies contain non-renewable materials that must be mined, and their production and processing consume a lot of energy and generate a significant amount of carbon dioxide (CO2). In this paper, waste brick dust is proposed as an alternative to calcium carbonate (CaCO3), which is used for pH adjustment of the Organization for Economic Co-operation and Development (OECD) soils. The artificial soils containing brick dust are contaminated with boric acid as a reference substance in the concentration range of 100-500 mg/kg and studied in the tests with enchytraeids (E. crypticus), springtails (F. candida), and plants (L. sativa and B. napus). Experimental results shows the suitability of replacing calcium carbonate with waste brick dust, as neither toxicity nor ability of model organisms to inhabit the analyzed soil is found. A comparison with the standard OECD soil does not reveal any substantial differences between the parameters (survival, reproduction, and root elongation) of the applied ecotoxicological tests. The brick dust as waste material is found to have a lower carbon footprint than CaCO3, while a similar amount of water is necessary for the adjustment of tests with both kinds of artificial soil. The waste brick dust can be considered as a suitable eco-friendly alternative to CaCO3 in artificial soils for ecotoxicological studies.
Zobrazit více v PubMed
Abad M, Noguera P, Bures S (2001) National inventory of organic wastes for use as growing media for ornamental potted plant production: case study in Spain. Bioresour Technol 77:197–200. https://doi.org/10.1016/S0960-8524(00)00152-8 DOI
Abad M, Noguera P, Puchades R, Maquieira A, Noguera V (2002) Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerized ornamental plants. Bioresour Technol 82:241–245. https://doi.org/10.1016/s0960-8524(01)00189-4 DOI
Becker L, Scheffczyk A, Förster B, Oehlmann J, Princz J, Römbke J, Moser T (2011) Effects of boric acid on various microbes, plants, and soil invertebrates. J Soils Sediments 11:238–248. https://doi.org/10.1007/s11368-010-0282-7 DOI
Bielská L, Hovorková I, Komprdová K, Hofman J (2012) Variability of standard artificial soils: physico-chemical properties and phenanthrene desorption measured by means of supercritical fluid extraction. Environ Pollut 163:1–7. https://doi.org/10.1016/j.envpol.2011.12.009 DOI
Bielská L, Hovorková I, Kuta J, Machát J, Hofman J (2017) The variability of standard artificial soils: cadmium and phenanthrene sorption measured by a batch equilibrium method. Ecotoxicol Environ Saf 135:17–23. https://doi.org/10.1016/j.ecoenv.2016.09.015 DOI
Bittner M, Janošek J, Hilscherová K, Giesy J, Holoubek I, Bláha L (2006) Activation of Ah receptor by pure humic acids. Environ Toxicol 21:338–342. https://doi.org/10.1002/tox.20185 DOI
Čáchová M, Vejmelková E, Koňáková D, Žumár J, Keppert M, Reiterman P, Černý R (2016) Application of ceramic powder as supplementary cementitious material in lime plasters. Mater Sci-Medzg 22:440–444. https://doi.org/10.5755/j01.ms.22.3.7433
De Silva MCS, van Gestel CAM (2009) Development of an alternative artificial soil for earthworm toxicity testing in tropical countries. Appl Soil Ecol 43:170–174. https://doi.org/10.1016/j.apsoil.2009.07.002 DOI
Di Benedetto A (2007) Alternative substrates for potted ornamental plants based on Argentinean peat and Argentinean river waste: a review. Floric Plant Ornamental Biotechnol 1:90–101
Edwards CA (1984) Report on the second stage in development of a standardized laboratory method for assessing the toxicity of chemical substances to earth- worms. Commission of the European Communities, Brussels
Ercin AE, Aldaya MM, Hoekstra AY (2012) The water footprint of soy milk and soy burger and equivalent animal products. Ecol Indic 18:392–402. https://doi.org/10.1016/j.ecolind.2011.12.009 DOI
European Commission (2007) Integrated pollution prevention and control: reference document on best available techniques for the manufacture of large volume inorganic chemicals—solids and other industry. http://eippcb.jrc.ec.europa.eu/reference/BREF/lvic-s_bref_0907.pdf . Accessed 23.October.2021.
Evans MR, Karcher D (2004) Properties of plastic, peat, and processed poultry feather fiber growing containers. Hort Sci 39:1008–1011. https://doi.org/10.21273/HORTSCI.39.5.1008
Fořt J, Vejmelková E, Koňáková D, Alblová N, Čáchová M, Keppert M, Rovnaníková P, Černý R (2018) Application of waste brick powder in alkali activated aluminosilicates: functional and environmental aspects. J Clean Prod 194:714–725. https://doi.org/10.1016/j.jclepro.2018.05.181 DOI
Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2011) The water footprint assessment manual (setting the global standard). EarthScan. https://waterfootprint.org/media/downloads/TheWaterFootprintAssessmentManual_2.pdf . Accessed 4.May.2022.
Hofman J, Hovorková I, Semple KT (2014) The variability of standard artificial soils: behaviour, extractability and bioavailability of organic pollutants. J Hazard Mater 264:514–520. https://doi.org/10.1016/j.jhazmat.2013.10.039 DOI
Kulovaná T, Vejmelková E, Keppert M, Rovnaníková P, Keršner Z, Černý R (2016) Mechanical, durability and hygrothermal properties of concrete produced using Portland cement-ceramic powder blends. Struct Concr 17(105):115. https://doi.org/10.1002/suco.201500029 DOI
Ma X, Li HM, Zhang YL, Hu X (2009) Study on multi-life cycle dynamic model of building materials based on emission of CO
Marchese N, Di Benedetto A, Lavado R (2006) The possibilities of river waste and Argentinean peat as a plug growing media for Verbena hybrida. Int J Agric Res. https://doi.org/10.3923/ijar.2006.142.150
Mattila HP, Zevenhoven HuddH, R, (2014) Cradle-to-gate life cycle assessment of precipitated calcium carbonate production from steel converter slag. J Cleaner Prod 84:611–618. https://doi.org/10.1016/j.jclepro.2014.05.064 DOI
Noguera P, Abad M, Noguera V, Puchades R, Maquieira A (2000) Coconut coir waste, a new and viable ecologically-friendly peat substitute. Acta Hortic. https://doi.org/10.17660/ActaHortic.2000.517.34 . Accessed 4.May.2022.
OECD - Organization for Economic Co-operation and Development (1984) OECD guideline for testing of chemicals, earthworm, acute toxicity tests. OECD 207
OECD - Organization for Economic Co-operation and Development (2003) OECD guideline for the testing of chemicals, terrestrial plant test: seedling emergence and seedling growth test. OECD 208
OECD - Organization for Economic Co-operation and Development (2004) OECD guideline for the testing of chemicals, earthworm reproduction test (Eisenia fetida/Eisenia andrei). OECD 222
OECD - Organization for Economic Co-operation and Development (2016a) OECD guideline for the testing of chemicals, Collembolan reproduction tests in soils. OECD 232
OECD - Organization for Economic Co-operation and Development (2016b) OECD guideline for the testing of chemicals, Enchytraeid reproduction tests. OECD 220
Price HAL, Lin E (2012) Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: a technical review. Renew Sust Energ Rev 16:6220–6238. https://doi.org/10.1016/j.rser.2012.07.019 DOI
Princz J, Becker L, Scheffczyk A, Stephenson G, Scroggins R, Moser T, Römbke J (2017) Ecotoxicity of boric acid in standard laboratory tests with plants and soil organisms. Ecotoxicology 26:471–481. https://doi.org/10.1007/s10646-017-1789-0 DOI
Römbke J, Moser T (2002) Validating the enchytraeid reproduction test: organisation and results of an international ringtest. Chemosphere 46:1117–1140. https://doi.org/10.1016/S0045-6535(01)00113-8 DOI
Roztočilová H, Mariaková D, Mocová KA (2021) Construction waste as a substitute for fine fraction in concrete – evaluation of phytotoxicity against duckweed. Entecho 1:9–14. https://doi.org/10.35933/ENTECHO.2021.002
Šmatelka F (2019) Preparation of CaCO3 and Ca(OH)2 of high purity by precipitation from solution Ca
Svěrák T, Schwarzerová-Gachová L, Malysz K (2002) Calcium hydrate grinding as the part of the nanostructure process technology. Chem Lett 96:218–222
Těhník V, Nečas R (2015) Uplatnění vápencové suroviny z hlediska kvality v různých průmyslových odvětvích. https://www.vumo.cz/wp-content/uploads/2015/05/22-uplatneni-vapencove-suroviny-z-hlediska-kvality-v-ruznychprumyslovych-odvetvych.pdf . Accessed 23 Oct 2021
Teir S, Kontirant T, Pakarinen J, Mattila HP (2016) Case study for production of calcium carbonate from carbon dioxide in flue gases and steelmaking slag. J CO
Vašíčková J, Váňa M, Komprodová K, Hofman J (2015) The variability of standard artificial soils: effects on the survival and reproduction of springtail (Folsomia candida) and potworm (Enchytraeus crypticus). Ecotoxicol Environ Safe 114:38–43. https://doi.org/10.1016/j.ecoenv.2015.01.007 DOI
Xu L, Dai LC, Yin LZ, Sun XY, Xu W, Yang R, Wang X, Zhang YP (2020) Research on the climate response of variable thermo-physical property building envelopes: a literature review. Energy Build 26. https://doi.org/10.1016/j.enbuild.2020.110398
Zaller JG (2007) Vermicompost as a substitute for peat in pottingmedia: effects on germination, biomass allocation, yields and fruit quality of three tomato varieties. Sci Horticult. https://doi.org/10.1016/j.scienta.2006.12.023