Genomic signatures of selection, local adaptation and production type characterisation of East Adriatic sheep breeds

. 2023 Nov 06 ; 14 (1) : 142. [epub] 20231106

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37932811

Grantová podpora
IP-2018-01-8708 Hrvatska Zaklada za Znanost
KK.01.1.1.04.0058 EU Operational Program Competitiveness and Cohesion 2014-2020
QK1919156 Ministry of Agriculture, Czech Republic

Odkazy

PubMed 37932811
PubMed Central PMC10626677
DOI 10.1186/s40104-023-00936-y
PII: 10.1186/s40104-023-00936-y
Knihovny.cz E-zdroje

BACKGROUND: The importance of sheep breeding in the Mediterranean part of the eastern Adriatic has a long tradition since its arrival during the Neolithic migrations. Sheep production system is extensive and generally carried out in traditional systems without intensive systematic breeding programmes for high uniform trait production (carcass, wool and milk yield). Therefore, eight indigenous Croatian sheep breeds from eastern Adriatic treated here as metapopulation (EAS), are generally considered as multipurpose breeds (milk, meat and wool), not specialised for a particular type of production, but known for their robustness and resistance to certain environmental conditions. Our objective was to identify genomic regions and genes that exhibit patterns of positive selection signatures, decipher their biological and productive functionality, and provide a "genomic" characterization of EAS adaptation and determine its production type. RESULTS: We identified positive selection signatures in EAS using several methods based on reduced local variation, linkage disequilibrium and site frequency spectrum (eROHi, iHS, nSL and CLR). Our analyses identified numerous genomic regions and genes (e.g., desmosomal cadherin and desmoglein gene families) associated with environmental adaptation and economically important traits. Most candidate genes were related to meat/production and health/immune response traits, while some of the candidate genes discovered were important for domestication and evolutionary processes (e.g., HOXa gene family and FSIP2). These results were also confirmed by GO and QTL enrichment analysis. CONCLUSIONS: Our results contribute to a better understanding of the unique adaptive genetic architecture of EAS and define its productive type, ultimately providing a new opportunity for future breeding programmes. At the same time, the numerous genes identified will improve our understanding of ruminant (sheep) robustness and resistance in the harsh and specific Mediterranean environment.

Zobrazit více v PubMed

Zeder MA. Domestication and early agriculture in the Mediterranean basin: brigins, diffusion, and impact. Proc Natl Acad Sci USA. 2008;105:11597–11604. doi: 10.1073/pnas.0801317105. PubMed DOI PMC

Chessa B, Pereira F, Arnaud F, Amorim A, Goyache F, Mainland I, et al. Revealing the history of sheep domestication using retrovirus integrations. Science. 2009;324:532. doi: 10.1126/science.1170587. PubMed DOI PMC

Lv FH, Cao YH, Liu GJ, Luo LY, Lu R, Liu MJ, et al. Whole-genome resequencing of worldwide wild and domestic sheep elucidates genetic diversity, introgression, and agronomically important loci. Mol Biol Evol. 2022;39:2. doi: 10.1093/molbev/msab353. PubMed DOI PMC

Forenbaher S, Miracle PT. The spread of farming in the Eastern Adriatic. Doc Praehist. 2006;33:89–100. doi: 10.4312/dp.33.10. DOI

Forenbaher S, Kaiser T, Miracle PT. Dating the East Adriatic Neolithic. Eur J Archaeol. 2013;16:589–609. doi: 10.1179/1461957113Y.0000000038. DOI

McClure SB, Podrug E, Jović J, Monroe S, Radde HD, Triozzi N, et al. The zooarchaeology of Neolithic farmers: herding and hunting on the Dalmatian coast of Croatia. Quat Int. 2022;634:27–37. doi: 10.1016/j.quaint.2022.06.013. DOI

Drzaic I, Curik I, Lukic B, Shihabi M, Li MH, Kantanen J, et al. High-density genomic characterization of native Croatian sheep breeds. Front Genet. 2022;13:940736. doi: 10.3389/fgene.2022.940736. PubMed DOI PMC

Nielsen R. Molecular signatures of natural selection. Annu Rev Genet. 2005;39:197–218. doi: 10.1146/annurev.genet.39.073003.112420. PubMed DOI

González-Rodríguez A, Munilla S, Mouresan EF, Cañas-Álvarez JJ, Díaz C, Piedrafita J, et al. On the performance of tests for the detection of signatures of selection: a case study with the Spanish autochthonous beef cattle populations. Genet Sel Evol. 2016;48:81. doi: 10.1186/s12711-016-0258-1. PubMed DOI PMC

Ma Y, Ding X, Qanbari S, Weigend S, Zhang Q, Simianer H. Properties of different selection signature statistics and a new strategy for combining them. Heredity (Edinb) 2015;115:426–436. doi: 10.1038/hdy.2015.42. PubMed DOI PMC

Saravanan KA, Panigrahi M, Kumar H, Bhushan B, Dutt T, Mishra BP. Selection signatures in livestock genome: A review of concepts, approaches and applications. Livest Sci. 2020;241:104257. doi: 10.1016/j.livsci.2020.104257. DOI

Nothnagel M, Lu TT, Kayser M, Krawczak M. Genomic and geographic distribution of SNP-defined runs of homozygosity in Europeans. Hum Mol Genet. 2010;19:2927–2935. doi: 10.1093/hmg/ddq198. PubMed DOI

Curik I, Ferenčaković M, Sölkner J. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livest Sci. 2014;166:26–34. doi: 10.1016/j.livsci.2014.05.034. DOI

Liu J, Shi L, Li Y, Chen L, Garrick D, Wang L, et al. Estimates of genomic inbreeding and identification of candidate regions that differ between Chinese indigenous sheep breeds. J Anim Sci Biotechnol. 2021;12:95. doi: 10.1186/s40104-021-00608-9. PubMed DOI PMC

Lukic B, Ferenčaković M, Šalamon D, Čačić M, Orehovački V, Iacolina L, et al. Conservation genomic analysis of the Croatian indigenous Black Slavonian and Turopolje pig breeds. Front Genet. 2020;11:261. doi: 10.3389/fgene.2020.00261. PubMed DOI PMC

Shihabi M, Lukic B, Cubric-Curik V, Brajkovic V, Oršanić M, Ugarković D, et al. Identification of selection signals on the X-chromosome in east Adriatic sheep: a new complementary approach. Front Genet. 2022;13:780. doi: 10.3389/fgene.2022.887582. PubMed DOI PMC

Pavlidis P, Živković D, Stamatakis A, Alachiotis N. SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Mol Biol Evol. 2013;30:2224–2234. doi: 10.1093/molbev/mst112. PubMed DOI PMC

Williamson SH, Hubisz MJ, Clark AG, Payseur BA, Bustamante CD, Nielsen R. Localizing recent adaptive evolution in the human genome. PLoS Genet. 2007;3:e90. doi: 10.1371/journal.pgen.0030090. PubMed DOI PMC

Adeniyi OO, Simon R, Bytyqi H, Kugler W, Mehmeti H, Berisha K, et al. Capturing genetic diversity and selection signatures of the endangered Kosovar Balusha sheep breed. Genes (Basel) 2022;13:866. doi: 10.3390/genes13050866. PubMed DOI PMC

Cesarani A, Sechi T, Gaspa G, Usai MG, Sorbolini S, Macciotta NPP, et al. Investigation of genetic diversity and selection signatures between Sarda and Sardinian Ancestral black, two related sheep breeds with evident morphological differences. Small Rumin Res. 2019;177:68–75. doi: 10.1016/j.smallrumres.2019.06.014. DOI

Ciani E, Lasagna E, D’Andrea M, Alloggio I, Marroni F, Ceccobelli S, et al. Merino and Merino-derived sheep breeds: A genome-wide intercontinental study. Genet Sel Evol. 2015;47:64. doi: 10.1186/s12711-015-0139-z. PubMed DOI PMC

Pariset L, Mariotti M, Gargani M, Joost S, Negrini R, Perez T, et al. Genetic diversity of sheep breeds from Albania, Greece, and Italy assessed by mitochondrial DNA and nuclear polymorphisms (SNPs) Sci World J. 2011;11:1641–1659. doi: 10.1100/2011/186342. PubMed DOI PMC

Serranito B, Cavalazzi M, Vidal P, Taurisson-Mouret D, Ciani E, Bal M, et al. Local adaptations of Mediterranean sheep and goats through an integrative approach. Sci Rep. 2021;11:21363. doi: 10.1038/s41598-021-00682-z. PubMed DOI PMC

Tsartsianidou V, Sánchez-Molano E, Kapsona VV, Basdagianni Z, Chatziplis D, Arsenos G, et al. A comprehensive genome-wide scan detects genomic regions related to local adaptation and climate resilience in Mediterranean domestic sheep. Genet Sel Evol. 2021;53:90. doi: 10.1186/s12711-021-00682-7. PubMed DOI PMC

Ciani E, Mastrangelo S, Da Silva A, Marroni F, Ferenčaković M, Ajmone-Marsan P, et al. On the origin of European sheep as revealed by the diversity of the Balkan breeds and by optimizing population-genetic analysis tools. Genet Sel Evol. 2020;52:25. doi: 10.1186/s12711-020-00545-7. PubMed DOI PMC

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559. doi: 10.1086/519795. PubMed DOI PMC

Biscarini F, Cozzi P, Gaspa G, Marras G. DetectRUNS: Detect runs of homozygosity and runs of heterozygosity in diploid genomes. The Compr R Arch Network. 2018. https://rdrr.io/cran/detectRUNS/f/vignettes/detectRUNS.vignette.Rmd.

Ferenčaković M, Sölkner J, Curik I. Estimating autozygosity from high-throughput information: effects of SNP density and genotyping errors. Genet Sel Evol. 2013;45:42. doi: 10.1186/1297-9686-45-42. PubMed DOI PMC

Gao X, Starmer J, Martin ER. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol. 2008;32:361–369. doi: 10.1002/gepi.20310. PubMed DOI

Delaneau O, Howie B, Cox AJ, Zagury JF, Marchini J. Haplotype estimation using sequencing reads. Am J Hum Genet. 2013;93:687–696. doi: 10.1016/j.ajhg.2013.09.002. PubMed DOI PMC

Sabeti PC, Reich DE, Higgins JM, Levine HZP, Richter DJ, Schaffner SF, et al. Detecting recent positive selection in the human genome from haplotype structure. Nature. 2002;419:832–837. doi: 10.1038/nature01140. PubMed DOI

Gautier M, Klassmann A, Vitalis R. rehh 2.0: a reimplementation of the R package rehh to detect positive selection from haplotype structure. Mol Ecol Resour. 2017;17:78–90. doi: 10.1111/1755-0998.12634. PubMed DOI

Gautier M, Naves M. Footprints of selection in the ancestral admixture of a New World Creole cattle breed. Mol Ecol. 2011;20:3128–3143. doi: 10.1111/j.1365-294X.2011.05163.x. PubMed DOI

Ferrer-Admetlla A, Liang M, Korneliussen T, Nielsen R. On detecting incomplete soft or hard selective sweeps using haplotype structure. Mol Biol Evol. 2014;31:1275–1291. doi: 10.1093/molbev/msu077. PubMed DOI PMC

Szpiech ZA, Hernandez RD. Selscan: An efficient multithreaded program to perform EHH-based scans for positive selection. Mol Biol Evol. 2014;31:2824–2827. doi: 10.1093/molbev/msu211. PubMed DOI PMC

Stephan W. Genetic hitchhiking versus background selection: The controversy and its implications. Philos Trans R Soc B: Biol Sci. 2010;365:1245–1253. doi: 10.1098/rstb.2009.0278. PubMed DOI PMC

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology The Gene Ontology Consortium. Nat Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC

Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Ridwan Amode M, et al. Ensembl 2021. Nucleic Acids Res. 2021;49:884–891. doi: 10.1093/nar/gkaa942. PubMed DOI PMC

Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI

Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update) Nucleic Acids Res. 2022;50:216–221. doi: 10.1093/nar/gkac194. PubMed DOI PMC

Fonseca PAS, Suárez-Vega A, Marras G, Cánovas Á. GALLO: An R package for genomic annotation and integration of multiple data sources in livestock for positional candidate loci. Gigascience. 2020;9:12. doi: 10.1093/gigascience/giaa149. PubMed DOI PMC

Lowndes M, Nelson WJ. Cadherin-Mediated Cell–Cell Adhesion. Encyclopedia of biological chemistry. 2. 2013. pp. 255–60.

Mozaffarian N, Shaw EA, Stevens AM. Maternally mediated neonatal autoimmunity. In: Ohls KR, Maheshwari A, editors. Hematology, immunology and infectious disease: neonatology questions and controversies (second edition). Philadelphia: W.B. Saunders; 2012. p. 129–70.

Duverger O, Morasso MI. Role of homeobox genes in the patterning, specification, and differentiation of ectodermal appendages in mammals. J Cell Physiol. 2008;216:337–346. doi: 10.1002/jcp.21491. PubMed DOI PMC

Hrasnica F, Ilančić D, Pavlović S, Rako A, Šmalcelj I. Specijalno stočarstvo. Zagreb: Poljoprivredni nakladni zavod; 1958.

Wang L, Zhou ZY, Zhang T, Zhang L, Hou X, Yan H, et al. IRLnc: a novel functional noncoding RNA contributes to intramuscular fat deposition. BMC Genom. 2021;22:95. doi: 10.1186/s12864-020-07349-5. PubMed DOI PMC

Stratil A, van Poucke M, Bartenschlager H, Knoll A, Yerle M, Peelman LJ, et al. Porcine OGN and ASPN: Mapping, polymorphisms and use for quantitative trait loci identification for growth and carcass traits in a Meishan x Piétrain intercross. Anim Genet. 2006;37:415–418. doi: 10.1111/j.1365-2052.2006.01480.x. PubMed DOI

Tasheva ES, Klocke B, Conrad GW. Analysis of transcriptional regulation of the small leucine rich proteoglycans. Mol Vis. 2004;10:758–772. PubMed

Han J, Guo T, Yue Y, Lu Z, Liu J, Yuan C, et al. Quantitative proteomic analysis identified differentially expressed proteins with tail/ rump fat deposition in Chinese thin- and fat-tailed lambs. PLoS One. 2021;16(2):e0246279. doi: 10.1371/journal.pone.0246279. PubMed DOI PMC

Bedhane M, van der Werf J, Gondro C, Duijvesteijn N, Lim D, Park B, et al. Genome-wide association study of meat quality traits in Hanwoo beef cattle using imputed whole-genome sequence data. Front Genet. 2019;10:1235. doi: 10.3389/fgene.2019.01235. PubMed DOI PMC

Ren X, Yang GL, Peng WF, Zhao YX, Zhang M, Chen ZH, et al. A genome-wide association study identifies a genomic region for the polycerate phenotype in sheep (Ovis aries) Sci Rep. 2016;6:21111. doi: 10.1038/srep21111. PubMed DOI PMC

Verardo LL. Gene networks from genome wide association studies for pig reproductive traits. Vicosa, Minas Gerais: PhD thesis, The Universidade Federal de Vicosa; 2015.

Feng Z, Li X, Cheng J, Jiang R, Huang R, Wang D, et al. Copy number variation of the pigy gene in sheep and its association analysis with growth traits. Animals. 2020;10:4. doi: 10.3390/ani10040688. PubMed DOI PMC

Naserkheil M, Mehrban H, Lee D, Park MN. Genome-wide association study for carcass primal cut yields using single-step bayesian approach in Hanwoo cattle. Front Genet. 2021;12:752424. doi: 10.3389/fgene.2021.752424. PubMed DOI PMC

Xia J, Fan H, Chang T, Xu L, Zhang W, Song Y, et al. Searching for new loci and candidate genes for economically important traits through gene-based association analysis of Simmental cattle. Sci Rep. 2017;7:42048. doi: 10.1038/srep42048. PubMed DOI PMC

Glerup S, Olsen D, Vaegter CB, Gustafsen C, Sjoegaard SS, Hermey G, et al. SorCS2 regulates dopaminergic wiring and is processed into an apoptotic two-chain receptor in peripheral glia. Neuron. 2014;82:1074–1087. doi: 10.1016/j.neuron.2014.04.022. PubMed DOI

Malik AR, Szydlowska K, Nizinska K, Asaro A, van Vliet EA, Popp O, et al. SORCS2 controls functional expression of amino acid transporter EAAT3 and protects neurons from oxidative stress and epilepsy-induced pathology. Cell Rep. 2019;26:2792–2804. doi: 10.1016/j.celrep.2019.02.027. PubMed DOI PMC

Olivieri BF, Mercadante MEZ, Cyrillo JNDSG, Branco RH, Bonilha SFM, de Albuquerque LG, et al. Genomic regions associated with feed efficiency indicator traits in an experimental Nellore cattle population. PLoS One. 2016;11(10):e0164390. doi: 10.1371/journal.pone.0164390. PubMed DOI PMC

Klimov E, Rud’ko O, Rakhmanaliev E, Sulimova G. Genomic organisation and tissue specific expression of ABLIM2 gene in human, mouse and rat. Bba Gene Struct Expr. 2005;1730:1–9. doi: 10.1016/j.bbaexp.2005.05.001. PubMed DOI

Daza KR, Velez-Irizarry D, Casiró S, Steibel JP, Raney NE, Bates RO, et al. Integrated genome-wide analysis of microRNA expression quantitative trait loci in pig longissimus dorsi muscle. Front Genet. 2021;12:644091. doi: 10.3389/fgene.2021.644091. PubMed DOI PMC

Dzomba EF, Chimonyo M, Pierneef R, Muchadeyi FC. Runs of homozygosity analysis of South African sheep breeds from various production systems investigated using OvineSNP50k data. BMC Genom. 2021;22:7. doi: 10.1186/s12864-020-07314-2. PubMed DOI PMC

Xu SS, Ren X, Yang GL, Xie XL, Zhao YX, Zhang M, et al. Genome-wide association analysis identifies the genetic basis of fat deposition in the tails of sheep (Ovis aries) Anim Genet. 2017;48:560–569. doi: 10.1111/age.12572. PubMed DOI

van der Loop FTL, Schaart G, Timmer EDJ, Ramaekers FCS, van Eys GJJM. Smoothelin, a novel cytoskeletal protein specific for smooth muscle cells. J Cell Biol. 1996;134:401–411. doi: 10.1083/jcb.134.2.401. PubMed DOI PMC

Murali M, MacDonald JA. Smoothelins and the control of muscle contractility. In: Khali RA, editor. Advances in pharmacology. 2018;81:39–78. PubMed

Duan Z, Sun C, Shen MM, Wang K, Yang N, Zheng J, et al. Genetic architecture dissection by genome-wide association analysis reveals avian eggshell ultrastructure traits. Sci Rep. 2016;6:28836. doi: 10.1038/srep28836. PubMed DOI PMC

Piazuelo CD. Genomic analysis of fatty acid composition and gut microbiota in pigs.  Barcelona: PhD Thesis, Universitat Autònoma De Barcelona; 2018.

Armstrong E, Iriarte A, Nicolini P, de Los SJ, Ithurralde J, Bielli A, et al. Comparison of transcriptomic landscapes of different lamb muscles using RNA-Seq. PLoS One. 2018;13(7):e0200732. doi: 10.1371/journal.pone.0200732. PubMed DOI PMC

Allen HL, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010;467:832–838. doi: 10.1038/nature09410. PubMed DOI PMC

Yin T, König S. Genome-wide associations and detection of potential candidate genes for direct genetic and maternal genetic effects influencing dairy cattle body weight at different ages. Genet Sel Evol. 2019;51:4. doi: 10.1186/s12711-018-0444-4. PubMed DOI PMC

Pallares LFA. Genetic architecture of craniofacial shape in the house mouse: a genetic and morphological perspective. Kiel: PhD thesis, Christian Albrechts University; 2015.

Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, Halldorsson B, Zusmanovich P, et al. Many sequence variants affecting diversity of adult human height. Nat Genet. 2008;40:609–615. doi: 10.1038/ng.122. PubMed DOI

Signer-Hasler H, Flury C, Haase B, Burger D, Simianer H, Leeb T, et al. A genome-wide association study reveals loci influencing height and other conformation traits in horses. PLoS One. 2012;7(5):e37282. doi: 10.1371/journal.pone.0037282. PubMed DOI PMC

Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet. 2008;40:575–583. doi: 10.1038/ng.121. PubMed DOI PMC

Al-Mamun HA, Kwan P, Clark SA, Ferdosi MH, Tellam R, Gondro C. Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight. Genet Sel Evol. 2015;47:66. doi: 10.1186/s12711-015-0142-4. PubMed DOI PMC

Matika O, Riggio V, Anselme-Moizan M, Law AS, Pong-Wong R, Archibald AL, et al. Genome-wide association reveals QTL for growth, bone and in vivo carcass traits as assessed by computed tomography in Scottish Blackface lambs. Genet Sel Evol. 2016;48:11. doi: 10.1186/s12711-016-0191-3. PubMed DOI PMC

Bolormaa S, Hayes BJ, van der Werf JHJ, Pethick D, Goddard ME, Daetwyler HD. Detailed phenotyping identifies genes with pleiotropic effects on body composition. BMC Genom. 2016;17:224. doi: 10.1186/s12864-016-2538-0. PubMed DOI PMC

Rochus CM, Tortereau F, Plisson-Petit F, Restoux G, Moreno-Romieux C, Tosser-Klopp G, et al. Revealing the selection history of adaptive loci using genome-wide scans for selection: an example from domestic sheep. BMC Genom. 2018;19:71. doi: 10.1186/s12864-018-4447-x. PubMed DOI PMC

Naval-Sanchez M, Nguyen Q, McWilliam S, Porto-Neto LR, Tellam R, Vuocolo T, et al. Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds. Nat Commun. 2018;9:859. doi: 10.1038/s41467-017-02809-1. PubMed DOI PMC

Ruiz-Larrañaga O, Langa J, Rendo F, Manzano C, Iriondo M, Estonba A. Genomic selection signatures in sheep from the Western Pyrenees. Genet Sel Evol. 2018;50:9. doi: 10.1186/s12711-018-0378-x. PubMed DOI PMC

Signer-Hasler H, Burren A, Ammann P, Drögemüller C, Flury C. Runs of homozygosity and signatures of selection: a comparison among eight local Swiss sheep breeds. Anim Genet. 2019;50:512–525. doi: 10.1111/age.12828. PubMed DOI

Saif R, Henkel J, Jagannathan V, Drögemüller C, Flury C, Leeb T. The LCORL locus is under selection in large-sized Pakistani goat breeds. Genes (Basel) 2020;11(2):168. doi: 10.3390/genes11020168. PubMed DOI PMC

Graber JK, Signer-Hasler H, Burren A, Drögemüller C. Evaluation of truncating variants in the LCORL gene in relation to body size of goats from Switzerland. Anim Genet. 2022;53:237–239. doi: 10.1111/age.13177. PubMed DOI PMC

Posbergh CJ, Huson HJ. All sheeps and sizes: a genetic investigation of mature body size across sheep breeds reveals a polygenic nature. Anim Genet. 2021;52:99–107. doi: 10.1111/age.13016. PubMed DOI PMC

Dunlap KA, Kwak H il, Burghardt RC, Bazer FW, Magness RR, Johnson GA, et al. The sphingosine 1-phosphate (S1P) signaling pathway is regulated during pregnancy in sheep. Biol Reprod. 2010;82:876–87. doi: 10.1095/biolreprod.109.081604. PubMed DOI PMC

Ghoreishifar SM, Eriksson S, Johansson AM, Khansefid M, Moghaddaszadeh-Ahrabi S, Parna N, et al. Signatures of selection reveal candidate genes involved in economic traits and cold acclimation in five Swedish cattle breeds. Genet Sel Evol. 2020;52:52. doi: 10.1186/s12711-020-00571-5. PubMed DOI PMC

Zhou SL, Zhou ZJ, Hu ZQ, Song CL, Luo YJ, Luo CB, et al. Genomic sequencing identifies WNK2 as a driver in hepatocellular carcinoma and a risk factor for early recurrence. J Hepatol. 2019;71:1152–63. doi: 10.1016/j.jhep.2019.07.014. PubMed DOI

Purfield DC, Evans RD, Berry DP. Breed- and trait-specific associations define the genetic architecture of calving performance traits in cattle. J Anim Sci. 2020;98(5):1–18. doi: 10.1093/jas/skaa151. PubMed DOI PMC

Wang X, Zhou G, Xu X, Geng R, Zhou J, Yang Y, et al. Transcriptome profile analysis of adipose tissues from fat and short-tailed sheep. Gene. 2014;549:252–257. doi: 10.1016/j.gene.2014.07.072. PubMed DOI

Liu CT, Monda KL, Taylor KC, Lange L, Demerath EW, Palmas W, et al. Genome-wide association of body fat distribution in African ancestry populations suggests new loci. PLoS Genet. 2013;9(8):e1003681. doi: 10.1371/journal.pgen.1003681. PubMed DOI PMC

Wang X, Ma P, Liu J, Zhang Q, Zhang Y, Ding X, et al. Genome-wide association study in Chinese Holstein cows reveal two candidate genes for somatic cell score as an indicator for mastitis susceptibility. BMC Genet. 2015;16:111. doi: 10.1186/s12863-015-0263-3. PubMed DOI PMC

Atlija M, Arranz JJ, Martinez-Valladares M, Gutiérrez-Gil B. Detection and replication of QTL underlying resistance to gastrointestinal nematodes in adult sheep using the ovine 50K SNP array. Genet Sel Evol. 2016;48:4. doi: 10.1186/s12711-016-0182-4. PubMed DOI PMC

Ahbara AM, Khbou MK, Rhomdhane R, Sassi L, Gharbi M, Haile A, et al. Genome variation in tick infestation and cryptic divergence in Tunisian indigenous sheep. BMC Genom. 2022;23:167. doi: 10.1186/s12864-022-08321-1. PubMed DOI PMC

Zhang H, Liu A, Wang Y, Luo H, Yan X, Guo X, et al. Genetic parameters and genome-wide association studies of eight longevity traits representing either full or partial lifespan in Chinese Holsteins. Front Genet. 2021;12:634986. doi: 10.3389/fgene.2021.634986. PubMed DOI PMC

Richardson IW. The genetics of Mycobacterium bovis infection in Irish cattle. PhD Thesis. Dublin; Trinity College; 2016.

Wang P, Li X, Zhu Y, Wei J, Zhang C, Kong Q, et al. Genome-wide association analysis of milk production, somatic cell score, and body conformation traits in Holstein cows. Front Vet Sci. 2022;9:1493. doi: 10.3389/fvets.2022.932034. PubMed DOI PMC

Saravanan KA, Panigrahi M, Kumar H, Bhushan B, Dutt T, Mishra BP. Genome-wide analysis of genetic diversity and selection signatures in three Indian sheep breeds. Livest Sci. 2021;243:104367. doi: 10.1016/j.livsci.2020.104367. DOI

Honerlagen H, Reyer H, Oster M, Ponsuksili S, Trakooljul N, Kuhla B, et al. Identification of genomic regions influencing N-metabolism and N-excretion in lactating Holstein-Friesians. Front Genet. 2021;12:699550. doi: 10.3389/fgene.2021.699550. PubMed DOI PMC

Yudin NS, Larkin DM, Ignatieva EV. A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments. BMC Genet. 2017;18:111. doi: 10.1186/s12863-017-0580-9. PubMed DOI PMC

Wei FJ, Cai CY, Yu P, Lv J, Ling C, Shi WT, et al. Quantitative candidate gene association studies of metabolic traits in Han Chinese type 2 diabetes patients. Genet Mol Res. 2015;14:15471–15481. doi: 10.4238/2015.November.30.25. PubMed DOI

Chase A, Pellagatti A, Singh S, Score J, Tapper WJ, Lin F, et al. PRR14L mutations are associated with chromosome 22 acquired uniparental disomy, age-related clonal hematopoiesis and myeloid neoplasia. Leukemia. 2019;33:1184–1194. doi: 10.1038/s41375-018-0340-5. PubMed DOI PMC

Hodge MJ, de Las Heras-Saldana S, Rindfleish SJ, Stephen CP, Pant SD. Characterization of breed specific differences in spermatozoal transcriptomes of sheep in Australia. Genes (Basel) 2021;12(2):203. doi: 10.3390/genes12020203. PubMed DOI PMC

Kennedy JM, Fodil N, Torre S, Bongfen SE, Olivier JF, Leung V, et al. CCDC88B is a novel regulator of maturation and effector functions of T cells during pathological inflammation. J Exp Med. 2014;211(13):2519–2535. doi: 10.1084/jem.20140455. PubMed DOI PMC

Ahmed AM, Good B, Hanrahan JP, McGettigan P, Browne J, Keane OM, et al. Variation in the Ovine abomasal lymph node transcriptome between breeds known to differ in resistance to the gastrointestinal nematode. PLoS ONE. 2015;10(5):e0124823. doi: 10.1371/journal.pone.0124823. PubMed DOI PMC

Li B, Qiao L, An L, Wang W, Liu J, Ren Y, et al. Transcriptome analysis of adipose tissues from two fat-tailed sheep breeds reveals key genes involved in fat deposition. BMC Genom. 2018;19:338. doi: 10.1186/s12864-018-4747-1. PubMed DOI PMC

Giannini AL, Gao Y, Bijlmakers MJ. T-cell regulator RNF125/TRAC-1 belongs to a novel family of ubiquitin ligases with zinc fingers and a ubiquitin-binding domain. Biochem J. 2008;410:101–111. doi: 10.1042/BJ20070995. PubMed DOI PMC

Yamada M, Ohnishi J, Ohkawara B, Iemura S, Satoh K, Hyodo-Miura J, et al. NARF, an nemo-like kinase (NLK)-associated ring finger protein regulates the ubiquitylation and degradation of T cell factor/lymphoid enhancer factor (TCF/LEF) J Biol Chem. 2006;281:20749–20760. doi: 10.1074/jbc.M602089200. PubMed DOI

Tobar KMC, Álvarez DCL, Franco LÁÁ. Genome-wide association studies in sheep from Latin America. Review Rev Mex Cienc Pecu. 2020;11:659–683.

Carvalho ME, Baldi FS, Alexandre PA, Santana MHA, Ventura RV, Bueno RS, et al. Genomic regions and genes associated with carcass quality in Nelore cattle. Genet Mol Res. 2019;18(1):18226. doi: 10.4238/gmr18226. DOI

Sutera AM. Comparison of genome wide association studies for milk production traits in Valle del Belice dairy sheep. Palermo: PhD thesis, University of Palermo; 2018.

Zahr A, Alcaide P, Yang J, Jones A, Gregory M, dela Paz NG, et al. Endomucin prevents leukocyte-endothelial cell adhesion and has a critical role under resting and inflammatory conditions. Nat Commun. 2016;7:10363. doi: 10.1038/ncomms10363. PubMed DOI PMC

Castaldi PJ, Guo F, Qiao D, Du F, Naing ZZC, Li Y, et al. Identification of functional variants in the FAM13A chronic obstructive pulmonary disease genome-wide association study locus by massively parallel reporter assays. Am J Respir Crit Care Med. 2019;199:52–61. doi: 10.1164/rccm.201802-0337OC. PubMed DOI PMC

Mohammadi H, Farahani AHK, Moradi MH, Mastrangelo S, di Gerlando R, Sardina MT, et al. Weighted single-step genome-wide association study uncovers known and novel candidate genomic regions for milk production traits and somatic cell score in Valle del Belice dairy sheep. Animals. 2022;12(9):1155. doi: 10.3390/ani12091155. PubMed DOI PMC

Niu Q, Zhang T, Xu L, Wang T, Wang Z, Zhu B, et al. Integration of selection signatures and multi-trait GWAS reveals polygenic genetic architecture of carcass traits in beef cattle. Genomics. 2021;113:3325–3336. doi: 10.1016/j.ygeno.2021.07.025. PubMed DOI

Huang CY, Chou YH, Hsieh NT, Chen HH, Lee MF. MED28 regulates MEK1-dependent cellular migration in human breast cancer cells. J Cell Physiol. 2012;227:3820–3827. doi: 10.1002/jcp.24093. PubMed DOI

Braz CU, Rowan TN, Schnabel RD, Decker JE. Genome-wide association analyses identify genotype-by-environment interactions of growth traits in Simmental cattle. Sci Rep. 2021;11:13335. doi: 10.1038/s41598-021-92455-x. PubMed DOI PMC

Gai Z, Hu S, Ma J, Wang Y, Gong G, Zhao J. Whole genome-wide analysis of DEP family members in sheep (Ovis aries) reveals their potential roles in regulating lactation. Chem Biol Zechnol Agric. 2022;9:68. doi: 10.1186/s40538-022-00336-w. DOI

Awad MAA, Abou-Bakr S, El-Regalaty H, El-Din El-Assal S, Abdel-Shafy H. Determination of potential candidate genes associated with milk lactose in Egyptian buffalo. World's Vet J. 2020;10(1):35–42.

Reynolds EGM, Lopdell T, Wang Y, Tiplady KM, Harland CS, Johnson TJJ, et al. Non-additive QTL mapping of lactation traits in 124,000 cattle reveals novel recessive loci. Genet Sel Evol. 2022;54:5. doi: 10.1186/s12711-021-00694-3. PubMed DOI PMC

Zhao H, Zhu S, Guo T, Han M, Chen B, Qiao G, et al. Whole-genome re-sequencing association study on yearling wool traits in Chinese fine-wool sheep. J Anim Sci. 2021;99:9. doi: 10.1093/jas/skab210. PubMed DOI PMC

Ling YH, Xiang H, Zhang G, Ding JP, Zhang ZJ, Zhang YH, et al. Identification of complete linkage disequilibrium in the DSG4 gene and its association with wool length and crimp in Chinese indigenous sheep. Genet Mol Res. 2014;13:5617–5625. doi: 10.4238/2014.July.25.17. PubMed DOI

Xu SS, Gao L, Shen M, Lyu F. Whole-genome selective scans detect genes associated with important phenotypic traits in sheep (Ovis aries) Front Genet. 2021;12:2299. doi: 10.3389/fgene.2021.738879. PubMed DOI PMC

Li Y, Zhou G, Zhang R, Guo J, Li C, Martin G, et al. Comparative proteomic analyses using iTRAQ-labeling provides insights into fiber diversity in sheep and goats. J Proteomics. 2018;172:82–88. doi: 10.1016/j.jprot.2017.10.008. PubMed DOI

Demars J, Cano M, Drouilhet L, Plisson-Petit F, Bardou P, Fabre S, et al. Genome-wide identification of the mutation underlying fleece variation and discriminating ancestral hairy species from modern woolly sheep. Mol Biol Evol. 2017;34:1722. doi: 10.1093/molbev/msx114. PubMed DOI PMC

Davies CJ, Fan Z, Morgado KP, Liu Y, Regouski M, Meng Q, et al. Development and characterization of type I interferon receptor knockout sheep: A model for viral immunology and reproductive signaling. Front Genet. 2022;13:2475. doi: 10.3389/fgene.2022.986316. PubMed DOI PMC

Patel K, Scrimieri F, Ghosh S, Zhong J, Kim MS, Ren YR, et al. FAM190A deficiency creates a cell division defect. Am J Pathol. 2013;183:296–303. doi: 10.1016/j.ajpath.2013.03.020. PubMed DOI PMC

Serrano M, Ramón M, Calvo JH, Jiménez M, Freire F, Vázquez JM, et al. Genome-wide association studies for sperm traits in Assaf sheep breed. Animal. 2021;15:2. doi: 10.1016/j.animal.2020.100065. PubMed DOI

Smith JL, Wilson ML, Nilson SM, Rowan TN, Schnabel RD, Decker JE, et al. Genome-wide association and genotype by environment interactions for growth traits in U.S. Red Angus cattle. BMC Genom. 2022;23:517. doi: 10.1186/s12864-022-08667-6. PubMed DOI PMC

Yoshida GM, Lhorente JP, Carvalheiro R, Yáñez JM. Bayesian genome-wide association analysis for body weight in farmed Atlantic salmon (Salmo salar L.) Anim Genet. 2017;48:698–703. doi: 10.1111/age.12621. PubMed DOI

Guo Q, Huang L, Bai H, Wang Z, Bi Y, Chen G, et al. Genome-wide association study of potential meat quality trait loci in ducks. Genes (Basel) 2022;13(6):986. doi: 10.3390/genes13060986. PubMed DOI PMC

Buzanskas ME, Grossi DA, Ventura RV, Schenkel FS, Sargolzaei M, Meirelles SLC, et al. Genome-wide association for growth traits in Canchim beef cattle. PLoS One. 2014;9(4):e94802. doi: 10.1371/journal.pone.0094802. PubMed DOI PMC

Gu X, Feng C, Ma L, Song C, Wang Y, Da Y, et al. Genome-wide association study of body weight in chicken F2 resource population. PLoS One. 2011;6(7):e21872. doi: 10.1371/journal.pone.0021872. PubMed DOI PMC

Vaishnav S, Chauhan A, Ajay A, Saini BL, Kumar S, Kumar A, et al. Allelic to genome wide perspectives of swine genetic variation to litter size and its component traits. Mol Biol Rep. 2023;50:3705–3721. doi: 10.1007/s11033-022-08168-5. PubMed DOI

Schneider L, Essmann F, Kletke A, Rio P, Hanenberg H, Wetzel W, et al. The transforming acidic coiled coil 3 protein is essential for spindle-dependent chromosome alignment and mitotic survival. J Biol Chem. 2007;282(40):29273–29283. doi: 10.1074/jbc.M704151200. PubMed DOI

Zhang W, Xu M, Wang J, Wang S, Wang X, Yang J, et al. Comparative transcriptome analysis of key genes and pathways activated in response to fat deposition in two sheep breeds with distinct tail phenotype. Front Genet. 2021;12:639030. doi: 10.3389/fgene.2021.639030. PubMed DOI PMC

Bult CJ, Blake JA, Smith CL, Kadin JA, Richardson JE, Anagnostopoulos A, et al. Mouse genome database (MGD) 2019. Nucleic Acids Res. 2019;47:801–806. doi: 10.1093/nar/gky1056. PubMed DOI PMC

Yang Q, Chen H, Ye J, Liu C, Wei R, Chen C, et al. Genetic diversity and signatures of selection in 15 Chinese indigenous dog breeds revealed by genome-wide SNPs. Front Genet. 2019;10:1174. doi: 10.3389/fgene.2019.01174. PubMed DOI PMC

Li H. Patterns of genomic variation and whole genome association studies of economically important traits in cattle. Edmonton: PhD thesis, University of Alberta; 2012.

Chen ZH, Xu YX, Xie XL, Wang DF, Aguilar-Gómez D, Liu GJ, et al. Whole-genome sequence analysis unveils different origins of European and Asiatic mouflon and domestication-related genes in sheep. Commun Biol. 2021;4:1307. doi: 10.1038/s42003-021-02817-4. PubMed DOI PMC

Cao YH, Xu SS, Shen M, Chen ZH, Gao L, Lv FH, et al. Historical introgression from wild relatives enhanced climatic adaptation and resistance to pneumonia in sheep. Mol Biol Evol. 2021;38:838–855. doi: 10.1093/molbev/msaa236. PubMed DOI PMC

Bürglin TR, Affolter M. Homeodomain proteins: an update. Chromosoma. 2016;125:497–521. doi: 10.1007/s00412-015-0543-8. PubMed DOI PMC

Favier B, Dollé P. Developmental functions of mammalian Hox genes. Mol Hum Reprod. 1997;3:115–131. doi: 10.1093/molehr/3.2.115. PubMed DOI

Ronshaugen M, McGinnis N, McGinnis W. Hox protein mutation and macroevolution of the insect body plan. Nature. 2002;415:914–917. doi: 10.1038/nature716. PubMed DOI

Cunyuan L, Ming L, Xiaoyue L, Wei N, Yueren X, Rui Y, et al. Whole-genome resequencing reveals loci associated with thoracic vertebrae number in sheep. Front Genet. 2019;10:674. doi: 10.3389/fgene.2019.00674. PubMed DOI PMC

Yuan Z, Liu E, Liu Z, Kijas JW, Zhu C, Hu S, et al. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Anim Genet. 2017;48:55–66. doi: 10.1111/age.12477. PubMed DOI

Doyle JL, Berry DP, Veerkamp RF, Carthy TR, Evans RD, Walsh SW, et al. Genomic regions associated with muscularity in beef cattle differ in five contrasting cattle breeds. Genet Sel Evol. 2020;52:2. doi: 10.1186/s12711-020-0523-1. PubMed DOI PMC

Fan B, Onteru SK, Du ZQ, Garrick DJ, Stalder KJ, Rothschild MF. Genome-wide association study identifies loci for body composition and structural soundness traits in pigs. PLoS One. 2011;6(2):e14726. doi: 10.1371/journal.pone.0014726. PubMed DOI PMC

Fariello MI, Servin B, Tosser-Klopp G, Rupp R, Moreno C, Cristobal MS, et al. Selection signatures in worldwide sheep populations. PLoS One. 2014;9(8):e103813. doi: 10.1371/journal.pone.0103813. PubMed DOI PMC

Liu Z, Tan X, Wang J, Jin Q, Meng X, Cai Z, et al. Whole genome sequencing of Luxi Black Head sheep for screening selection signatures associated with important traits. Anim Biosci. 2022;35:1340–1350. doi: 10.5713/ab.21.0533. PubMed DOI PMC

Wang W, Zhang X, Zhou X, Zhang Y, La Y, Zhang Y, et al. Deep genome resequencing reveals artificial and natural selection for visual deterioration, plateau adaptability and high prolificacy in Chinese domestic sheep. Front Genet. 2019;10:300. doi: 10.3389/fgene.2019.00300. PubMed DOI PMC

Yurchenko AA, Daetwyler HD, Yudin N, Schnabel RD, vander Jagt CJ, Soloshenko V, et al. Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation. Sci Rep. 2018;8:12984. doi: 10.1038/s41598-018-31304-w. PubMed DOI PMC

Benjelloun B. Diversité des génomes et adaptation locale des petits ruminants d’un pays méditerranéen: le Maroc. Grenoble: PhD Thesis, University of Grenoble Alpes; 2015.

Zhang DY, Zhang XX, di Li F, Yuan LF, Li XL, Zhang YK, et al. Whole-genome resequencing reveals molecular imprints of anthropogenic and natural selection in wild and domesticated sheep. Zool Res. 2022;43:695–705. doi: 10.24272/j.issn.2095-8137.2022.124. PubMed DOI PMC

Henderson JV, Wathes CM, Nicol CJ, White RP, Lines JA. Threat assessment by domestic ducklings using visual signals: implications for animal-machine interactions. Appl Anim Behav Sci. 2000;69(3):241–53. doi: 10.1016/S0168-1591(00)00132-5. PubMed DOI

Peichl L. Topography of ganglion cells in the dog and wolf retina. J Comp Neurol. 1992;324(4):603–620. doi: 10.1002/cne.903240412. PubMed DOI

Wang MS, Zhang RW, Su LY, Li Y, Peng MS, Liu HQ, et al. Positive selection rather than relaxation of functional constraint drives the evolution of vision during chicken domestication. Cell Res. 2016;26:556–573. doi: 10.1038/cr.2016.44. PubMed DOI PMC

Janssen R, Bont L, Siezen CLE, Hodemaekers HM, Ermers MJ, Doornbos G, et al. Genetic susceptibility to respiratory syncytial virus bronchiolitis is predominantly associated with innate immune genes. J Infect Dis. 2007;196:826–834. doi: 10.1086/520886. PubMed DOI

Ranjbar M, Whetstone CE, Omer H, Power L, Cusack RP, Gauvreau GM. The genetic factors of the airway epithelium associated with the pathology of asthma. Genes (Basel) 2022;13:1870. doi: 10.3390/genes13101870. PubMed DOI PMC

van Eerdewegh P, Little RD, Dupuis JE, del Mastro RG, Falls K, Simon J, et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature. 2002;418:426–430. doi: 10.1038/nature00878. PubMed DOI

Liu D, Chen Z, Zhao W, Guo L, Sun H, Zhu K, et al. Genome-wide selection signatures detection in Shanghai Holstein cattle population identified genes related to adaption, health and reproduction traits. BMC Genom. 2021;22:747. doi: 10.1186/s12864-021-08042-x. PubMed DOI PMC

Deng X, Wang D, Wang S, Wang H, Zhou H. Identification of key genes and pathways involved in response to pain in goat and sheep by transcriptome sequencing. Biol Res. 2018;51:25. doi: 10.1186/s40659-018-0174-7. PubMed DOI PMC

Yang S, He H, Ma QS, Zhang Y, Zhu Y, Wan X, et al. Experimental study of the protective effects of SYVN1 against diabetic retinopathy. Sci Rep. 2015;5:14036. doi: 10.1038/srep14036. PubMed DOI PMC

Amano T, Yamasaki S, Yagishita N, Tsuchimochi K, Shin H, Kawahara KI, et al. Synoviolin/Hrd1, an E3 ubiquitin ligase, as a novel pathogenic factor for arthropathy. Genes Dev. 2003;17:2436–2449. doi: 10.1101/gad.1096603. PubMed DOI PMC

Kaneko M, Ishiguro M, Niinuma Y, Uesugi M, Nomura Y. Human HRD1 protects against ER stress-induced apoptosis through ER-associated degradation 1. FEBS Lett. 2002;532(1–2):147–152. doi: 10.1016/S0014-5793(02)03660-8. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...