MicroRNA as an Early Biomarker of Neonatal Sepsis
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
35615626
PubMed Central
PMC9125080
DOI
10.3389/fped.2022.854324
Knihovny.cz E-resources
- Keywords
- CRP, IL-6, inflammation, miRNA, sepsis,
- Publication type
- Journal Article MeSH
- Review MeSH
Sepsis is a major cause of lethality in neonatal intensive care units. Despite significant advances in neonatal care and growing scientific knowledge about the disease, 4 of every 10 infants born in developed countries and suffering from sepsis die or experience considerable disability, including substantial and permanent neurodevelopmental impairment. Pharmacological treatment strategies for neonatal sepsis remain limited and mainly based upon early initiation of antibiotics and supportive treatment. In this context, numerous clinical and serum-based markers have been evaluated for diagnosing sepsis and evaluating its severity and etiology. MicroRNAs (miRNAs) do not encode for proteins but regulate gene expression by inhibiting the translation or transcription of their target mRNAs. Recently, it was demonstrated in adult patients that miRNAs are released into the circulation and that the spectrum of circulating miRNAs is altered during various pathologic conditions, such as inflammation, infection, and sepsis. Here, we summarize current findings on the role of circulating miRNAs in the diagnosis and staging of neonatal sepsis. The conclusions point to substantial diagnostic potential, and several miRNAs have been validated independently by different teams, namely miR-16a, miR-16, miR-96-5p, miR-141, miR-181a, and miR-1184.
Central European Institute of Technology Masaryk University Brno Czechia
Department of Biology Faculty of Medicine Masaryk University Brno Czechia
Department of Neonatology University Hospital Brno Brno Czechia
Department of Pediatrics University Hospital Brno Brno Czechia
See more in PubMed
Wynn JL. Defining neonatal sepsis: Curr Opin Pediatr. (2016) 28:135–40. 10.1097/MOP.0000000000000315 PubMed DOI PMC
Chaurasia S, Sivanandan S, Agarwal R, Ellis S, Sharland M, Sankar MJ. Neonatal sepsis in South Asia: huge burden and spiralling antimicrobial resistance. BMJ. (2019) 364:k5314. 10.1136/bmj.k5314 PubMed DOI PMC
Kissoon N, Carapetis J. Pediatric sepsis in the developing world. J Infect. (2015) 71:S21–6. 10.1016/j.jinf.2015.04.016 PubMed DOI
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. . The Third International Consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. (2016) 315:801. 10.1001/jama.2016.0287 PubMed DOI PMC
Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC, et al. . Neonatal outcomes of extremely preterm infants from the NICHD neonatal research network. Pediatrics. (2010) 126:443–56. 10.1542/peds.2009-2959 PubMed DOI PMC
GBD 2013 Mortality and Causes of Death Collaborators . Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. (2015) 385:117–71. 10.1016/S0140-6736(14)61682-2 PubMed DOI PMC
Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, Schlapbach LJ, Reinhart K, Kissoon N. The global burden of paediatric and neonatal sepsis: a systematic review. Lancet Respir Med. (2018) 6:223–30. 10.1016/S2213-2600(18)30063-8 PubMed DOI
Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE, et al. . Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet. (2012) 379:2151–61. 10.1016/S0140-6736(12)60560-1 PubMed DOI
Walani SR. Global burden of preterm birth. Int J Gynecol Obstet. (2020) 150:31–3. 10.1002/ijgo.13195 PubMed DOI
Wynn JL, Wong HR, Shanley TP, Bizzarro MJ, Saiman L, Polin RA. Time for a neonatal-specific consensus definition for sepsis. Pediatr Crit Care Med. (2014) 15:523–8. 10.1097/PCC.0000000000000157 PubMed DOI PMC
Shane AL, Sánchez PJ, Stoll BJ. Neonatal sepsis. Lancet. (2017) 390:1770–80. 10.1016/S0140-6736(17)31002-4 PubMed DOI
Coggins SA, Weitkamp J-H, Grunwald L, Stark AR, Reese J, Walsh W, et al. . Heart rate characteristic index monitoring for bloodstream infection in an NICU: a 3-year experience. Arch Dis Child Fetal Neonatal Ed. (2016) 101:F329–32. 10.1136/archdischild-2015-309210 PubMed DOI PMC
Benitz WE. Adjunct laboratory tests in the diagnosis of early-onset neonatal sepsis. Clin Perinatol. (2010) 37:421–38. 10.1016/j.clp.2009.12.001 PubMed DOI
Bizzarro MJ, Dembry L-M, Baltimore RS, Gallagher PG. Changing patterns in neonatal Escherichia coli sepsis and ampicillin resistance in the era of intrapartum antibiotic prophylaxis. Pediatrics. (2008) 121:689–96. 10.1542/peds.2007-2171 PubMed DOI
Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. (2010) 156:3216–23. 10.1099/mic.0.040618-0 PubMed DOI
Rashwan NI, Hassan MH, Mohey El-Deen ZM, Ahmed AE-A. Validity of biomarkers in screening for neonatal sepsis – a single center –hospital based study. Pediatr Neonatol. (2019) 60:149–55. 10.1016/j.pedneo.2018.05.001 PubMed DOI
Biomarkers Definitions Working Group . Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. (2001) 69:89–95. 10.1067/mcp.2001.113989 PubMed DOI
Vincent J-L. Management of sepsis in the critically ill patient: key aspects. Expert Opin Pharmacother. (2006) 7:2037–45. 10.1517/14656566.7.15.2037 PubMed DOI
Bhat YR, Kousika P, Lewis L, Purkayastha J. Prevalence and severity of thrombocytopenia in blood culture proven neonatal sepsis: a prospective study. Arch Pediatr Infect Dis. (2018) 6:e12471. 10.5812/pedinfect.12471 PubMed DOI
Barati M, Alinejad F, Bahar MA, Tabrisi MS, Shamshiri AR, Bodouhi N, et al. . Comparison of WBC, ESR, CRP and PCT serum levels in septic and non-septic burn cases. Burns. (2008) 34:770–4. 10.1016/j.burns.2008.01.014 PubMed DOI
Benz F, Roy S, Trautwein C, Roderburg C, Luedde T. Circulating MicroRNAs as biomarkers for sepsis. Int J Mol Sci. (2016) 17:78. 10.3390/ijms17010078 PubMed DOI PMC
Póvoa P, Coelho L, Almeida E, Fernandes A, Mealha R, Moreira P, et al. . C-reactive protein as a marker of infection in critically ill patients. Clin Microbiol Infect. (2005) 11:101–8. 10.1111/j.1469-0691.2004.01044.x PubMed DOI
Schmit X, Vincent JL. The time course of blood c-reactive protein concentrations in relation to the response to initial antimicrobial therapy in patients with sepsis. Infection. (2008) 36:213–19. 10.1007/s15010-007-7077-9 PubMed DOI
Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. . Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock. Crit Care Med. (2013) 41:580–637. 10.1097/CCM.0b013e31827e83af PubMed DOI
Müller B, White JC, Nylén ES, Snider RH, Becker KL, Habener JF. Ubiquitous expression of the calcitonin-i gene in multiple tissues in response to sepsis 1. J Clin Endocrinol Metab. (2001) 86:396–404. 10.1210/jcem.86.1.7089 PubMed DOI
Kopterides P, Siempos II, Tsangaris I, Tsantes A, Armaganidis A. Procalcitonin-guided algorithms of antibiotic therapy in the intensive care unit: a systematic review and meta-analysis of randomized controlled trials. Crit Care Med. (2010) 38:2229–41. 10.1097/CCM.0b013e3181f17bf9 PubMed DOI
Selberg O, Hecker H, Martin M, Klos A, Bautsch W, Köhl J. Discrimination of sepsis and systemic inflammatory response syndrome by determination of circulating plasma concentrations of procalcitonin, protein complement 3a, and interleukin-6. Crit Care Med. (2000) 28:2793–8. 10.1097/00003246-200008000-00019 PubMed DOI
Harbarth S, Holeckova K, Froidevaux C, Pittet D, Ricou B, Grau GE, et al. . Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am J Respir Crit Care Med. (2001) 164:396–402. 10.1164/ajrccm.164.3.2009052 PubMed DOI
Huang M, Cai S, Su J. The pathogenesis of sepsis and potential therapeutic targets. Int J Mol Sci. (2019) 20:5376. 10.3390/ijms20215376 PubMed DOI PMC
Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M, et al. . An estimate of the total number of true human miRNAs. Nucleic Acids Res. (2019) 47:3353–64. 10.1093/nar/gkz097 PubMed DOI PMC
O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. (2018) 9:402. 10.3389/fendo.2018.00402 PubMed DOI PMC
Chen P-S, Lin S-C, Tsai S-J. Complexity in regulating microRNA biogenesis in cancer. Exp Biol Med. (2020) 245:395–401. 10.1177/1535370220907314 PubMed DOI PMC
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. (2010) 79:351–79. 10.1146/annurev-biochem-060308-103103 PubMed DOI
Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. (2009) 19:92–105. 10.1101/gr.082701.108 PubMed DOI PMC
Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. Cell. (2012) 149:515–24. 10.1016/j.cell.2012.04.005 PubMed DOI PMC
Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. (2014) 9:287–314. 10.1146/annurev-pathol-012513-104715 PubMed DOI PMC
Ali Syeda Z, Langden SSS, Munkhzul C, Lee M, Song SJ. Regulatory mechanism of microRNA expression in cancer. Int J Mol Sci. (2020) 21:1723. 10.3390/ijms21051723 PubMed DOI PMC
Wang X-M, Jia R-H, Wei D, Cui W-Y, Jiang W. MiR-134 blockade prevents status epilepticus like-activity and is neuroprotective in cultured hippocampal neurons. Neurosci Lett. (2014) 572:20–25. 10.1016/j.neulet.2014.04.049 PubMed DOI
Jimenez-Mateos EM, Engel T, Merino-Serrais P, Fernaud-Espinosa I, Rodriguez-Alvarez N, Reynolds J, et al. . Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus. Brain Struct Funct. (2015) 220:2387–99. 10.1007/s00429-014-0798-5 PubMed DOI
Reschke CR, Silva LFA, Norwood BA, Senthilkumar K, Morris G, Sanz-Rodriguez A, et al. . Potent anti-seizure effects of locked nucleic acid antagomirs targeting miR-134 in multiple mouse and rat models of epilepsy. Mol Ther Nucleic Acids. (2017) 6:45–56. 10.1016/j.omtn.2016.11.002 PubMed DOI PMC
Morris G, Reschke CR, Henshall DC. Targeting microRNA-134 for seizure control and disease modification in epilepsy. EBioMedicine. (2019) 45:646–54. 10.1016/j.ebiom.2019.07.008 PubMed DOI PMC
Saliminejad K, Khorshid HRK, Fard SS, Ghaffari SH. An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol. (2019) 234:5451–65. 10.1002/jcp.27486 PubMed DOI
O'Connell RM, Rao DS, Baltimore D. microRNA regulation of inflammatory responses. Annu Rev Immunol. (2012) 30:295–312. 10.1146/annurev-immunol-020711-075013 PubMed DOI
Belver L, Papavasiliou FN, Ramiro AR. MicroRNA control of lymphocyte differentiation and function. Curr Opin Immunol. (2011) 23:368–73. 10.1016/j.coi.2011.02.001 PubMed DOI PMC
Lu L-F, Liston A. MicroRNA in the immune system, microRNA as an immune system. Immunology. (2009) 127:291–8. 10.1111/j.1365-2567.2009.03092.x PubMed DOI PMC
Huang H-C, Yu H-R, Huang L-T, Huang H-C, Chen R-F, Lin I-C, et al. . miRNA-125b regulates TNF-α production in CD14 + neonatal monocytes via post-transcriptional regulation. J Leukoc Biol. (2012) 92:171–82. 10.1189/jlb.1211593 PubMed DOI
Appiah MG, Park EJ, Darkwah S, Kawamoto E, Akama Y, Gaowa A, et al. . Intestinal epithelium-derived luminally released extracellular vesicles in sepsis exhibit the ability to suppress TNF-a and IL-17A expression in mucosal inflammation. Int J Mol Sci. (2020) 21:E8445. 10.3390/ijms21228445 PubMed DOI PMC
Dan C, Jinjun B, Zi-Chun H, Lin M, Wei C, Xu Z, et al. . Modulation of TNF-α mRNA stability by human antigen R and miR181s in sepsis-induced immunoparalysis. EMBO Mol Med. (2015) 7:140–57. 10.15252/emmm.201404797 PubMed DOI PMC
Wang Z, Liang Y, Tang H, Chen Z, Li Z, Hu X, et al. . Dexamethasone down-regulates the expression of microRNA-155 in the livers of septic mice. PLoS ONE. (2013) 8:e80547. 10.1371/journal.pone.0080547 PubMed DOI PMC
How C-K, Hou S-K, Shih H-C, Huang M-S, Chiou S-H, Lee C-H, et al. . Expression profile of MicroRNAs in gram-negative bacterial sepsis. Shock. (2015) 43:121–7. 10.1097/SHK.0000000000000282 PubMed DOI
Tsujimoto H, Ono S, Efron PA, Scumpia PO, Moldawer LL, Mochizuki H. Role of toll-like receptors in the development of sepsis. Shock. (2008) 29:315–21. 10.1097/SHK.0b013e318157ee55 PubMed DOI
Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. (2010) 140:805–20. 10.1016/j.cell.2010.01.022 PubMed DOI
Vasilescu C, Rossi S, Shimizu M, Tudor S, Veronese A, Ferracin M, et al. . MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS ONE. (2009) 4:e7405. 10.1371/journal.pone.0007405 PubMed DOI PMC
Wang H, Zhang P, Chen W, Feng D, Jia Y, Xie L. Serum microRNA signatures identified by solexa sequencing predict sepsis patients' mortality: a prospective observational study. PLoS ONE. (2012) 7:e38885. 10.1371/journal.pone.0038885 PubMed DOI PMC
Wang H, Zhang P, Chen W, Feng D, Jia Y, Xie L. Four serum microRNAs identified as diagnostic biomarkers of sepsis. J Trauma Acute Care Surg. (2012) 73:850–54. 10.1097/TA.0b013e31825a7560 PubMed DOI
Wang H, Zhang P, Chen W, Feng D, Jia Y, Xie L. Evidence for serum miR-15a and miR-16 levels as biomarkers that distinguish sepsis from systemic inflammatory response syndrome in human subjects. Clin Chem Lab Med. (2012) 50:1423–8. 10.1515/cclm-2011-0826 PubMed DOI
Wang H, Zhang P, Chen W, Jie D, Dan F, Jia Y, et al. . Characterization and identification of novel serum micrornas in sepsis patients with different outcomes. Shock. (2013) 39:480–87. 10.1097/SHK.0b013e3182940cb8 PubMed DOI
Yao L, Liu Z, Zhu J, Li B, Chai C, Tian Y. Clinical evaluation of circulating microRNA-25 level change in sepsis and its potential relationship with oxidative stress. Int J Clin Exp Pathol. (2015) 8:7675–84. PubMed PMC
Wang H, Yu B, Deng J, Jin Y, Xie L. Serum miR-122 correlates with short-term mortality in sepsis patients. Crit Care. (2014) 18:704. 10.1186/s13054-014-0704-9 PubMed DOI PMC
Tacke F, Roderburg C, Benz F, Cardenas DV, Luedde M, Hippe H-J, et al. . Levels of circulating miR-133a are elevated in sepsis and predict mortality in critically ill patients. Crit Care Med. (2014) 42:1096–104. 10.1097/CCM.0000000000000131 PubMed DOI
Chen J, Jiang S, Cao Y, Yang Y. Altered miRNAs expression profiles and modulation of immune response genes and proteins during neonatal sepsis. J Clin Immunol. (2014) 34:340–8. 10.1007/s10875-014-0004-9 PubMed DOI
Wang X, Wang X, Liu X, Wang X, Xu J, Hou S, et al. . miR-15a/16 are upregulated in the serum of neonatal sepsis patients and inhibit the LPS-induced inflammatory pathway. Int J Clin Exp Med. (2015) 8:5683–90. PubMed PMC
Huang H-C, Yu H-R, Hsu T-Y, Chen I-L, Huang H-C, Chang J-C, et al. . MicroRNA-142-3p and let-7g negatively regulates augmented il-6 production in neonatal polymorphonuclear leukocytes. Int J Biol Sci. (2017) 13:690–700. 10.7150/ijbs.17030 PubMed DOI PMC
Huang L, Qiao L, Zhu H, Jiang L, Yin L. Genomics of neonatal sepsis: has-miR-150 targeting BCL11B functions in disease progression. Ital J Pediatr. (2018) 44:145. 10.1186/s13052-018-0575-9 PubMed DOI PMC
Dhas BB, Dirisala VR, Bhat BV. Expression levels of candidate circulating micrornas in early-onset neonatal sepsis compared with healthy newborns. Genomics Insights. (2018) 11:117863101879707. 10.1177/1178631018797079 PubMed DOI PMC
Li Y, Ke J, Peng C, Wu F, Song Y. microRNA-300/NAMPT regulates inflammatory responses through activation of AMPK/mTOR signaling pathway in neonatal sepsis. Biomed Pharmacother. (2018) 108:271–9. 10.1016/j.biopha.2018.08.064 PubMed DOI
Wang W, Lou C, Gao J, Zhang X, Du Y. LncRNA SNHG16 reverses the effects of miR-15a/16 on LPS-induced inflammatory pathway. Biomed Pharmacother. (2018) 106:1661–7. 10.1016/j.biopha.2018.07.105 PubMed DOI
Cheng Q, Tang L, Wang Y. Regulatory role of miRNA-26a in neonatal sepsis. Exp Ther Med. (2018) 16:4836–42. 10.3892/etm.2018.6779 PubMed DOI PMC
Ng PC, Chan KYY, Yuen TP, Sit T, Lam HS, Leung KT, et al. . Plasma miR-1290 is a novel and specific biomarker for early diagnosis of necrotizing enterocolitis-biomarker discovery with prospective cohort evaluation. J Pediatr. (2019) 205:83–90.e10. 10.1016/j.jpeds.2018.09.031 PubMed DOI
Liu G, Liu W, Guo J. Clinical significance of miR-181a in patients with neonatal sepsis and its regulatory role in the lipopolysaccharide-induced inflammatory response. Exp Ther Med. (2020) 19:1977–83. 10.3892/etm.2020.8408 PubMed DOI PMC
Chen X, Chen Y, Dai L, Wang N. MiR-96-5p alleviates inflammatory responses by targeting NAMPT and regulating the NF-κB pathway in neonatal sepsis. Biosci Rep. (2020) 40:BSR20201267. 10.1042/BSR20201267 PubMed DOI PMC
El-Hefnawy SM, Mostafa RG, El zayat RS, Elfeshawy EM, Abd El-bari HM, El-Monem Ellaithy MA. Biochemical and molecular study on serum miRNA-16a and miRNA- 451 as neonatal sepsis biomarkers. Biochem Biophys Rep. (2021) 25:100915. 10.1016/j.bbrep.2021.100915 PubMed DOI PMC
Lin X, Wang Y. miR-141 is negatively correlated with TLR4 in neonatal sepsis and regulates LPS-induced inflammatory responses in monocytes. Braz J Med Biol Res. (2021) 54:e10603. 10.1590/1414-431x2020e10603 PubMed DOI PMC
Fouda E, Elrazek Midan DA, Ellaban R, El-kousy S, Arafat E. The diagnostic and prognostic role of MiRNA 15b and MiRNA 378a in neonatal sepsis. Biochem Biophys Rep. (2021) 26:100988. 10.1016/j.bbrep.2021.100988 PubMed DOI PMC
Wang D, Han L. Downregulation of miR-1184 serves as a diagnostic biomarker in neonatal sepsis and regulates LPS-induced inflammatory response by inhibiting IL-16 in monocytes. Exp Ther Med. (2021) 21:350. 10.3892/etm.2021.9781 PubMed DOI PMC