Identification of Selection Signals on the X-Chromosome in East Adriatic Sheep: A New Complementary Approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35615375
PubMed Central
PMC9126029
DOI
10.3389/fgene.2022.887582
PII: 887582
Knihovny.cz E-zdroje
- Klíčová slova
- X-chromosome, haplotype richness drop, integrated haplotype score, number of segregating sites by length, runs of homozygosity, selection signals, sheep,
- Publikační typ
- časopisecké články MeSH
Sheep are one of the most important livestock species in Croatia, found mainly in the Mediterranean coastal and mountainous regions along the East Adriatic coast, well adapted to the environment and mostly kept extensively. Our main objective was therefore to map the positive selection of the X-chromosome (18,983 SNPs that passed quality control), since nothing is known about the adaptation genes on this chromosome for any of the breeds from the Balkan cluster. Analyses were performed on a sample of eight native Croatian breeds (101 females and 100 males) representing the East Adriatic metapopulation and on 10 mouflons (five females and males), all sampled in Croatia. Three classical within-population approaches (extreme Runs of Homozygosity islands, integrated Haplotype Score, and number of Segregating Sites by Length) were applied along with our new approach called Haplotype Richness Drop (HRiD), which uses only the information contained in male haplotypes. We have also shown that phylogenetic analyses, such as the Median-joining network, can provide additional information when performed with the selection signals identified by HRiD. Our new approach identifies positive selection signals by searching for genomic regions that exhibit a sudden decline in haplotype richness. In total, we identified 14 positive selection signals, 11 using the classical approach and three using the HRiD approach, all together containing 34 annotated genes. The most reliable selection signal was mapped by all four approaches in the same region, overlapping between 13.17 and 13.60 Mb, and assigned to the CA5B, ZRSR2, AP1S2, and GRPR genes. High repeatability (86%) of results was observed, as 12 identified selection signals were also confirmed in other studies with sheep. HRiD offers an interesting possibility to be used complementary to other approaches or when only males are genotyped, which is often the case in genomic breeding value estimations. These results highlight the importance of the X-chromosome in the adaptive architecture of domestic ruminants, while our novel HRiD approach opens new possibilities for research.
Zobrazit více v PubMed
Allendorf F. W., Luikart G., Aitken S. N. (2013). Conservation and the Genetics of Populations. Hoboken: John Wiley & Sons.
Álvarez I., Fernández I., Traoré A., Pérez-Pardal L., Menéndez-Arias N. A., Goyache F. (2020). Genomic Scan of Selective Sweeps in Djallonké (West African Dwarf) Sheep Shed Light on Adaptation to Harsh Environments. Sci. Rep. 10, 1–13. 10.1038/s41598-020-59839-x PubMed DOI PMC
Bandelt H. J., Forster P., Röhl A. (1999). Median-joining Networks for Inferring Intraspecific Phylogenies. Mol. Biol. Evol. 16, 37–48. 10.1093/oxfordjournals.molbev.a026036 PubMed DOI
Blaya C., Moorjani P., Salum G. A., Gonçalves L., Weiss L. A., Leistner-Segal S., et al. (2009). Preliminary Evidence of Association between EFHC2, a Gene Implicated in Fear Recognition, and Harm Avoidance. Neurosci. Lett. 452, 84–86. 10.1016/j.neulet.2009.01.036 PubMed DOI
Blommaert E., Péanne R., Cherepanova N. A., Rymen D., Staels F., Jaeken J., et al. (2019). Mutations in MAGT1 lead to a Glycosylation Disorder with a Variable Phenotype. Proc. Natl. Acad. Sci. U.S.A. 116, 9865–9870. 10.1073/pnas.1817815116 PubMed DOI PMC
Boyko A. R., Quignon P., Li L., Schoenebeck J. J., Degenhardt J. D., Lohmueller K. E., et al. (2010). A Simple Genetic Architecture Underlies Morphological Variation in Dogs. Plos Biol. 8, e1000451. 10.1371/journal.pbio.1000451 PubMed DOI PMC
Cesarani A., Gaspa G., Correddu F., Dimauro C., Macciotta N. P. P. (2022). Unravelling the Effect of Environment on the Genome of Sarda Breed Ewes Using Runs of Homozygosity. J. Anim. Breed. Genet. [Epub Online ahead of print]. 10.1111/jbg.12666 PubMed DOI
Chang C. C., Chow C. C., Tellier L. C., Vattikuti S., Purcell S. M., Lee J. J. (2015). Second-generation Plink: Rising to the challenge of Larger and Richer Datasets. GigaSci 4, s13742. 10.1186/s13742-015-0047-8 PubMed DOI PMC
Chen Z.-H., Zhang M., Lv F.-H., Ren X., Li W.-R., Liu M.-J., et al. (2018). Contrasting Patterns of Genomic Diversity Reveal Accelerated Genetic Drift but Reduced Directional Selection on X-Chromosome in Wild and Domestic Sheep Species. Gen. Biol. Evol. 10, 1282–1297. 10.1093/gbe/evy085 PubMed DOI PMC
Choi B., Ryu K., Bong J., Lee J., Choy Y., Son S., et al. (2010). Comparison of Steroid Hormone Concentrations and mRNA Levels of Steroid Receptor Genes in Longissimus Dorsi Muscle and Subcutaneous Fat between Bulls and Steers and Association with Carcass Traits in Korean Cattle. Livestock Sci. 131, 218–226. 10.1016/j.livsci.2010.04.004 DOI
Choi Y., Chan A. P., Kirkness E., Telenti A., Schork N. J. (2018). Comparison of Phasing Strategies for Whole Human Genomes. Plos Genet. 14, e1007308. 10.1371/journal.pgen.1007308 PubMed DOI PMC
Ciani E., Mastrangelo S., Mastrangelo S., Da Silva A., Marroni F., Ferenčaković M., et al. (2020). On the Origin of European Sheep as Revealed by the Diversity of the Balkan Breeds and by Optimizing Population-Genetic Analysis Tools. Genet. Sel. Evol. 52, 1–14. 10.1186/s12711-020-00545-7 PubMed DOI PMC
Curik I., Ferenčaković M., Sölkner J. (2014). Inbreeding and Runs of Homozygosity: a Possible Solution to an Old Problem. Livestock Sci. 166, 26–34. 10.1016/j.livsci.2014.05.034 DOI
Curik I., Sölkner J., Stipic N. (2002). Effects of Models with Finite Loci, Selection, Dominance, Epistasis and Linkage on Inbreeding Coefficients Based on Pedigree and Genotypic Information. J. Anim. Breed. Genet. 119, 101–115. 10.1046/j.1439-0388.2002.00329.x DOI
Delaneau O., Marchini J. (2014). Integrating Sequence and Array Data to Create an Improved 1000 Genomes Project Haplotype Reference Panel. Nat. Commun. 5, 3934. 10.1038/ncomms4934 PubMed DOI PMC
Ding Q., Zhang J. (2012). seqRFLP: Simulation and Visualization of Restriction Enzyme Cutting Pattern from DNA Sequences. R Package Version 1.0.1. Available at: https://cran.r-project.org/web/packages/seqRFLP/index.html (Acessed January 25, 2022).
Druet T., Gautier M. (2017). A Model-Based Approach to Characterize Individual Inbreeding at Both Global and Local Genomic Scales. Mol. Ecol. 26, 5820–5841. 10.1111/mec.14324 PubMed DOI
Duman E., Özmen Ö., Kul S. (2021). Oar-miR-16b and Oar-miR-27a: Negatively Correlated with Milk Yield and Milk Protein in Sheep. Anim. Biotechnol. [Epub Online ahead of print]. 10.1080/10495398.2021.1908317 PubMed DOI
Excoffier L., Lischer H. E. L. (2010). Arlequin Suite Ver 3.5: a New Series of Programs to Perform Population Genetics Analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. 10.1111/j.1755-0998.2010.02847.x PubMed DOI
Ferenčaković M., Sölkner J., Curik I. (2013). Estimating Autozygosity from High-Throughput Information: Effects of SNP Density and Genotyping Errors. Genet. Sel. Evol. 45, 42. 10.1186/1297-9686-45-42 PubMed DOI PMC
Ferrer-Admetlla A., Liang M., Korneliussen T., Nielsen R. (2014). On Detecting Incomplete Soft or Hard Selective Sweeps Using Haplotype Structure. Mol. Biol. Evol. 31, 1275–1291. 10.1093/molbev/msu077 PubMed DOI PMC
Gao X., Starmer J., Martin E. R. (2008). A Multiple Testing Correction Method for Genetic Association Studies Using Correlated Single Nucleotide Polymorphisms. Genet. Epidemiol. 32, 361–369. 10.1002/gepi.20310 PubMed DOI
Gautier M., Vitalis R. (2012). Rehh: an R Package to Detect Footprints of Selection in Genome-wide SNP Data from Haplotype Structure. Bioinformatics 28, 1176–1177. 10.1093/bioinformatics/bts115 PubMed DOI
Genolet O., Monaco A. A., Dunkel I., Boettcher M., Schulz E. G. (2021). Identification of X-Chromosomal Genes that Drive Sex Differences in Embryonic Stem Cells through a Hierarchical CRISPR Screening Approach. Genome Biol. 22, 1–41. 10.1186/s13059-021-02321-2 PubMed DOI PMC
Gorssen W., Meyermans R., Janssens S., Buys N. (2021). A Publicly Available Repository of ROH Islands Reveals Signatures of Selection in Different Livestock and Pet Species. Genet. Sel. Evol. 53, 1–10. 10.1186/s12711-020-00599-7 PubMed DOI PMC
Greenbaum G., Templeton A. R., Zarmi Y., Bar-David S. (2014). Allelic Richness Following Population Founding Events - A Stochastic Modeling Framework Incorporating Gene Flow and Genetic Drift. PLoS One 9, e115203. 10.1371/journal.pone.0115203 PubMed DOI PMC
Guo J., Fan X., Yang Y., Liang G., Tang Z. (2021). Sequence Characteristics and Expression Analysis of CA5B Gene in Pigs. Act. Vet. Zoot. Sin. 52, 322–330. 10.11843/j.issn.0366-6964.2021.02.005 DOI
Jiang Y., Xie M., Chen W., Talbot R., Maddox J. F., Faraut T., et al. (2014). The Sheep Genome Illuminates Biology of the Rumen and Lipid Metabolism. Science 344, 1168–1173. 10.1126/science.1252806 PubMed DOI PMC
Joyce H., Burmeister L. M., Wright H., Fleming L., Oliver J. A. C., Mellersh C. (2021). Identification of a Variant in NDP Associated with X-Linked Retinal Dysplasia in the English Cocker Spaniel Dog. PLoS One 16, e0251071. 10.1371/journal.pone.0251071 PubMed DOI PMC
Kammoun M., Maas E., Criem N., Gribnau J., Zwijsen A., Vermeesch J. R. (2018). RLIM Enhances BMP Signalling Mediated Fetal Lung Development in Mice. bioRxiv. [Preprint]. 10.1101/507921 DOI
Karasu M. E., Keeney S. (2019). Cyclin B3 Is Dispensable for Mouse Spermatogenesis. Chromosoma 128, 473–487. 10.1007/s00412-019-00725-5 PubMed DOI PMC
Kardos M., Luikart G., Bunch R., Dewey S., Edwards W., McWilliam S., et al. (2015). Whole‐genome Resequencing Uncovers Molecular Signatures of Natural and Sexual Selection in Wild Bighorn Sheep. Mol. Ecol. 24, 5616–5632. 10.1111/mec.13415 PubMed DOI
Kardos M., Qvarnström A., Ellegren H. (2017). Inferring Individual Inbreeding and Demographic History from Segments of Identity by Descent in Ficedula Flycatcher Genome Sequences. Genetics 205, 1319–1334. 10.1534/genetics.116.198861 PubMed DOI PMC
Kim E.-S., Cole J. B., Huson H., Wiggans G. R., Van Tassell C. P., Crooker B. A., et al. (2013). Effect of Artificial Selection on Runs of Homozygosity in U.S. Holstein Cattle. PLoS One 8, e80813. 10.1371/journal.pone.0080813 PubMed DOI PMC
Kimura M., Crow J. F. (1964). The Number of Alleles that Can Be Maintained in a Finite Population. Genetics 49, 725–738. 10.1093/genetics/49.4.725 PubMed DOI PMC
Kumar S., Stecher G., Tamura K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870–1874. 10.1093/molbev/msw054 PubMed DOI PMC
Leigh J. W., Bryant D. (2015). Popart : Full‐feature Software for Haplotype Network Construction. Methods Ecol. Evol. 6, 1110–1116. 10.1111/2041-210X.12410 DOI
Lencz T., Lambert C., DeRosse P., Burdick K. E., Morgan T. V., Kane J. M., et al. (2007). Runs of Homozygosity Reveal Highly Penetrant Recessive Loci in Schizophrenia. Proc. Natl. Acad. Sci. U.S.A. 104, 19942–19947. 10.1073/pnas.0710021104 PubMed DOI PMC
Liu Z., Ji Z., Wang G., Chao T., Hou L., Wang J. (2016). Genome-wide Analysis Reveals Signatures of Selection for Important Traits in Domestic Sheep from Different Ecoregions. BMC Genomics 17, 1–14. 10.1186/s12864-016-3212-2 PubMed DOI PMC
Lv F.-H., Cao Y.-H., Liu G.-J., Luo L.-Y., Lu R., Liu M.-J., et al. (2022). Whole-Genome Resequencing of Worldwide Wild and Domestic Sheep Elucidates Genetic Diversity, Introgression, and Agronomically Important Loci. Mol. Biol. Evol. 39, msab353. 10.1093/molbev/msab353 PubMed DOI PMC
Lv F.-H., Peng W.-F., Yang J., Zhao Y.-X., Li W.-R., Liu M.-J., et al. (2015). Mitogenomic Meta-Analysis Identifies Two Phases of Migration in the History of Eastern Eurasian Sheep. Mol. Biol. Evol. 32, 2515–2533. 10.1093/molbev/msv139 PubMed DOI PMC
Ma Z., Zhang Y., Su J., Li X., Yang S., Qiao W., et al. (2018). Distribution of the Pig Gastrin-Releasing Peptide Receptor and the Effect of GRP on Porcine Leydig Cells. Peptides 99, 142–152. 10.1016/j.peptides.2017.09.015 PubMed DOI
Manzari Z., Mehrabani‐Yeganeh H., Nejati‐Javaremi A., Moradi M. H., Gholizadeh M. (2019). Detecting Selection Signatures in Three Iranian Sheep Breeds. Anim. Genet. 50, 298–302. 10.1111/age.12772 PubMed DOI
McManus C., Paiva S. R., Araújo R. O. d. (2010). Genetics and Breeding of Sheep in Brazil. R. Bras. Zootec. 39, 236–246. 10.1590/S1516-35982010001300026 DOI
Moradi M. H., Nejati-Javaremi A., Moradi-Shahrbabak M., Dodds K. G., McEwan J. C. (2012). Genomic Scan of Selective Sweeps in Thin and Fat Tail Sheep Breeds for Identifying of Candidate Regions Associated with Fat Deposition. BMC Genet. 13, 10–15. 10.1186/1471-2156-13-10 PubMed DOI PMC
Muigai A. W., Hanotte O. (2013). The Origin of African Sheep: Archaeological and Genetic Perspectives. Afr. Archaeol. Rev. 30, 39–50. 10.1007/s10437-013-9129-0 PubMed DOI PMC
Nadachowska‐Brzyska K., Burri R., Ellegren H. (2019). Footprints of Adaptive Evolution Revealed by Whole Z Chromosomes Haplotypes in Flycatchers. Mol. Ecol. 28, 2290–2304. 10.1111/mec.15021 PubMed DOI PMC
Nel C., Gurman P., Swan A., van der Werf J., Snyman M., Dzama K., et al. (2022). The Genomic Structure of Isolation across Breed, Country and Strain for Important South African and Australian Sheep Populations. BMC Genomics 23, 1–19. 10.1186/s12864-021-08020-3 PubMed DOI PMC
Nothnagel M., Lu T. T., Kayser M., Krawczak M. (2010). Genomic and Geographic Distribution of SNP-Defined Runs of Homozygosity in Europeans. Hum. Mol. Genet. 19, 2927–2935. 10.1093/hmg/ddq198 PubMed DOI
Peterson E. K. (2020). Novel Polymorphisms of ZRSR2 and GPM6B Gene Homologs and Their Use in Sex Identification of Bovine and Porcine Species. Doctoral dissertation. Logan, UT: Utah State University. 10.26076/d919-facd DOI
Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M. A. R., Bender D., et al. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 81, 559–575. 10.1086/519795 PubMed DOI PMC
Qanbari S., Simianer H. (2014). Mapping Signatures of Positive Selection in the Genome of Livestock. Livestock Sci. 166, 133–143. 10.1016/j.livsci.2014.05.003 DOI
Ramón M., Carabaño M. J., Díaz C., Kapsona V. V., Banos G., Sánchez-Molano E. (2021). Breeding Strategies for Weather Resilience in Small Ruminants in Atlantic and Mediterranean Climates. Front. Genet. 12, 692121. 10.3389/fgene.2021.692121 PubMed DOI PMC
Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J. C., Guirao-Rico S., Librado P., Ramos-Onsins S. E., et al. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 34, 3299–3302. 10.1093/molbev/msx248 PubMed DOI
Saravanan K. A., Panigrahi M., Kumar H., Bhushan B., Dutt T., Mishra B. P., et al. (2020). Selection Signatures in Livestock Genome: A Review of Concepts, Approaches and Applications. Livestock Sci. 241, 104257. 10.1016/j.livsci.2020.104257 DOI
Schaffner S. F. (2004). The X Chromosome in Population Genetics. Nat. Rev. Genet. 5, 43–51. 10.1038/nrg1247 PubMed DOI
Solé M., Gori A.-S., Faux P., Bertrand A., Farnir F., Gautier M., et al. (2017). Age-based Partitioning of Individual Genomic Inbreeding Levels in Belgian Blue Cattle. Genet. Sel. Evol. 49, 1–18. 10.1186/s12711-017-0370-x PubMed DOI PMC
Starokadomskyy P., Escala Perez-Reyes A., Burstein E. (2021). Immune Dysfunction in Mendelian Disorders of POLA1 Deficiency. J. Clin. Immunol. 41, 285–293. 10.1007/s10875-020-00953-w PubMed DOI PMC
Stella A., Ajmone-Marsan P., Lazzari B., Boettcher P. (2010). Identification of Selection Signatures in Cattle Breeds Selected for Dairy Production. Genetics 185, 1451–1461. 10.1534/genetics.110.116111 PubMed DOI PMC
Szpiech Z. A., Hernandez R. D. (2014). Selscan: an Efficient Multithreaded Program to Perform EHH-Based Scans for Positive Selection. Mol. Biol. Evol. 31, 2824–2827. 10.1093/molbev/msu211 PubMed DOI PMC
Thorne J. W., Murdoch B. M., Freking B. A., Redden R. R., Murphy T. W., Taylor J. B., et al. (2021). Evolution of the Sheep Industry and Genetic Research in the United States: Opportunities for Convergence in the Twenty‐first century. Anim. Genet. 52, 395–408. 10.1111/age.13067 PubMed DOI PMC
Utsunomiya Y. T., Pérez O'Brien A. M., Sonstegard T. S., Sölkner J., Garcia J. F. (2015). Genomic Data as the “hitchhiker’s guide” to Cattle Adaptation: Tracking the Milestones of Past Selection in the Bovine Genome. Front. Genet. 6, 36. 10.3389/fgene.2015.00036 PubMed DOI PMC
Vicoso B., Charlesworth B. (2006). Evolution on the X Chromosome: Unusual Patterns and Processes. Nat. Rev. Genet. 7, 645–653. 10.1038/nrg1914 PubMed DOI
Voight B. F., Kudaravalli S., Wen X., Pritchard J. K. (2006). A Map of Recent Positive Selection in the Human Genome. PLoS Biol. 4, e72. 10.1371/journal.pbio.0040072 PubMed DOI PMC
Wang F., Gervasi M. G., Bošković A., Sun F., Rinaldi V. D., Yu J., et al. (2021). Deficient Spermiogenesis in Mice Lacking Rlim. Elife 10, e63556. 10.7554/eLife.63556 PubMed DOI PMC
Witt K. E., Huerta-Sánchez E. (2019). Convergent Evolution in Human and Domesticate Adaptation to High-Altitude Environments. Phil. Trans. R. Soc. B 374, 20180235. 10.1098/rstb.2018.0235 PubMed DOI PMC
Wu H., Liu Y.-H., Wang G.-D., Yang C.-T., Otecko N. O., Liu F., et al. (2016). Identifying Molecular Signatures of Hypoxia Adaptation from Sex Chromosomes: A Case for Tibetan Mastiff Based on Analyses of X Chromosome. Sci. Rep. 6, 35004. 10.1038/srep35004 PubMed DOI PMC
Zeder M. A. (2008). Domestication and Early Agriculture in the Mediterranean Basin: Origins, Diffusion, and Impact. Proc. Natl. Acad. Sci. U.S.A. 105, 11597–11604. 10.1073/pnas.0801317105 PubMed DOI PMC
Zhu C., Fan H., Yuan Z., Hu S., Zhang L., Wei C., et al. (2015). Detection of Selection Signatures on the X Chromosome in Three Sheep Breeds. Ijms 16, 20360–20374. 10.3390/ijms160920360 PubMed DOI PMC
Zhu C., Li M., Qin S., Zhao F., Fang S. (2020). Detection of Copy Number Variation and Selection Signatures on the X Chromosome in Chinese Indigenous Sheep with Different Types of Tail. Asian-australas J. Anim. Sci. 33, 1378–1386. 10.5713/ajas.18.0661 PubMed DOI PMC
Dryad
10.5061/dryad.hdr7sqvkk